用户名: 密码: 验证码:
抑制糖酵解途径对胰腺癌细胞PANC-1生物学特性的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分胰腺癌组织、癌旁组织及正常组织糖代谢酶活性表达的检测
     目的检测胰腺正常组织、癌组织及癌旁组织中糖酵解关键酶-乳酸脱氢酶(1acatedehydrogenase,LDH)活性及其同工酶谱变化,以及琥珀酸脱氢酶(succinatedehydrogenase,SDH)活性的表达变化,分析糖酵解与胰腺癌生物学特性的关系。
     方法收集我院自2006年10月至2008年7月期间我院收治的12例胰腺导管腺癌患者手术切除标本和12例胰岛素瘤等良性病变及其正常胰腺组织。LDH活性检测采用LDH检测试剂盒;LDH同工酶谱检测采用法国Sebia公司的hydrasys全自动分析仪;酶组织化学染色检测癌组织、癌旁组织及胰腺正常组织中琥珀酸脱氢酶活性的变化。
     结果与正常胰腺组织相比,癌组织及癌旁组织中LDH活性明显升高,差异有统计学意义(P<0.05);癌组织及癌旁组织中LDH同工酶谱分析显示LDH4、LDH5明显升高,与正常组织相比,差异有统计学意义(P<0.05)。酶组织化学染色显示,癌组织中琥珀酸脱氢酶表达活性较癌旁组织及正常组织活性明显降低。结论胰腺癌有氧氧化功能降低,糖酵解水平增强,其中LDH活性及其同工酶谱的变化可能和胰腺癌的发病机理相关,特异性抑制LDH可能成为胰腺癌新的治疗策略。
     第二部分乳酸脱氢酶特异性抑制剂体外对人胰腺癌细胞生长抑制及诱导凋亡的影响
     目的分析乳酸脱氢酶抑制剂-草氨酸盐(oxamate)对人胰腺癌细胞株增殖的影响及诱导凋亡的作用。
     方法MTT法观察终浓度为0mol/L,0.02mol/L,0.04mol/L,0.08mol/L,0.1mol/L草氨酸盐分别作用于不含血清培养基及含10%血清培养基胰腺癌PANC-1细胞株24h、48h后,检测其对细胞增殖的抑制作用,同时行Hochest33342及PI染色、流式细胞仪检测草氨酸盐对其凋亡的影响。
     结果草氨酸盐对人胰腺癌PANC-1细胞株的增殖有显著的抑制作用,并且随草氨酸盐浓度增加,增殖抑制明显增加,呈剂量依赖性,不含血清培养时抑制作用高于含血清组(P<0.01),;Hochest及PI染色、流式细胞仪检测均表现细胞凋亡比例逐渐增高,且呈剂量依赖性(P<0.01)。
     结论草氨酸盐能够显著抑制人胰腺癌细胞的增殖并诱导其凋亡,有可能成为治疗胰腺癌的新靶点。
     第三部分,LDH抑制剂-草氨酸盐体外对胰腺癌细胞细胞凋亡的可能机制的研究
     目的研究探讨乳酸脱氢酶抑制剂-草氨酸盐(oxamate)诱导胰腺癌细胞PANC-1凋亡的可能机制。
     方法体外培养人胰腺癌细胞PANC-1,不同浓度草氨酸盐(0mol/L,0.02mol/L,0.04mol/L,0.06mol/L,0.08 mol/L,0.1mol/L)作用panc-1细胞48h,流式检测细胞凋亡情况;钙离子荧光指示剂Fluo-3/AM染色,激光共聚焦下观察不同浓度草氨酸盐作用下细胞内钙含量的变化;罗丹明123(Rhodamine 123,Rh123)单染、Rh123联合PI双染联合检测细胞线粒体膜电位的变化;
     结果草氨酸盐干预胰腺癌细胞48h后,细胞凋亡比例逐渐增高,细胞内钙含量随着草氨酸盐浓度的升高,荧光强度也逐渐增强,呈剂量—效应关系;0.02mol/L~0.06mol/L的草氨酸盐干预时,罗丹明单染显示细胞线粒体膜电位逐渐增高,而0.08mol/L~0.1mol/L的草氨酸盐时,线粒体膜电位则出现明显下降的趋势,Rh123-/PI-细胞百分比明显增加(p<0.05),0.1mol/L时已为(8.94±0.13)%;
     结论糖酵解抑制剂-草氨酸盐能够有效的诱导胰腺癌PANC-1细胞的凋亡。草氨酸盐可能通过增加胰腺癌细胞内钙离子含量,影响细胞内钙离子平衡,低浓度组主要通过抑制细胞能量代谢而诱导凋亡,而0.08mol/L和0.1mol/L的高浓度组还可能通过降低细胞线粒体膜电位,进而激活线粒体凋亡途径,诱导其凋亡。
     第四部分LDH-A shRNA对人胰腺癌细胞系PANC-1增殖、凋亡和LDH-A表达的影响
     目的肿瘤组织糖酵解增强,而乳酸脱氢酶催化丙酮酸氧化生成乳酸,是糖酵解途径的关键酶,乳酸脱氢酶A(1actate Dehydrogenase,LDH-A)与乳酸脱氢酶B(LDH-B)基因分别编码M亚基和H亚基,M、H亚基比例不同而表现为同工酶LDH_(1-5)。本研究通过构建LDH-A shRNA,转染PANC-1细胞,分析其对胰腺癌细胞生物学特性的影响。
     方法构建3条LDH-A shRNA质粒,脂质体转染质粒至PANC-1细胞中,实时荧光定量PCR法检测不同质粒转染后LDH-A mRNA的表达变化。将抑制效率最高的shRNA质粒-3转染PANC-1细胞,MTT法检测转染前后细胞增殖的变化,流式细胞仪检测细胞凋亡的变化。RT-PCR检测LDH-A表达以及酶化学染色检测转染前后LDH活性的变化。
     结果3种LDH-A shRNA质粒转染胰腺癌细胞后,LDH-A shRNA质粒-3的2-△△Ct值为(0.47±0.02),较正常细胞的(0.71±0.01)小,存在抑制作用,且抑制效率较最高。PANC-1细胞在转染shRNA质粒-3后12h就出现转染组吸光度值显著低于对照组,细胞出现增殖抑制,24h、36h、48h和72h,转染组的吸光度值均显著低于对照组(P<0.01)。转染质粒组细胞凋亡也明显增高,其凋亡率可达到61.74%;转染shRNA质粒-3的胰腺癌细胞株,其LDH-A mRNA的表达明显抑制,酶化学染色显示LDH活性明显减弱。
     结论LDH-A shRNA通过抑制胰腺癌细胞LDH-A mRNA的表达,从而抑制其增殖及诱导细胞凋亡,可能成为治疗胰腺癌的新的策略。
PartⅠAnalysis the activity of the enzyme of glycoysis in PancreaticNormal Tissue,Carcinoma and Adjacent Non-Cancerous Tissue
     Objective To detect the activity of enzyme of glycolysis,concluding the lactatedehydrogenase (LDH) and LDH isoenzyme,and succinate dehydrogenase(SDH),so as toresearch the relation between biological characterictic of the pancreatic cancer andglycolysis.
     Methods Consecutive 12 cases pancreatic ductal adenocarcinoma and 12 benign lesionssuch an insulinoma from October 2006 to July 2008 were collected,as well as normalpancreatic tissues.The total activity of the LDH was detected by the LDH Testing Kits,andthe iosenzyme pattern of LDH was inspected by the France Sebia hydrasys.The activity ofSDH was detected by the enzyme histochemical staining.
     Results Compared to the normal tissue,LDH activity of the pancreatic cancer andadjacent non-cancerous tissue was significantly higher (P<0.05).LDH iosenzyme patternin cancer tissue was also significantly different,i.e.,the percentage of LDH4 and LDH_5increased obviously,and greater than the normal tissue (P<0.05).SDH actvity of thepancreatic cancer was obviously higher than the adjacent non-cancerous tissur and the normal pancreatic tissues.
     Conclusion The alteration of SDH、LDH activity and its isoenzyme pattern are possiblyrelated to the pathogenesis of pancreatic cancer.Inhibit the LDH activity may be a newtherapeutic strategy for pancreatic cancer.
     PartⅡEffect of the inhibitor of LDH(oxamate) on growth andapoptosis of human pancreatic cancer cell in vitro
     Objective To investigate the effect of Lacate Dehydrogenase(LDH) inhibitor-oxamate onthe growth and apoptosis of human pancreatic cancer cell.
     Methods The inhibitional effect of oxamate was observed at 0 mol/L,0.02 mol/L,0.04mol/L,0.08 mol/L,0.1mol/L on the growth ofpanc-1 cell line in medium containing 10%fetal bovine serum and serum-free medium for 24 h and 48 h by MTT assays.Flowcytometry(FCM),Hochest and PI staining analysis was usedto study the changes of cellapoptosis.
     Results Oxamate caused dose-dependent inhibition on the growth of human pancreaticcancer cell panc-1.Inhibition was much greater in serum-free medium than in medium with10% fetal bovine serum (p<0.0 1).Flow cytometry(FCM),Hochest and PI staining analysisshows that the proportion of the apoptosis increased gradually,and it isdose-dependent(p<0.01).
     Conclusion LDH inhibitor-oxamate inhibits the growth of human pancreatic cancer cell and induces apoptosis.Oxamate could be a potential targent for anti-pancreatic cancer.
     PartⅢThe research of mechasim of pancreatic cancer cell apoptosisintroduced by inhibitor of LDH-oxamate in vitro
     Objective Investigate and research the possible mechasim for apoptosis of pancreaticcancer cell introduced by LDH-oxamate in vitro.
     Method The pancreatic cancer cell PANC-1 was treated with different concentration ofoxamate (0mol/L,0.02mol/L,0.04mol/L,0.06mol/L,0.08 mol/L,0.1mol/L) for 48h.Theapoptosis was measured by flow cytometry(Annexin V/PI);then dyed with Fluo-3/AM.Thelight density of cells for different concentration of oxamate under confocal lasermicroscopy were investigated;mitochondrial membrane potential was detected by flowcytometry With Rodamin 123 or Rodamin 123/PI stained.
     Result With oxamate treated for 48h,the apoptosis of PANC-1 increased obviously.Oxamate can influenced the concentration of Ca~(2+) in PANC-1,and this effect is correspondto the concentration of oxamate.The MMP(0.02mol/L-0.06mol/L)increased,but decreasedsignificantly(0.08mol/L-0.1mol/L).The percentage of Rh123-/PI- cells increased aftertreated with oxamate,that of 0.08mol/L-0.1mol/L increased obviously (p<0.05),thepercentage of 0.1 mol/L came to (8.94±0.13)%.
     Conclusion The glycolysis inhibitor-oxamate could induce the pancreatic cancer cellapoptosis effectively by inhibition of glycolysis.Low concentration induce the apoptosismainly by inferring the metabolism,but the 0.08mol/L-0.lmol/L could also influenced theconcentration of Ca,degrade the mitochondrial membrane potential ,lead to the apoptosis. Oxamate can induced the increase of the concentration of Ca~(2+) of PANC-1,and influencedthe following pathophysiologiacn response(mitochondrial membrane potential).
     PartⅣEffect of LDH-A shRNA on the Growth,Apoptosis of Humanpancreatic cancer cell PANC-1 and the expression of LDH-A
     Objective:Most cancer cells exhibit increased glycolysis,Lactate dehydrogenase catalysesthe conversion of pyruvate to lactate,which is essential for the glycolytic pathway.MethodResult Conclusion.The five isoenzymes of LDH are composed of LDH-A(so-called muscletype) and LDH-B(so-called heart type) subunits.This study constructed a short hairpinRNA(shRNA) targeting LDH-A,and analyze its effects on growth,apoptosis of panc-1cells,the expression of LDH-A and the activity of the LDH.
     Method:Three shRNAs targeting LDH-A were combined to pGCsilencer vector,andtransfected into panc-1 cells.The expression of LDH-A after transfected by the threeshRNAs in pancreatic cancer cell lines panc-1 was detected by Quantitative Real TimePCR.After tranfected by the LDH shRNA-3 with the highest inhibited rate..cell growthwas analyzed by MTT assay,apoptosis was detected by flow cytometry.The LDH-Aexpression was detected by reverse transcription polymerase chain reaction,LDH activitywas observed with enzyme cytochemical method.
     Results:The 2-△△Ct of LDH-A shRNA-3 was (0.47±0.02),less than the untransfectedpancreatic cancer cell(0.71±0.01),the LDH-A shRNA-3 can inhibit the expression of the LDH-A most obviously.The growth of the pancreatic cancer cell was inhibitted after 12htransfected by LDH-A shRNA-3,all the Absorbance value of transfected cell in24h,36h,48h,72h discreased obviously compared to the normal pancreatic cancer cell(p<0.01).The apoptosis rates of the transfected cell increased to 61.74%.The inhibition ofLDH-A expression in pane-1 cells transfected by shRNA-3 was significantly and theactivity of LDH was also reduced.
     Conclusion:LDH-A shRNA can reduce the expression of the LDH-A,inhibit the activityof LDH,inhibit the growth and introduce the apoptosis of panc-1 cells siganificantly.Thetreatment of pancreatic cancer with the LDH-A shRNA could become the a new strategy infuture.
引文
1.El-Rayes BF,Philip PA.A review of systemic therapy for advanced pancreatic cancer.Clin Adv Hematol Oncol.2003,1(7):430-434.
    2.Shaw RJ.Glucose metabolism and cancer.Curr Opin Cell Biol.2006,18(6):598-608.
    3.Chen Z,Lu W,Garcia-prieto C,et al.The Warburg effect and its cancer therapeutic implications.J Bioenerg Biomembr.2007,39(3):267-274..
    4.Pelicano H,Martin DS,Xu RH,et al.Glycolysis inhibition for anticancer treatment.Oncogene 2006,25(34):4633-4646.
    5.GarberK.Energyderegulation:licensingtumorstogrow.Science.2006,312(5777):1158-1159.
    6.Liu H,Hu YP,SavarajN,et al.Hypersensitization of tumor cells to glysolytic inhibitors.Biochemistry.2001,40(18):5542-5547.
    7.邹满意,陆伟,糖酵解酶抑制剂抗肿瘤作用的研究进展。武警医学院学报,2006,15(3): 286-288.
    8.韩明勇,王家林,郭其森,等。血清乳酸脱氢酶水平对肺癌诊断意义的研究。肿瘤防治杂志,2003,10(4): 364-365.
    9.Demaurex N,Distelhorst C.Cell biology.Apoptosis-the calcium connection.Science,2003,300(5616):65-67.
    10.Perry ME,Dang CV,Hockenbery D,et al.Highlights of the National Cancer institute workshop on mitochondral function and cancer.Cancer Res.2004.64(20):7640-7644.
    11.Galluzzi L,Larochette N,Zamzami N,et al.Mitochondria as therapeutic target for cancer chemotherapy.Oncogene.,2006,25(34):4812-4830.
    12.Saris NE,Carafoli E.A Historical Review of cellular calcium handing with emphasis on mitochondria.Biochemiistory,2005,70(2):187-194.
    13.Dibb KM,Graham HK,Venetucci LA,et al.Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homestasis in the heart.Cell Calcium.2007, 42(4-5):503-512.
    14.ParekhAB,Putney JW Jr.Store-operated calcium channels.Physiol Rev.2005,85(2):757-810.
    15.Gunter TE,Yule DI,Gunter KK,et al.Calcium and mitochondria.FEBS Lett.2004,2004,5 67(1):96-102.
    16.陈良怡,邹寿彬,康华光。线粒体和细胞内钙自稳平衡。生物化学与生物物理进展,2000,27(5): 483-487
    17.梁晚益,杨宗城,黄跃生。线粒体Ca2+转运与细胞代谢调节。生理科学进展,2000,31(4): 357-360.
    18.Soboloff J,Spassova MA,Tang XD,et al.Orail and STIM reconstitute store-operated calcium channel function.J Biol Chem.2006,281(30):20661-20665.
    19.Chang WC.Store-operated calcium channels and pro-inflammatory signals.Acta Pharmacol Sin.2006,27(7):813-820.
    20.Muallem S.Calcium signaling: Pyruvate and CRAC meet at the crossroads.Current Biol.2007,17(14):R549-551.
    21.Bakowskl D,Parekh AB.Regulation of store-operated calcium channels by the intermediary metabolite pyruvic acid.Curr Biol.2007,17(12):1076-1081.
    22.Thanqaraju M,Carswell KN,Prasad PD,et al.Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3[J].Biochem J,2009,417(1):379-389.
    23.Park JY,Helm JF,Zheng W,et al.Silencing of the candidate tumor suppressor gene solute carrier family 5 member 8 (SLC5A8) in human pancreatic cancer[J].Pancreas.2008 May;36(4):e32-9.
    24.Orzechowski A.Possible implications of redox-sensitive tumour cell transformation; lessons from cell culture studies[J].Pol J Vet Sci.2007;10(2):123-126.
    25.Arias JI,Aller MA,Arias J.Cancer cell: using inflammation to invade the host[J].Mol Cancer.2007,6:29.
    26.Aggarwwal BB,Vijayalekshmi RV,Sung B.Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend,long-term foe[J].Clin Cancer Res.2009,15(2):425-430.
    27. Pan X,Arumugam T,Yamamoto T,et al. Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine efifectiveness in a subset of pancreatic cancer cells[J]. Clin Cancer Res.2008,14(24):8143-8151.
    28. Lee MS, Moon EJ,Lee SW,et al. Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models[J]. Cancer Res. 2001,61(8):3290-3293.
    29. Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer[J]. Br J Cancer. 2008, 99(7):989-94.
    30. Valeria R,Fatin,Julie St-Pierre,Philip Leder.Artenuation of LDH-A expression uncovers a link between glycolysis,mitochondrial physiology,and tumor maintenance.Cancer Cell.2006,425-434.
    1.Hsu PP.Sabatini DM.Cancer cell metabolism: Warburg and beyond[J].Cell,2008;134(5): 703-707.
    2.Deberardinis RJ.Is cancer a disease of abnormal cellular metabolism? New angles on an old idea [J].Genet Med,2008; 10(11): 767-777
    3.Deberardinis RJ,Sayed N,Ditsworth D,et al.Brick and brick: metabolism and tumor cell growth [J].Curr Opin Genet Dev,2008; 18(1): 54-61
    4.韩明勇,王家林,郭其森,等.血清乳酸脱氢酶水平对肺癌诊断意义的研究[J].肿瘤防治杂志,2003; 10(4): 364-365.
    5.Ugurel S.Serum markers for melanoma [J].Hautarzt,2005; 56(2): 185-186
    6.Boran N,Kayik(?)io(?)lu F,Yalva(?) S,et al.Significance of serum and peritoneal fluid lactate dehydrogenase levels in ovarian cancer [J].Gynecol Obstet Invest,2000;49(4): 272-274.
    7.Suh SY,Ahn HY.Lactate dehydrogenase as a prognostic factor for survival time of terminally ill cancer patients: a preliminary study[J].Eur J Cancer,2007;43(6):1051-1059.
    8.Naruse K,Yamada Y,Aoki S,et al.Lactate dehydrogenase is a prognostic indicator for prostate cancer patients with bone metastasis [J].Hinyokika Kiyo,2007; 53(5):287-292.
    9.Turen S,Ozyar E,Altundag K,et al.Serum lactate dehydrogenase level is a prognostic factor in patients with locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy [J].Cancer Invest,2007; 25(5): 315-321.
    10.Shaw RJ.Glucose metabolism and cancer [J].Curr Opin Cell Biol,2006; 18(6): 598.
    11.Kondoh H.Cellular life span and the Warburg effect [J].Exp Cell Res,2008;314(9):1923-1928.
    12.Alcazar O,Tiedge M,Lenzen S.Importance of lactate dehydrogenase for the regulationofglycolyticfluxandinsulinsecretionininsulin-producing cells [J].Biochem J,2000; 352(Pt2): 373-380.
    13.杜卫东,杨光霖,董聿明.胃癌酶细胞化学研究.中华消化杂志,1993,13(6):318-321.
    14.赵玉沛,戴梦华.胰腺癌生物治疗现状与进展[J].中国普外基础与临床杂志,2002; 9(6): 371-377.
    15.赵玉沛.胰腺癌诊治现状与展望[J].中国普外基础与临床杂志,2003; 10(3):205-206.
    16.Kroemer G.Mitochondria in cancer[J].Oncogene,2006; 25(34): 4630-4632.
    17.Bartrons R,Caro J.Hypoxia,glucose metabolism and the Warburg's effect[J].J Bioenerg Biomembr,2007; 39(3):223-229.
    18.Pedersen PL.Warburg,me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes,the “Warburg Effect”,i.e.,elevated glycolysis in the presence of oxygen [J].J Bioenerg Biomembr,2007;39(3): 211-222.
    19.Chen Z,Lu W,Garcia-Prieto C,et al.The Warburg effect and its cancer therapeutic implications [J].J Bioenerg Biomembr,2007; 39(3): 267-274.
    20.Garber K.Energy deregulation: licensing tumors to grow [J].Science,2006;312(5777): 1158-1159.
    21.Pelicano H,Martin DS,Xu RH,et al.Glycolysis inhibition for anticancer treatment [J].Oncogene,2006; 25(34): 4633-4646.
    22.邹满意,陆伟.糖酵解酶抑制剂抗肿瘤作用的研究进展[J].武警医学院学报,2006; 15(3):286-288.
    1.GarberK.Energyderegulation: licensingtumorsto grow.Science.2006,312(5 777):1158-2259.
    2.Liu H,Hu YPSavaraj N,et al.Hypersensitization of tumor cells to glycolytic inhibitors.Biochemistry.2001,40(18):5 542-5547.
    3.ShawRJ.Glucosemetabolismandcancer.Curr OpinCell Biol[J].2006,18(6):598-608.
    4.Kim JW,Dang CV.Cancer's molecular sweet tooth and the warburg effect.Cancer Res[J].2006,66(18):8927-8930.
    5.EI-Rayes BF,Philip PA.A review of systemic therapy for advanced pancreatic cancer.Clin Adv Hematol Oncol.2003,1(7):430-434.
    6.Pelicano H,Martin DS,Xu RH,et al.The Warburg effect and its cancer therapeutic implications.J Bioenerg Biomembr.2007,39(3):267-274.
    7.邹满意,陆伟.糖酵解抑制剂抗肿瘤作用的研究进展。武警医学院学报,2006,15(3):286-288.
    8.Chen Z,Lu W,Garcia-Prieto C,et al.The warburg effect and its cancer therapeutic implications.J Bioenerg Biomembr[J].2007,39(3):267-234.
    9.Merida I,Avila-FloresA.Tumormetabolism:newopportunitiesforcancer therapy.Clin Transl Oncol[J].2006,8(10):711-716.
    10.PelicanoH,MartinDS,XuRH,et al.Glycolysisinhibitionfor anticancer treatment.Oncogene[J].2006,25(34):4633-4646.
    11.Leist M,Single B,Castoldi AF,et al.Intracellular adenosine triphosphate(ATP) concentration:a switch in the adcision between apoptosis and necrosis.J Exp Med,1997,185(8):1481-1486.
    12.白世平,罗绪刚,吕林.线粒体在细胞凋亡中的介导作用.生命科学,2006,18(4):368-372.
    13. Muallem S. Calcium signaling: Pyruvate and CRAC meet at the crossroads.Current Biol[J].2007,17(14):813-820.
    14. Bakowskl D, Parekh AB. Regulation of store-operatied calcium channels by the intermediary metabolite pyruvic acid.Curr Biol[J].2007,17(12): 1076-1081.
    15. Xu RH,Pelicano H,Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res[J].2005,65(2):613-621.
    16. Zhang XD,Deslandes E,Villedieu M.et al. Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro.Anticancer Res[J].2006,26(5A):3561-36-3566.
    17. Isidoro A,Casado E,Redondo A,et a/.Breast carcinoma fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis[J].Carcinogenesis,2005,26(12):2095-2104.
    18. Kim JW,Dang CV.Multifaceted roles of glycolytic enzymes[J].Trends Biochem Sci,2005,30(3):142-150.
    19. Scatena R,Bottoni P,Pontoqlio A,et a/.Glycolytic enzyme inhibitors in cancer treatment[J].Expert Opin Investiq Drugs,2008,17(10):1533-1545.
    20. Peng Q,Zhou Q,Zhou i,et a/.Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo[J].Cancer Biol Ther,2008,7(7):1128-1135.
    1. Kondoh H. Cellular life span and the Warburg effect[J].Exp Cell Res. 2008,314(9):1923-1928.
    2. Shaw RJ.Glucose metabolism and cancer[J].Curr Opin Cell Biol.2006,18(6):598-608.
    3. Kondoh H. Cellular life span and the Warburg effect[J]. Exp Cell Res,2008,314(9):1923-1928.
    4. Gillies RJ,Robey I,Gatenby RA. Causes and consequences of increased glucose mebabolism of cancers[J].2008,49:245-425.
    5. Pelicano H,Martin DS,Xu RH.et al. Glycolysis inhibition for anticancer treatment[J].Oncogene,2006,25(34):4633-4646.
    6. Ko YH,Pedersen PL,Geschwind JF. Glucose catabolism in the rabbit VX2 tumor model for liver cancerxharacerization and targeting hexokinase[J].Cancer Lett,2001,173(l):83-91.
    7. Xu RH Pelicano H,Zhou Y,et al. Inhibition of glycolysis in cancer cells :a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J]. Cancer Res,2005,65(2):613-621.
    8. Liu H,Hu YP, Savaraj N,et al. Hypersensitization of tumor cells to glycolytic inhibitors[J].2001,40(18):5542-5547.
    9. Liu H, Savaraj N,Priebe W, et al. Hypoxia increases tumor cell sensitivity to glycolytic inhibitors:a strategy for solid tumor therapy(Model C)[J].Biochem Pharmacol.2002,64(l2): 1745-1751.
    10. Chen Z, Lu W, Garcia-Prieto,et al. The Warburg effect and its cancer therapeutic implication[J] J Bioenerg Biomembr.2007,39(3):267-274.
    11. Pedersen PL.The cancer cell's "power plants" as promising therapeutic targets:an overview[J].J Bioenerg Biomembr.2007,39(l):l-12.
    12. Gatenby RA,Gillies RJ. Glycolysis in cancer:a potential for therapy [JJ.Int J Biochem Cell Biol.2007,39(7-8):1358-1366.
    13.Fantin VR,St-Pierre J,Leder P.Attenuation of LDH-A expression uncovers a link betweenglycolysis,mitochondialphysiology,andtumor maitenace[J].2006,9(6):425-434.
    14.PelicanoH,MartinDS,XuRH,etal.Glycolysisinibitionfor anticancer treatment[J].Oncogene.2006,25(34):4633-4646.
    15.Bootman MD,Lipp P,Berridgy MJ.The organisation and functions of local Ca2+ signals[J].J Cell Sci,2001,114(Pt 12):2213-2222.
    16.VigM,KinetJP.ThelongandarduousroadtoCRAC[J].Cell Calcium,2007,42(2):157-162.
    17.ParekhAB,Putney JWJr.Storeoperated calciumchannels[J].Physiol Rev,2005,85(2):757-8 10.
    18.Saris NE,Carafoli E.A historical review of cellular calcium handing with emphasis on mitochondria[J].Biochemistory(Mose),2005,70(2):187-194.
    19.Muallem S.Calcium signaling: pyruvate and CRAC meet at the crossroad[J].Curr Biol,2007,17(14):549-551.
    20.Bakowski D,Parekh AB.Regulation of store-operated calcium channels by the intermediary metabolite pyruvic acid[J].Curr Biol,2007,17(12):1076-1081.
    21.杨艳娜,王艳,王星光,等.曲古抑菌素A和紫杉醇对子宫内膜癌Ark2细胞凋亡和线粒体膜电位的影响[J].癌症.2008,27(8):816-821.
    1.Ei-Rayes BF,Philip PA.A review of systemic therapy for advanced pancreatic cancer[J].Clin Adv Hematol Oncol.200,1(7):430-434.
    2.Pelicano H,Martin DS,Xu RH,et al.Glycolysis inhibition for anticancer treatment[J].Oncogene,2006,25(34):4633-4646.
    3.Alcazar O,Tiedqe M,Lenzen S.Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells[J].BiochemJ,2000,352(Pt2),373-380.
    4.黄韬,宋海平,张景辉.PCDGFshRNA对乳腺癌细胞系MCF-7增殖凋亡和VEGF表达的影响[J].癌症,2006,25(3):303-307.
    5.Chen Z,Lu W,Garcia-prieto C,et al.The Warburg effect and its cancer therapeutic implications [J].J Bioenerg Biomembr.2007,39(3):267-274.
    6.Shaw RJ.Glucose metabolism and cancer[J].Curr Opin Cell Biol.2006,18(6):598-608.
    7.Xu RH,Pelicano H,Zhou Y,et al.Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J].Cancer Res,2005,65(2):613-621.
    8.张海峰,周国雄.SiRNA技术在胰腺癌研究中的应用[J].交通医学,2007,21(4):374-376。
    9.Imamura T,Kanal F,Kawakami T,et al.Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression[J].Biochem and Biophys Res Commun,2004,318(1):289-296.
    10.Sato N,Fukushima N,Chang R,et al.Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers [J].Gastroenterol ogy,2 006,13 0(2):548-565.
    11.Higgins KJ,Abdelrahim M,Liu S,et al.Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins[J].Biochem Biophys Res Commun,2006,345(1):292-301.
    12.Wang W,Wang CY,Dong JH,et al.Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassete[J].World J Gastroenterol,2005,11(3):2026-2031.
    13.Muallem S.Calcium signaling:Pyruvate and CRAC meet at the crossroads.Current Biol.2007,17(14):549-551.
    14.张树华,王春友,熊炯炘.草氨酸盐对人胰腺癌细胞内钙含量影响的研究[J].中国普通外科杂志,17(9):861-864.
    15.Fatin VR,St-Pierre J,Leder P.Attenuation of LDH-A expression uncovers a link betweenglycolysis,mitochondrial physiology,and tumor maintenance [J].Cancer Cell,2006,9(6):425-434.
    16.Kim JW,Dang CV.Multifaceted roles of glycolytic enzymes [J].Trends Biochem Sci,2005,30(3):142-150.
    17.Zheng L,Roeder RG,Luo YS phase actviation of the histone H2B promoter by OCA-S,a coactivator complex that contains GAPDH as a key component[J].Cell,114(2):255-266.
    18.Thanqaraju M,Carswell KN,Prasad PD,et al.Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3[J].Biochem J,2009,417:379-389.
    19.Aggarwwal BB,Vijayalekshmi RV,Sung B.Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend,long-term foe[J].Clin Cancer Res.2009,15:425-430.
    20.Pan X,Arumugam T,Yamamoto T,et al.Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells[J].Clin Cancer Res.2008,14:8143-8151.
    1..邹满意,陆伟.糖酵解酶抑制剂抗肿瘤作用的研究进展[J].武警医学院学报,2006,15(3):286-288.
    2.Shao RJ.Glucose metabolism and cancer[J].Curr Opin Cell Biol.2006,18(6):598-608.
    3.Chen Z,Lu W,Garcia-prieto C,et al.The Warburg effect and its cancer therapeutic implications[J].J Bioenerg Biomembr.2007,39(3):267-274.
    4.Semenza GL,Artemov D,Bedi A,et al.'The metabolism of tumours': 70 years later[J].Novartis Found Symp,2001,240,251-260; discussion 260-264.
    5.Pelicano H,Martin DS,Xu RH,et al.Glycolysis inhibition for anticancer treatment[J].Oncogene 2006,25(34):4633-4646.
    6.DeBerardinis RJ.Is cancer a disease of abnormal cellular metabolism?New angles on an old idea[J].Genet Med,2008,10(11):767-777.
    7.Isidoro A,Casado E,Redondo A,et al.Breast carcinoma fulfill the Warburg bypothesis and provide metabolic markers of cancer prognosis[J].Carcinogenesis,2005,26(12):2095-2104.
    8.Munoz-Pinedo C,Ruiz-Ruiz C,Ruiz De Almodovar C,et al.Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing[J].J Biol Chem,2003,278(15):12759-12768.
    9.Izyumov DS,Avetisyan AV,Pletjushkina OY,et al.“Wages of fear“: transient threefold decrease in intracellular ATP level imposes apoptosis[J].Biochim Biophys Acta,2004,1658(1-2): 141-147.
    10.Xu RH,Pelicano H,Zhou Y,et al.Inhibition of glycolysis in cancer cells:a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia[J].Cancer Res,2005,65(2):613-621.
    11.Gatenby RA,Gillies RJ.Why do cancers have high aerobic glycolysis[J].Nat Rev Cancer,2004,4(11):891-899.
    12.De Lena M,Lorusso V,Latorre A,et al.Paclitaxel,cisplatin and lonidamine in advanced ovarian cancer.A phase Ⅱ study[J].Eur J Cancer,2001,37(3):364-368.
    13. Du GJ,Song ZH,Lin HH,ef a/.Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells[J].Biochem Biophys Res Commun,2008,372(3):497-502.
    14. Oudard S,Levalois C,Andrieu JM,et a/.Expression of genes involved in chemoresistance,proliferation and apoptosis in clinical samples of renal cell carcinoma and correlation with clinical outcome[J].Anticancer Res,2002,22 (1A):121-128.
    15. Papaldo P, Lopez M, Cortesi E, et a/.Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide[J]. J Clin Oncol,2003,21(18):3462-3468.
    16. Fanciulli M,Bruno T,Giovannelli A,et a/.Energy metabolism of human LoVo colon carcinoma cellsxorrelation to drug resistance and influence of lonidamine[J]. Clin Cancer Res.2000,6(4):1590-1597.
    17. Zu XL, Guppy M.cancer metabolism:facts,fantasy,and fiction[J].Biochem Biophys Res Commun,2004,313(3):459-465.
    18. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers[J]. J Nucl Med,2008,49(Suppl 2):24S-42S.
    19. Kim JW,Dang CV.Cancer's molecular sweet tooth and the Warburg effect[J].Cancer Res,2006,66(88):8927-8930.
    20. Chen Z,Lu W,Garcia-Prieto C,et al.The Warburg effect and its cancer therapeutic implications[J].JBioenergBiomembr,2007,39(3):267-274.
    21. Carew JS, Huang P. Mitochondrial defects in cancer[J]. Mol Cancer 2002,l(l):9.22. Singh KK. Mitochondria damage checkpoint in apoptosis and genome stability [J]. FEMS Yeast Res,2004,5(2):127-132.
    23. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease[J]. Nat Rev Genet,2005,6(5):389-402.
    24. Pelicano H,Martin DS,Xu RH,et al.Glycolysis inhibition for anticancer treatment[J].Oncogene 2006,25(34):4633-4646.
    25. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis[J]. Nat Rev Cancer, 2004,4(11):891-899.
    26. Brahimi-Horn C, Pouyssegur J.The role of the hypoxia-inducible factor in tumor metabolism growth and invasion[J].Bull Cancer,2006,93(8): E73-80.
    27. Liu H,Savaraj N,Priebe W,et al.Hypoxia increases tumor cell sensitivity to glycolytic inhibitors:a strategy for solid tumor therapy(Model C)[J].Biochem Pharmacol,2002,64(12):1745-1751.
    28. Maher JC, Krishan A, Lampidis TJ. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions[J]. Cancer Chemother Pharmacol. 2004 Feb;53(2):116-22.
    29. Blum R,Jacob-Hirsch J,Amariglio N,et al.Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1,causing glycolysis shutdown and cell death[J].Cancer Res,2005,65(3):999-1006.
    30. Karnauskas R., Niu Q, Talapatra S, et al. Bcl-x(L) and Akt cooperate to promote leukomogenesis in vivo[J]. Oncogene,2003, 22:688-689.
    31. Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells[J]. Cancer Res,2004;64(ll):3892-3899.
    32. Gottschalk S, Anderson N, Hainz C, et al. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL positive cells[J].Clin Cancer. Res,2004,10(19):6661-6668.
    33. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour[J].Nat Rev Cancer.2008,8(9):705-713.
    34. Pan JQMak TW.Metabolic targeting as an anticancer strategy:dawm of a new era?[J].Sci STKE,2007,2007(381):pe14.
    35. Scatena R,Bottoni P,Pontoqlio A,et a/.Glycolytic enzyme inhibitors in cancer treatment[J].Expert Opin Investiq Drugs,2008,17(10):1533-1545.
    36. GarberK. Energy deregulation: licensing tumors to grow[J].Science,2006,312(5777):l158-1159.
    37. Granville CA, Memmott RM, Gills JJ, et a/.Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway[J]. Clin Cancer Res,2006,12(3 Pt l):679-689.
    38. He G, Sung YM, Digiovanni i,et a/.Thiazolidinediones inhibit insulin-like growth factor-i-induced activation of p70S6 kinase and suppress insulin-like growth factor-I tumor-promoting activity[J].Cancer Res 2006, 66(3): 1873-1878.
    39. Liu H,Hu YP, Savaraj N, et al. Hypersensitization of Tumor Cells to Glycolytic Inhibitors.Biochemistry, 2001,40( 18):5542-5547.
    40. Semenza GL.Targeting HIF-1 for cancer therapy[J].Nat Rev Cancer,2003,3(10):721-732.
    41. Maschek QSavaraj N,Priebe W,et a/.2-Deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo[J].Cancer Res,2004,64(l):31-34.
    42. Ledoux S,Yang R,Friedlander G,et al.Glucose depletion enhances P-glycoprotein expression in hepatoma cells:role of endoplasmic reticulum stress response[J].Cancer Res,2003,63(21):7284-7290.
    43. Singh D, Banerji AK, Dwarakanath BS, et al. Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme[J].StrahlentherOnkol,2005,181(7):507-514.
    44. Ko YH, Pedersen PL, Geschwind JF.Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase[J].Cancer Lett, 2001,173(l):83-91.
    45. Geschwind JF, Ko YH, Torbenson MS, et a/.Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production[J]. Cancer Res,62 (14): 3909-3913.
    46. Ko YH, Smith BL, Wang Y, et al. Advanced cancerB eradication in all cases using 3-bromopyruvate therapy to deplete ATP[J].Biochem Biophys Res Commun,2004,324(l):269-275.
    47. Li YC,Fung KP,Kwok TT,e/ a/.Mitochondrial targeting drug lonidamine triggered apoptosis in doxorubicin-resistant HepG2 cells[J].Life Sci,2002,71(23):2729-2740.
    48. Roehrborn CGThe development of lonidamine for benign prostatic hyperplasia and other indications[J].Rev Urol,2005,7(Suppl 7):S12-20.
    49. Papaldo P,Lopez M,Cortesi E,et al.Addition of Either Lonidamine or Granulocyte Colony-Stimulating Factor Does Not Improve Survival in Early Breast Cancer Patients Treated With High-Dose Epirubicin and Cyclophosphamide[J].J Clin Oncol,2003,21(18): 3462-3468.
    50. Fanciulli M., Bruno T., Giovannelli A, et a/.Energy metabolism of human LoVo colon carcinoma cells: correlation to drug resistance and influence of lonidamine.Clin. Cancer Res,2000,6(4):1590-1597.
    51. Penkowa M,Quintana A,Carrasco J,et a/.Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide[J], J Neurosci Res,2004,77(l):35-53.
    52. Jelks KB,Miller MG. ot-Chlorohydrin inhibits glyceraldehyde-3-phosphate dehydrogenase in multiple organs as well as in sperm[J]. Toxicol Sci,2001,62(l):l 15-123.
    53. Bone W,Cooper TGIn vitro inhibition of rat cauda epididymal sperm glycolytic enzymes by ornidazole,alpha-chlorohydrin and l-chloro-3-hydroxypropanone[J].Int J Androl,2000,23(5):284-293.
    54. Coy JF,Dressler D,Wilde J,et al. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer[J]. Clin Lab,2005,51(5-6):257-273.
    55. Chen Z,Lu W,Garcia-prieto C,et a/.The Warburg effect and and its cancer therapeutic implications[J] .J Bioenerg Biomembr.2007,39(3):267-274.
    56. Michelakis ED,Webster L,Machey 3R,et a/.Dichloroacetate(DCA) as a potential metabolic-targetting therapy for cancer[J].Br J Cancer.2008,99(7):989-994.
    57. Lee WN,Guo P,Lim S,et a/.Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment[J].Br J Cancer,2004,91(12):2094-2100.
    58. Serkova N, Boros LG. Detection of resistance to imatinib by metabolic profiling: clinical and drug development implications[J]. Am J Pharmacogenomics,2005,5(5):293-302.
    59. Cao X,Fang L,Gibbs S,et al. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia[J]. Cancer Chemother Pharmacol,2007,59(4):495-505.
    60. Yasuda S,Ide M. PET and cancer screening[J]. Ann Nucl Med,2005,19(3):167-177.
    61. Seaqroves TN,Ryan HE,Lu H,et al.Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells[J].Mol Cell Biol,2001,21(10):3436-3444.
    62. Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols[J]. Antioxid Redox Signal,2005,7(l 1-12): 1630-1647.
    63. Hahn-Windgassen A,Noqueira V,Chen CC,et a/.Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity[J].J Biol Chem,2005,280(37):32081-32089.
    64. Rasschaert J,Kadiata MM,Malaisse WJ.Effects of D-mannoheptulose upon D-glucose metabolism in tumoral pancreatic islet cells[J].Mol Cell Biochem,2001,226(l-2):77-81.
    65. Giaccone QSmit EF,de Jonge M,et a/.Glufosfamide administered by 1-hour infusion as a second-line treatment for advanced non-small cell lung cancer; a phase II trial of the EORTC-New Drug Development Group[J]. Eur J Cancer,2004,40(5):667-672.
    66. Tsuruo T,Naito M,Tomida A,et al.Molecular targeting therapy of cancer: drug resistance,apoptosis and survival signal[J].Cancer Sci,2003,94(l):15-21.
    67. Peng QP,Zhou JM,Zhou Q,et al. Downregulation of the hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil[J].Chemotherapy,2008,54(5):357-363.
    68. Maher JC, Savaraj N, Priebe W, et al. Differential sensitivity to 2-deoxy-D-glucose between two pancreatic cell lines correlates with GLUT-1 expression[J], Pancreas,2005,30(2):e34-9.
    69. Liu H,Hu YP,Savaraj N,et al.Hypersensitization of tumor cells to glycolytic inhibitors[J].Biochemistry,2001,40(18):5542-5547.
    70. Varshney R,Adhikari JS.Dwarakanath BS. Contribution of oxidative stress to radiosensitization by a combination of 2-DG and 6-AN in human cancer cell line[J].Indian J Exp Biol,2003,41(12):1384-1391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700