用户名: 密码: 验证码:
DMBA诱导SD大鼠胰腺癌发生发展过程中的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     胰腺癌的发病率逐年上升,其致死率已经位居消化道恶性肿瘤的第二位。胰腺癌早期诊断非常困难,治疗效果及预后极差,根本原因在于目前对其细胞起源、发生和发展等机制尚不清楚。在本实验室的前期研究,诱导建立的大鼠胰腺癌模型是接近人胰腺导管腺癌的体内模型,通过观察其胰腺癌发生过程的形态及组织学变化,为认识胰腺癌细胞起源提供了最新的实验证据。但为了进一步探讨胰腺癌发生和发展过程的细胞分子生物学调控机制,本课题拟在诱导大鼠胰腺癌模型过程中,收集不同时间点组织标本,通过基因芯片技术探讨胰腺癌形成和发展过程中相关基因表达调控的动态改变,以期能从细胞分子生物学水平阐明胰腺癌细胞发生和发展机制,并可以为胰腺癌的早期诊断和基因治疗提供新的线索。
     方法:
     1.通过化学致癌剂二甲基苯并蒽(DMBA)胰腺原位包埋诱导建立SD大鼠胰腺癌动物模型。
     2.利用Affymetrix大鼠全基因组表达谱芯片(Genechip Rat Expression Set 230)对胰腺癌大鼠动物建模过程中的各时间点的胰腺组织进行检测,初步筛选其差异表达基因。
     3.应用Genespring软件对差异表达基因进行功能分析,根据Gene Ontology (GO)对所筛选出的差异表达基因进行分子功能及生物学过程的分类,并根据其基因表达的模式运用层次聚类分析的方法进行分析。按照固定顺序对差异表达基因进行自组织映射(SOM)聚类分析。
     4.应用Mann-Kendall单调趋势检验分析基因芯片检测原始数据,并通过将人类全基因组和大鼠全基因组进行对比,筛查胰腺癌大鼠动物建模过程中的各时间点的人鼠同源的差异表达基因。
     5.分别采用荧光实时定量PCR技术及免疫组织化学染色方法对芯片检测结果中经过分析确定的有重要意义的基因进行:mRNA及蛋白表达水平的验证,以确定芯片检测结果的可靠性。
     结果:
     1.采用5mg剂量的二甲基苯并蒽(DMBA)直接置入胰腺被膜下的实质内的方法成功诱导大鼠胰腺癌发生,成癌率高,非实验性意外死亡率低。DMBA实验组术后1个月癌发生率达到80%(12/15)并伴有2例高级别]PanIN。DMBA实验组术后3个月大鼠癌发生率为100%(14/14),死亡率仅为6%(1/15)。
     2.基因芯片技术对比检测正常胰腺、DMBA实验组7天、2周、1月和3月组间基因总体表达水平的改变情况。在所检测的22000个转录本中,共有661条基因在5组中表达差异均有统计学意义(P<0.05),经组间两两比较显示,随着差异倍数的增加,差异基因的数目随之减少。
     3.根据GO分类,所筛选出的661条差异表达基因涉及不同的分子功能分类,并参与了多个生物学过程。根据差异表达基因表达谱的相似性,通过双向层次聚类分析,能从基因表达谱上完全区分开正常胰腺、急慢性胰腺炎、Pan IN和早期及进展期胰腺癌五组样本。其中正常胰腺和进展期胰腺癌的分叉最远,说明相似度最低,提示这些差异表达基因与胰腺癌发生之间有非常高的相关性。
     4.只保留25%样本表达量超过100个荧光单位且在所有样本范围内IQR超过0.5的2,786个探针。进行Mann-Kendall单调趋势检验,获得上调基因(探针)11个,下调基因(探针)142个(P<0.05)。成功筛查出了胰腺癌大鼠动物建模过程中的各时间点的人鼠同源的差异表达基因。
     5.采用荧光实时定量PCR技术及免疫组织化学染色方法对CXCR7、ATP6vlg2和UBe2c分别进行了mRNA及蛋白水平的验证,显示实时定量PCR的结果与芯片结果具有良好的一致性,蛋白表达水平也与芯片检测结果基本一致。进一步证实了本研究中基因芯片检测数据及分析的可靠性。
     结论:
     1.可在短期内获得较高发生率的大鼠胰腺癌模型从而获得胰腺癌发生过程中不同时期的大鼠胰腺癌组织标本,使动态研究胰腺癌发生发展过程中细胞分子生物学的调控机理成为可能。
     2.应用大鼠全基因组的表达谱芯片,高通量、动态地筛选出胰腺癌发生及发展过程中差异表达的基因。
     3.结合胰腺癌大鼠动物模型建模过程中不同时间点的病理状态,通过对部分已知基因表达相关功能的分析,发现胰腺癌发生中涉及到炎症反应、趋化因子、细胞应激反应的增加及抗氧化损伤能力的增强、肿瘤细胞凋亡的抑制、调控增殖与生长抑制的信号途径的失衡、细胞周期及有丝分裂的紊乱以及细胞骨架结构变化等众多遗传学改变,并且这些改变在胰腺癌发生发展过程的不同时段有不同的特点,其共同作用的结果可能与胰腺癌发生密切相关。
     4.筛查了大鼠胰腺癌发生和发展过程中动态的基因表达差异。并通过Blast对比成功筛查出了胰腺癌大鼠动物建模过程中的各时间点的人鼠同源的差异表达基因,对于将研究过渡到人类胰腺癌细胞株层面进一步实现对胰腺癌患者的研究有重要意义。
     5.通过实时定量PCR检测结果和蛋白表达的检测结果表明利用基因芯片技术可完成本实验要求的基因差异表达的筛查工作。同时验证了CXCR7和UBe2c与肿瘤的发生密切相关,并可促进细胞增殖和恶性转化,提示CXCR7和UBe2c可能与胰腺癌的发生和进展相关,对这些基因的进一步研究将可能为胰腺癌发生的细胞分子机理及治疗提供新的线索。
Objective:
     The incidence of pancreatic cancer increases year by year, and the death rate has been ranked second in gastrointestinal cancer. Early diagnosis of pancreatic cancer is very difficult, simply because the mechanisms of its occurrence and development are not clear. In preliminary studies in our laboratory, we had successfully established the rat model of pancreatic cancer. This in vivo model is similar to the process of human pancreatic cancer. By observing its morphological and histological changes, we provided the latest experimental evidence to understand the occurrence of pancreatic cancer. In this issue, we plan to collect the tissue samples at different time points in the process of inducing rat model of pancreatic cancer. Then we investigate the gene expression profile among those samples in order to further explore the molecular biologic mechanism of the occurrence and development of pancreatic cancer cell and offer new clues for early diagnosis and gene therapy of pancreatic cancer.
     Method:
     1. Establish SD rat animal model of pancreatic cancer induced by chemical carcinogen DMBA.
     2. Gene expression profile was screened in all time points tested of rat model of pancreatic cancer using oligonucleotide microarray (Affymetrix Genechip Rat Expression Set 230).
     3. Genespring software was applied in functional analysis of differentially expressed genes, according to Gene Ontology (GO) in molecular function and biological process categories. And according to their gene expression patterns, hierarchical cluster analysis and self-organizing map clustering (SOM) were analyzed.
     4. Microarray raw data were analyzed by using Mann-Kendall trend monotone test of human and rat whole genome were compared in order to get homologous differentially expressed genes of rat and human.
     5. Fluorescence real-time quantitative PCR and immunohistochemical staining were used to exam levels of mRNA and protein validation of the significance differentially expressed gene to determine the reliability of microarray results.
     Results:
     1. Successfully induced the rat models of pancreatic cancer by using 5mg dose DMBA with low non-experimental accident death rate. After 1 month, the incidence of cancer occurrence was 80%(12/15) in DMBA experimental group, accompanied by two cases of high-level Pan IN. After 3 months, the incidence of cancer occurrence was 100%(14/14) in DMBA experimental group, mortality was only 6%(1/15).
     2. A comprehensive, differential gene expression profile was obtained for normal pancreas, DMBA experimental groups after 7 days,2 weeks,1 month and 3 months. Totally,661 genes group changes in the overall situation.
     3. According to GO classification, the selected 661 differentially expressed genes involved in different molecular function categories, and participated in many biological processes. According to the similarity of differentially expressed gene expression by using two-way hierarchical clustering analysis, we could completely discriminate the normal pancreas, acute and chronic pancreatitis, Pan IN and early and advanced pancreatic cancer samples.
     4. There were 11 up-regulated genes (probe) and 142 down-regulated genes (probe) (P <0.05) by Mann-Kendall trend Monotone test. We successfully screened out the homologous genes of rat and human at different time points in the process of rat models of pancreatic cancer. 5. The real-time quantitative PCR and immunohistochemical staining of CXCR7 and UBe2c revealed a similar expression pattern to microarray results.
     Conclusion:
     1. Obtaining the different stages of pancreatic cancer tissue samples in rat models made the dynamic study for the molecular biologic mechanism of occurrence and development of pancreatic cancer possible.
     2. Obtaining differentially expressed genes dynamically and high throughput during the development of pancreatic cancer by application of the expression of rat whole genome microarrays.
     3. Combined with rat models of pancreatic cancer at different time points and the different pathological state, the global transcriptome profiling shows that occurrence and development of pancreatic cancer is a complicated and multifactorial process and may involve some of all of the following changes:inflammation, chemokines, cell stress response increased and enhanced resistance to oxidative damage, inhibition of tumor cell apoptosis, regulation of proliferation and growth inhibition of the signaling pathways of balance, cell cycle and mitosis of the disorder as well as structural changes in the cytoskeleton, and many other genetic changes. And these changes in pancreatic cancer development and progression of different periods have different characteristic, the results may be closely related to occurrence and development of pancreatic cancer.
     4. Successfully screening the homologous genes of rat and human was significance for the further study for the molecular biologic mechanism of occurrence and development of pancreatic cancer in human pancreatic cancer cell lines and pancreatic cancer patients.
     5. Suggesting that CXCR7 and UBe2c may be related to the occurrence and development of pancreatic cancer, further studies of these genes may provide new clues of molecular mechanisms and treatment of pancreatic cancer.
引文
[1]Bardeesy, N.& DePinho, R. A. Pancreatic cancer biology and genetics. Nat Rev Cancer.2002; 2:897~909.
    [2]Quafie CJ, Pinkert CA,Ornitz DM,et al. Pancreatic neoplasia induced by ras expression in aciar cells of transgenic mice. Cell.1987;48:1023~1034.
    [3]Caldas C, Hahn SA,Da Costa LT,et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Gene.1994;88:93~97.
    [4]Naito Z, Takahashi M, Furukawa F,et al. Scanning electron microscopic study of precancerous and cancerous pancreatic lesions induced by Nnit ronsbis (22 oxypropyle) amine in Syrian hamsters. Acta Pathol Japo.1986; 36:1359~1366.
    [5]Sandgren EP, Quaife CJ, Paulovich AG,et al. Paancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci.1991; 88:93~97.
    [6]张晖,孔棣.移植性胰腺癌动物模型的建立和研究进展.医学综述.2009;15(14):2106~2109.
    [7]Celinski SA, Fisher WE, Amaya F, et al. Somatostatin receptor genetransfer inhibits established pancreatic cancer xenografts.J Surg Res.2003;115(1):41-47.
    [8]吴深宝,周国雄,黄介飞.实验性胰腺癌动物模型研究进展.胰腺病学.2005; 9(3):187~189.
    [9]Jamine R, Fiona GC, Andrew LW, et al. A rat model of pancreatic ductal adenocarcinoma:Targeting chemical carcinogens. Surgery.1997; 122:82~90.
    [10]秦仁义,爱德,邹声泉,等.一种新型大鼠胰腺癌模型的制备.中华实验外科杂志.2000;17(5):462~463.
    [11]李朝阳,张曙光,于振海,等.大鼠胰腺癌模型制备的实验研究.中国现代普通外科进展.2005;8(2):102~103.
    [12]王磊,刘海林,廖萍,等.大鼠胰腺上皮内瘤变和胰腺癌模型血清蛋白质谱的差异表达.世界华人消化杂志.2008;16(19):2166~2170.
    [13]徐峰,李占元.外分泌胰腺癌的动物模型.国外医学外科学分册.1995;22(4):208~209.
    [14]Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia:a new nomenclature and classification system for pancreatic duct lesion.Am J Surg Pathol.2001;25:579~586.
    [15]朱明华.胰腺癌的病理组织学分类.胰腺病学.2005;5(1):1~3.
    [16]车旭,单毅.早期胰腺癌发展模型与基因研究新进展.实用癌症杂志.2005;20(4):434~436.
    [17]Brat DJ,Lillemoe KD,Yeo CJ,et al. Progression of pancreatic intraductal neoplasias (high grade Pan IN) to infiltrating adenocarcinoma of the pancreas. Am J Surg Pat hol.1998; 22:163~165.
    [18]Brockie E, Anand A, Albores-Saavedra J. Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma. Ann Diagn Pat hol.1998; 2:286~289.
    [19]Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin Cancer Res.2000;6(8):2969~72.
    [20]Bockman DE, Guo J, Muller M et al. Origin and development of the precursor lesions in experimental pancreatic cancer in rats. Lab Invest.2003; 83(6):853~9.
    [21]郭俊超,赵玉沛等,胰腺癌细胞起源和演进的新的实验证据.中华肝胆外科杂志.2005;11(5):320~323.
    [1]Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin Cancer Res.2000;6(8):2969~72.
    [2]Bockman DE, Guo J, Muller M et al. Origin and development of the precursor lesions in experimental pancreatic cancer in rats. Lab Invest.2003; 83(6):853~9.
    [3]郭俊超,赵玉沛等,胰腺癌细胞起源和演进的新的实验证据.中华肝胆外科杂志.2005;11(5):320~323.
    [4]Affymetrix:Statistical algorithms reference guide. Affmetrix,Santa Clara, CA 2007.
    [5]Affymetrix:GeneChip(?) Expression Analysis Technical Manua:With Specific Protocols for Using the GeneChip(?) Hybridization, Wash, and Stain Kit.2005-2006 Affymetrix Inc. All rights reserved.
    [6]Fenghuang Zhan, Johanna Hardin, Bob Kordsmeier, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood.2002; 99(5):1745~1758.
    [7]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology:Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet.2000; 25:25-9.
    [8]Harris M A, Clark J, Ireland A, et al. The Gene Ontology (GO) database and in formatics resource. Nucleic Acids Res.2004; 32(Database issue):258~261.
    [9]Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet.2000; 24:227~235.
    [10]Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments:application to sporulation time series. Pac Symp Biocomput.2000; 455~466.
    [11]Sherlock G.Analysis of large-scale gene expression data.Current Opinion in Immunology.2000; 12(2):201~205.
    [12]Kendall, M. A New Measure of Rank Correlation. Biometrika.1938; 30 (1-2): 81~89.
    [13]Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor:open software development for computational biology and bioinformatics. Genome Biol.2004; 5(10):R80.
    [14]Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.1997; 25(17):3389~3402.
    [15]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics.2003; 4(2):249~264.
    [16]Schena M, Shalon D, Davis RW et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science.1995; 270(5235):467~470.
    [17]Schena M. Genome analysis with gene expression microarrays.Bioessays.1996; 18(5):427~431.
    [18]Schena M. Micrarray analysis. John Wiley & Sons, Inc.2003.
    [19]王璐.基因芯片技术研究现状.医学动物防制.2005;21(1):3~6.
    [20]Schulze A, Downward J. Navigating gene expression using microarrays-a technology review. Nat Cell Biol.2001; 3(8):E190-195.
    [21]Allison DB, Cui X, Page GP et al. Microarray data analysis:from disarray to consolidation and consensus. Nat Rev Genet.2006; 7(1):55~65.
    [22]Murie C, Woody O, Lee AY et al. Comparison of small n statistical tests of differential expression applied to microarrays. BMC Bioinformatics.2009; 10:45.
    [23]Iacobuzio-Donahue CA, Ashfaq R, Maitra A, et al. Highly expressed genes in pancreatic ductal adenocarcinomas:a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res.2003; 63(24):8614~22.
    [24]Grutzmann R, Foerder M, Alldinger I, et al. Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch.2003; 443: 508~517.
    [25]Karanjawala ZE, Illei PB, Ashfaq R, et al. New markers of pancreatic cancer identified through differential gene expression analyses:claudin 18 and annexin A8. Am J Surg Pathol.2008; 32:188~196.
    [26]Moniaux N, Chakraborty S, Yalniz M, et al. Early diagnosis of pancreatic cancer:neutrophil gelatinase-associated lipocalin as a marker of pancreatic int raepit helial neoplasia. Br J Cancer.2008; 98:1540~1547.
    [27]王富刚,陈先农.基因芯片数据的聚类分析.国外医学生物医学工程分册.2004;27(2):98~101.
    [28]夏师,梁碧珍,陆月然,等.聚类分析研究进展.现代计算机.2009;303(3):20~23.
    [29]申伟科,钟理.基因表达聚类分析及在肿瘤研究中的应用.肿瘤学杂志.2008;14(5):417~420.
    [30]Jain AK, Murty MN, Flynn PJ. Data clustering:a review. ACM Computing Surveys.1999; 31:264-323.
    [31]Mavroudi S, Papadimitriou S, Bezerianos A, et al. Gene expression data analysis with a dynamically extended self-organized map that exploits class information. Bioinformatics.2002; 18:1446~1453.
    [32]J.H. Zar, Biostatistical Analysis.4th edition, Prentice-Hall, N.J., p28.
    [33]杨春花,黄烽.趋化因子CXCL1与脊柱关节病外周关节炎及病因相关性研究.解放军医学杂志.2007;32(4):340~342.
    [34]吴琼,翟原,焦守恕,等.CXCL-10在肝脏缺血再灌损伤中的研究进展.实验动物科学.2008;25(2):37~40.
    [35]Tsuchihashi Sei-ichiro,Zhai Yuan,Qiao Bo,et al. Hemeoxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury:inhibition of type-1 interferon signaling. Transplantation.2007; 83:1628~1634.
    [36]Einarson MB, Cukierman E, Compton DA, et al. Human enhancer of invasion-cluster, a coiled-coil protein required for passage through mitosis. Mol Cell Biol.2004; 24 (9):3957~71.
    [37]Apple SK, Hecht M, lewin DN, etal. Immunohistochemical evaluation of K-ras, P53 and HER-2/neu expression in Hyperlastic dysplastic and carcinomatous lesion of the pancreas:evidence for multistep carcinogenesis. Humpathol.1999; 30(2):123~139.
    [38]潘小季,孙维佳,欧阳建怡.胰腺癌中DPC4/Smad4、 nm23-H1/NDPK的表达及其意义.中国医师杂志.2005;7(4):454~456.
    [39]Wood ZA, Schroder E, Robin Harris J, et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci.2003; 28(1):32~40.
    [40]Ueda S, Masutani H, Nakamura H, et al. Redox control of cell death. Antioxid Redox Signal.2002; 4(3):405~14.
    [41]Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev.2005.16(2):139~49.
    [42]Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell.2001.12(4):931~42.
    [43]Pollett JB, Trudel S, Stern D, et al. Overexpression of the myeloma-associated oncogene fibroblast growth factor receptor 3 confers dexamethasone resistance. Blood.2002; 15,100(10):3819~21.
    [44]LaRosa S, Uccella S, Erba S, et al. Immunohistochemical detection of fibroblast growth factor receptors in normal endocrine cells and related tumors of the digestive system. Appl Imm Mol Morphol.2001; 9(4):319~28.
    [45]Gomez-Roman JJ, Saenz P, Molina M. et al. Fibroblast growth factor receptor 3 is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth. Clin Cancer Res.2005; 15,11:459~65.
    [46]Fanzo JC, Hu CM, Jang SY, et al. Regulation of lymphocyte apoptosis by interferon regulatory factor 4(IFR-4). J Exp Med.2003; 197(3):303~314.
    [47]Bourdon JC, Renzing J, Roberston PL, etal. Scotin, a novel P53-inducible proapoptotic protein located in the ER and the nuclear membrane. J Cell Biol.2002; 158(2):235~246.
    [48]Barrett KL, Demiranda D, Katula KS, et al. Cyclin b1 promoter activity and functional cdkl complex formation in G1 phase of human breast cancer cells. Cell Biol Int.2002;26 (1):19~28.
    [49]Porter LA, Cukier IH, Lee JM,et al. Nuclear localization of cyclinB1 regulates DNA damage-induced apoptosis. Blood.2003; 101(5):1928~1933.
    [50]Yuan ZQ, Feldman RI, Sussman GE, et al. AKT2 inhibition of cisplatin-induced JNK/P38 and Bax activation by phosphorylation of ASK1:implication of AKT2 in chemoresistance. J Biol Chem.2003; 278(26):23432~40.
    [51]成军,杨倩,刘妍,等.小鼠和大鼠NS5ATP4同源基因序列的生物信息学分析.世界华人消化杂志.2004;12(7):1582~1587.
    [52]Gene ontology:tool for the unification of biology. Stan ford, CA:Stan ford University,2002. http:PP www. geneontology. Org.
    [1]Bustin SA. Absolute quantifieation of mRNA using real-time reverse transeciption Polymerase chain reaction assays.J Mol Endoerinol.2000; 25: 169~193.
    [2]Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems. J Mol Endocrinol.2002; 29:23-39.
    [3]Bubner B, Baldwin IT. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep.2004; 23(5):263~71.
    [4]Brandt R, Grutzmann R, Bauer A, et al. DNA microarray analysis of pancreatic malignancies. Pancreatology.2004; 4(6):587~97.
    [5]Infantino S, et al. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J Immunol.2006; 176: 2197~2207.
    [6]Thelen M, Thelen S.CXCR7, CXCR4 and CXCL12:An eccentric trio? J Neuroimmunol.2008; 198(1-2):9-13.
    [7]Burns JM; Summers BC, Wang Y,et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med.2006; 203(9):2202~2213.
    [8]Tripathi V, et al. Differential expression of RDC1/CXCR7 in the human placenta. J Clin Immunol.2009; 29:379-386.
    [9]Goldmann T, et al. CXCR7 transcription in human non-small cell lung cancer and tumor-free lung tissues:possible regulation upon chemotherapy. Virchows Arch.2008; 452:347~348.
    [10]D'Apuzzo M et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4.Eur J Immunol.1997; 27:1788~1793.
    [11]Honczarenko M et al. SDF-1 responsiveness does not correlate with CXCR4 expression levels of developing human bone marrow B cells. Blood.1999; 94: 2990~2998.
    [12]Miao Z et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA. 2007; 104:15735~15740.
    [13]Wang JH, Shiozawa YS, Wang JC.et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCRL12/SDF-1 in prostate cancer. J Biol Chem. 2008; 283(7):4283~4294.
    [14]Schutyser E, et al. Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. Eur Cytokine Netw.2007; 18:59~70.
    [15]汤立晨,欧周罗,狄根红,等.CXCR7的双重属性及其在肿瘤中的作用.生命的化学.2009;29(6):874~877.
    [16]晏小清,蔡绍皙.CXCR7与肿瘤发生、血管生成和免疫反应.细胞生物学杂志.2009;31(6):761~766.
    [17]Madden SL, et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol.2004; 165:601~608.
    [18]Hershko A, Ciechanover A. The ubiquitin system.Annu Rev Biochem.1998; 67:425~479.
    [19]Aristarkhov A,Eytan E,Moghe A, et al. E2-C,a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins.Proc Natl Acad Sci USA.1996; 93(9):4294~4299.
    [20]Lin Y, Hwang WC, Basavappa R. Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10. J Biol Chem.2002; 277(24):21913~21921.
    [21]Townsley FM, Aristarkhov A, Beck S, et al. Dominant-negative cyclin-selective ubiquitin carrier proteinE2-C/UbcH10 blocks cells in metaphase.Proc Natl Acad Sci USA.1997; 94(6):2362~2367.
    [22]Arvand A, Bastians H, Welford SM, et al. EWS/FLI1 up regulates mE2-C, a cyclin-selective ubiquitin conjugating enzyme involved in cyclin B destruction. Oncogene.1998; 17(16):2039~2045.
    [23]Walker A, Acquaviva C, Matsusaka T, et al. UbcH10 has a rate-limiting role in G1 phase but might not act in the spindle checkpoint or as part of an autonomous oscillator. J Cell Sci.2008; 121(Pt 14):2319~2326.
    [24]Yamanaka A,Hatakeyama S,Kominami K,et al. Cellcycle dependent expression of mammalian E2-C regulated by the anaphase-promoting complex /cyclosome. Mol Biol Cel.2000; 8(11):2821~2831.
    [25]Okamoto Y,Ozaki T,Miyazaki K,et al. UbcH10 is the cancerrelated E2 ubiquitin-conjugating enzyme. Cancer Res.2003; 63(14):4167~4173.
    [26]Wagner KW,Sapinoso LM,E1-Rifai W,et al. Overexpression,genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene.2004; 23(39):6621~6629.
    [27]Dairkee SH, Ji Y, Ben Y, et al. A molecular signature of primary breast cancer cultures; patterns resembling tumor tissue. BMC Genomics.2004; 5(1):47.
    [28]Pallante P, Berlingieri MT, T roncone G, et al.UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas. Br J Cancer.2005; 93(4):464.
    [29]Welsh JB, Zarrinkarp P, Sapinosol M, et al. Analysis of gene expression profiles in nor mal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA.2001; 98(3):1176~1181.
    [30]Ieta K, Ojima E, T anaka F, et all Identification of overexpressed genes in hepatocellular carcinoma, with special reference to ubiquitin-conjugating enzyme E2C gene expression. Int J Cancer.2007; 121 (1):33.
    [31]Latulippe E, Satagopan J, Smith A. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease.Cancer Res.2002;62(15):4499~4506.
    [32]赵镇,毛向明,陈清,等.膀胱癌表达谱的全基因组芯片检测及易感标志基因的筛选研究.南方医科大学学报.2009;29(5):1026~1029
    [33]Berlingieri MT, Pallante P, Sboner A,et al.UbcH10 is overexpressed in malignant breast carcinoma.Eur J Cancer.2007;43(18):2729~2735.
    [34]王银平,孙婧璟,陈雪华,等.siRNA干扰UBCH10表达对乳腺癌细胞的影响.外科理论与实践.2009;14(6):652~655.
    [35]王银平,殷志强,陈雪华,等.UbcH10在乳腺癌中的表达及意义.外科理论与实践.2008;13(2):149~152.
    [36]Takahashi Y, Ishii Y, Nishida Y,et al.Detection of aberrations of ubiquitin-conjugating enzyme E2C gene (UBe2c) in advanced colon cancer with liver metastasis by DNA microarray and two-color FISH. Cancer Genet Cytogenet.2006; 168(1):30.
    [37]杜红延,马慧娟,杨学习,等.泛素偶联酶UBe2c/UbcH10荧光蛋白表达载体的构建及肝癌细胞中的表达.热带医学杂志.2009;9(8):845~848.
    [38]黄湘,谭家余,乔亚峰,等.pcDNA311(-)/UBe2c质粒在Chang Liver细胞中的表达和鉴定.广东医学.2009;30(10):1462~1465.
    [39]杜红延,马奎,黄湘,等.人泛素偶联酶UBe2c/UbcH10基因的克隆、原核表达载体的构建及表达.广东医学.2009;30(5):698~700.
    [40]Marechal R,et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br J Cancer.2009; 100:1444~1451.
    [1]Jemal A, Siegel R, Ward E,et al. Cancer statistics,2006. CA Cancer J Clin.2006; 56:106~130.
    [2]Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcin-oma. Nat Genet.1994; 8:27~32.
    [3]Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res.1997; 57:3126~3130.
    [4]Chen ZH, Zhang H, Savarese TM. Gene deletion chemoselectivity:codeletion of the genes for p16 (INK4), methylthioadenosine phosphorylase, and the alpha-and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy. Cancer Res 1996; 56:1083~1090.
    [5]Zhang H, Chen ZH, Savarese TM. Codeletion of the genes for p16INK4, methylthioadenosine phosphorylase, interferon-alphal, interferon-betal, and other 9p21 markers in human malignant cell lines. Cancer Genet Cytogenet.1996; 86:22~28.
    [6]Hustinx SR, Hruban RH, Leoni LM, et al. Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer:a potential new target for therapy. Cancer Biol Ther.2005; 4:83~86.
    [7]Illei PB, Rusch VW, Zakowski MF, et al. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res.2003; 9:2108~2113.
    [8]Bardeesy N, Aguirre AJ, Chu GC, et al. Both p16 (Ink4a) and the p19 (Arf)-P53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA.2006; 103(15):5947~5952.
    [9]Xing HR, Cordon Cardo C, Deng X, et al. Pharmacologic inactivation of kinase suppressor of ras-1 abrogates Ras-mediated pancreatic cancer. Nat Med.2003; 9(10):1266~1268.
    [10]Abe K, Suda K, Arakawa A, et al.Different patterns of p16INK4A and P53 protein expressions in intraductal papillary mucinous neoplasms and pancreatic intraepithelial neoplasia.Pancreas.2007; 34 (1):85 91.
    [11]Redston MS, Caldas C, Seymour AB, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res.1994; 54:3025~3033.
    [12]Kirsch DG, Kastan MB. Tumor-suppressor p53:implications for tumor development and prognosis. J Clin Oncol.1998; 16:3158~3168.
    [13]Maitra A, Adsay NV, Argani P, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol.2003; 16(9):902~912.
    [14]Weiss RH, Marshall D, Howard L, et al. Suppression of breast cancer growth and angiogenesis by an antisense oligodeoxynucleotide to p21 (Waf1/Cip1). Cancer Lett.2003; 189:39~48.
    [15]Nuevemann D, ChristgenM, Ungefr oren H, et al. Stable expression of temperature sensitive P53:a suitable model to study wild-type P53 function in pancreatic carcinoma cell.Oncol Rep.2006; 16(3):575~579.
    [16]Doucas H, Garcea G, Neal CP, et al. Chemoprevention of pancreatic cancer:a review of the molecular pathways involved, and evidence for the potential for chemoprevention. Pancreatology.2006; 6:429~439.
    [17]Garcea G, Neal CP, Pattenden CJ, et al. Molecular prognostic markers in pancreatic cancer:a systematic review. Eur J Cancer.2005; 41:2213~2236.
    [18]Guan Yang, Xiao Yang. Smad4-mediated TGF-β signaling in tumorigenesis.Int J Biol Sci.2010; 6:1~8.
    [19]Hruban RH, Adsay NV. Molecular classification of neoplasms of the pancreas.Hum Pathol.2009; 40:612~23.
    [20]Hahn SA, Seymour AB, Hoque AT, et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res.1995; 55:4670~5.
    [21]McCarthy DM, Hruban RH, Argani P, et al. Role of the DPC4 tumor suppressor gene in adenocarcinoma of the ampulla of Vater:analysis of 140 cases. Mod Pathol.2003; 16:272~8.
    [22]Bartsch D, Hahn SA, Danichevski KD, et al. Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors.Oncogene.1999; 18:2367~71.
    [23]Wilentz RE, Iacobuzio-Donahue CA, Argani P, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia:evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res.2000; 60:2002~6.
    [24]Duda DG, Sunamura M, Lefter LP, et al. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene.2003; 22:6857~64.
    [25]Izeradjene K, Combs C, Best M, et al. K-RAS (G12D) and Smad4/DPC4 hap loin sufficiency cooperate t o induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell.2007; 11(3):229~243.
    [26]Bardeesy N, Cheng KH, Berger JH, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev.2006; 20(22):3130~3146.
    [27]Dengfeng Cao, Raheela Ashfaq, Michael G, et al. Differential Expression of Multiple Genes in Association with MADH4/DPC4/SMAD4 Inactivation in Pancreatic Cancer. Int J Clin Exp Pathol.2008; 1:510~517.
    [28]Christine A, Iacobuzio-Donahue, BaojinFu, et al. DPC4 Gene Status of the Primary Carcinoma Correlates With Patterns of Failure in Patient With Pancreatic Cancer.J Clin Oncol.2009; 27(11):1806~1813.
    [29]Friess H, Yamanaka Y, Buchler M, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival.Gastroenterology.1993; 105:1846~56.
    [30]Biankin AV, Morey AL, Lee CS, et al. DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. J Clin Oncol.2002; 20:4531~42.
    [31]Zhao S, Venkatasubbarao K, Lazor JW, et al. Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res.2008; 68:4221~8.
    [32]Ijichi H, Chytil A, Gorska AE, et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev.2006; 20:3147~60.
    [33]Bednarek AK, LaflinK J, Daniel RL, et al. WWOX, a novel WWdomain-containing protein mapping to human chromosome 16q23.3224.1,a region frequently affected in breast cancer. Cancer Res.2000; 60(8):2140~2145.
    [34]罗玲清,林东红.抑癌基因WWOX及其与恶性肿瘤的研究进展.肿瘤基础与临床.2009;22(2):176~178.
    [35]Shunji Nakayama, Shuho Semba, Naoko Maeda, et al. Role of the WWOX gene, encompassing fragile region FRA16D, in suppression of pancreatic carcinoma cells. Cancer Sci.2008; 99(7):1370~1376.
    [36]Kuroki T, Yendamuri S, Trapasso F, et al.The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin Cancer Res.2004; 10(7):2459~2465.
    [37]Rahman N, Stratton MR. The genetics of breast cancer susceptibility. Annu Rev Genet.1998; 32:95~121.
    [38]王春杨,张金山,张远强,等.BRCA1蛋白在胰腺癌组织中的分布和表达.第四军医大学学报.2008;29(10):945~947.
    [39]白明华,马红兵,王西京,等.PPARy对人胰腺癌细胞中抑癌基因PTEN表达的影响.细胞与分子免疫学杂志.2008;24(7):717~720.
    [40]Furukawa M, Yamasaki A, Yoshida J, et al. Mutations of LKB1 gene in pancreatic ductal adenocarcinomas induced by N-nitrosobis (2-oxopropyl)amine in hamsters. Anticancer Res.2009; 29(10):4047~50.
    [41]Xin W, Yun KJ, Ricci F, et al. MAP2K4/MKK4 expression in pancreatic cancer: genetic validation of immunohistochemistry and relationship to disease course.Clin Cancer Res.2004; 10:8516~8520.
    [42]Jan-Bart M. Koorstra, Steven R. Hustinx, G. Johan A. Offerhaus, et al.Pancreatic Carcinogenesis. Pancreatology.2008; 8:1101~125.
    [43]Toru Furukawa, Makoto Sunamura, Akira Horii. Molecular mechanisms of pancreatic carcinogenesis. Cancer Sci.2006; 97(1):1-7.
    [44]Hruban RH,van Mansfeld AD,Offerhaus GJ,et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization.Am J Pathol.1993; 143:545~554.
    [45]于双妮,陈杰.胰腺癌中主要的基因改变.基础医学与临床.2008;28(1):1~8.
    [46]Schneider G, Schmid RM:Genetic alterations in pancreatic carcinoma. Mol Cancer.2003;2:15.
    [47]Calhoun ES, Jones JB, Ashfaq R, et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10)mutations in distinct subsets of pancreatic cancer:potential therapeutic targets.Am J Pathol.2003;163:1255~1260.
    [48]Lim KH, Counter CM. Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumormaintenance. Cancer Cell.2005; 8(5):381~392.
    [49]Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles.Genes Dev.2001; 15:3059~3087.
    [50]Thayer SP, diMagliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature.2003; 425(6960):851~856.
    [51]Morton JP, Mongeau ME, Klimstra DS, et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci USA.2007; 104(12):5103~5108.
    [52]Henke RT, Haddad BR, Kim SE, et al. Riegel AT:Overexpression of the nuclear receptor coactivator AIB1 (SRC-3) during progression of pancreatic adenocarcinoma. Clin Cancer Res.2004; 10:6134~6142.
    [53]Zhang D, Hirota T, Marumoto T,et al. Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models.Oncogene.2004; 23:8720~8730.
    [54]Hata T, Furukawa T, Sunamura M,et al. RNA interference targeting aurora kinase A suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res.2005; 65:2899~2905.
    [55]Altomare DA, Tanno S, De Rienzo A, et al. Frequent activation of AKT-kinase in human pancreatic carcinomas. J Cell Biochem.2003; 88(1):470~476.
    [56]钟英强,沈溪明,李海刚,等.hTERT在人胰腺癌组织中的表达及其与COX-2、P-gp、 Bcl-2蛋白表达和临床病理特征的关系.中华临床医师杂志(电子版).2008;2(8):877~885.
    [57]林连捷,王玉峰,郑长青,等.胰腺癌细胞基因组范围内的基因缺失.世界华人消化杂志.2008;16(17):1849~1854.
    [58]Baojin Fu, Mingde Luo, Sindhu Lakkur, et al. Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma. Cancer Biology & Therapy.2008; 7(10):1593~1601.
    [59]Matthew S. Karafn, Christopher T. Cummings, Baojin Fu, et al. The developmental transcription factor Gata4 is overexpressed in pancreatic ductal adenocarcinoma. Int J Clin Exp Pathol.2010; 3 (1):47-55.
    [60]Shumpei Ohnami, Yasunori Sato, Kimio Yoshimura, et al. His595Tyr Polymorphism in the Methionine Synthase Reductase (MTRR) Gene Is Associated With Pancreatic Cancer Risk. Gastroenterology.2008;135:477~488.
    [61]Wen J, Park JY, Park KH, et al. Oct4 and Nanog Expression Is Associated With Early Stages of Pancreatic Carcinogenesis. Pancreas.2010; 2(2)(Electronic Edition).
    [62]Maitra A, Kern SE, Hruban RH, et al. Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol.2006; 20:211~226.
    [63]Heijden MS, Yeo CJ, Hruban RH, et al. Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res.2003; 63:2585~2588.
    [64]Hahn SA, Greenhalf B, Ellis I, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst.2003;95:214~221.
    [65]Sato N, Fukushima N,Maitra A, et al. Discovery of novel target s for aberrant methylation in pancreatic carcinoma using high through put microarrays. Cancer Res.2003; 63:3735~3742.
    [66]曹佳,高军,杜奕奇,等.NPTX2甲基化在胰腺癌中的定量检测及诊断应用.第 二军医大学学报.2008;29(11):1279~1283.
    [67]Zhang Ch, Shao Y, Zhang W, et al. High-resolution melting analysis of ADAMTS9 methylation levels in gastric, colorectal, and pancreatic cancers. Cancer Genetics and Cytogenetics.2010; 196(1):38-44.
    [68]Amundadottir LT, Thorvaldsson S, Gudbjartsson DF, et al. Cancer as a complex phenotype:pattern of cancer distribution within and beyond the nuclear family.PLoS Med.2004;1:e65.
    [69]Klein AP,Brune KA, Petersen GM, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res.2004; 64:2634~2638.
    [70]詹文华,蔡世荣.家族性胰腺癌.中国实用外科杂志.2002;22(5):302~303.
    [71]Lim W, Hearle N, Shah B, et al.Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer.2003; 89:308~313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700