用户名: 密码: 验证码:
两类层状硅酸盐/聚合物纳米复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以蒙脱土和滑石粉两类层状硅酸盐为填料,制备了具有纳米结构的层状硅酸盐/聚合物复合材料。首先采用环氧树脂(EP)改性尼龙6(N6)与有机蒙脱土(MMT)熔融共混、N6/EP/MMT一步法熔融共混、EP预处理MMT与N6熔融共混工艺制得了N6/MMT复合材料,研究了EP的添加量和混料顺序对N6基体的结晶、熔融行为、复合材料力学性能等的影响。其次,采用原位乙酰化和熔体插层缩聚,制备了剥离型热致液晶共聚酯/蒙脱土(LCP/MMT)纳米复合材料。最后分别采用原位聚合改性滑石粉(talc)、以甲基丙烯酸缩水甘油酯和苯乙烯固相接枝聚丙烯(GSP)为增容剂,通过熔融共混和注塑成型的方法制备了滑石粉/聚丙烯(talc/PP)复合材料。研究了原位聚合改性和增容剂对talc/PP复合材料的微观结构、结晶、熔融行为、聚丙烯基体的晶型结构以及复合材料力学性能等的影响,并探讨了talc对PP的增韧机理。得出如下结论:
     (1)N6/MMT复合材料具有插层型纳米结构,三种混料顺序对N6/MMT复合材料的力学性能和热行为影响不大。环氧树脂的引入降低了N6/MMT复合材料中N6相的熔点、结晶温度和结晶度。同时环氧树脂对N6/MMT复合材料起到增塑作用,有效地提高了N6/MMT复合材料的断裂伸长率和缺口冲击强度。
     (2)LCP/MMT纳米复合材料表现出向列相液晶行为,剥离的蒙脱土片层分散在整个基体中,破坏了LCP分子链的有序性,使其液晶微区细化、纹影结构的向错点变得模糊。由于LCP基体中富PBT相区和富PHB相区在分子链柔顺性和结构上的差异,剥离的蒙脱土片层对LCP/MMT复合材料中富PBT相区和富PHB相区的玻璃化行为的影响不同。随着MMT含量的增加,LCP/MMT复合材料中富PBT相区链段的Tg1呈上升趋势,而富PHB相区链段的Tg2呈下降趋势。在液晶高分子链取向的诱导作用下,均匀分散的、剥离的蒙脱土片层沿剪切力场取向排列。
     (3)甲基丙烯酸甲酯(MMA)或丙烯酸丁酯(BA)原位聚合改性的滑石粉(talc)与聚丙烯(PP)复合制得了具有插层结构的talc/PP复合材料。用MMA原位聚合改性后,滑石粉以80 nm~240 nm的片层厚度分布在PP基体中。由于PBA与PP有更好的相容性,PBA改性的talc在PP基体中剥离为更薄的片层。滑石粉的原位聚合改性,增强了PP与talc之间的界面相互作用力,降低了talc对PP相的结晶成核作用及PP的结晶度。流动取向的talc片层诱导了PP晶体的取向,但PMMA或PBA的改性减弱了talc对PP晶体的取向程度。
     (4)在PP/GSP/talc复合材料中,滑石粉片层在高剪切力作用下剥离成厚度在微纳米尺度的多尺度结构。增容剂GSP促进了PP与talc之间的相互作用,使talc更易于剥离,片层厚度进一步减小。PP/GSP/talc复合材料的弯曲模量、冲击强度和拉伸强度均存在一个最佳的talc含量。随着GSP含量增加,PP/GSP/talc复合材料的拉伸强度明显提高,而弯曲模量影响较小。PP/GSP/talc复合材料的冲击强度比PP高,且存在一个最佳的GSP添加量。
     (5)在原位聚合改性talc/PP复合材料中,剥离的talc片状结构对复合材料银纹的形成有抑制作用,其二维几何结构不利于片层周围基体的屈服与界面脱粘、空化,因而导致talc/PP复合材料抗冲击强度降低。而在PP/GSP/talc复合材料中,滑石粉片层呈现的微、纳米多尺度结构、增容剂对talc/PP界面粘接的改善,使复合材料受到破坏时能够吸收更多的冲击能,提高了复合材料的韧性。
In this dissertation, polymer/layered silicate composites were prepared with two types of layered silicates, such as montmorillonite and talc, respectively. Firstly, nylon 6/montmorillonite (N6/MMT) composites were prepared via melt compounding with the following three different blending sequences: (1) Nylon 6 (N6) was modified by epoxy (EP), then mixed with MMT. (2) Nylon 6, EP and MMT were blended simultaneously. (3) Nylon 6 was compounded with MMT pretreated by EP. The effects of EP contents and blending sequence on melting, crystallization, and mechanical properties of composites were investigated. Secondly, the fully exfoliated thermotropic liquid crystalline copolyester/ montmorillonite (LCP/MMT) nanocomposites were synthesized by in-situ acetylation and melting intercaction condensation polymerization. Finally, the talc/isotactic polypropylene (PP) composites were prepared by melt extrusion with PP and talc modified by in-situ monomer/talc polymerization or adding glycidyl methacrylate/styrene solid-phase-grafted polypropylene (GSP) as compatibilizer. The effects of in-situ monomer/talc polymerization or compatibilizer on crystal structure, melting and crystallization properties of PP matrix, the micro-structure and mechanical properties of talc/PP composites were inverstigatied. And the toughening mechanism of talc on PP was also discussed. Based on experiment results, the conclusions were drawn as following:
     (1) The intercalated structure nylon 6/montmorillonite (N6/MMT) nanocomposites were prepared; the blending sequences have few effects on the mechanical properties and thermal behavior of N6/MMT nanocomposites. The addition of epoxy decreases the melting temperature (Tm), crystallization temperature (Tc) and relative crystallinity (Xc) of N6 phase in N6/MMT nanocomposites. Due to its plasticizing effect, the epoxy enhances the elongation at break and Izod impact strength of N6/MMT nanocomposites.
     (2) LCP/MMT nanocomposites exhibit nematic liquid crystalline behavior, and the incorporation of the exfoliated MMT layers throughout the LCP matrix results in very fine but imperfect schlieren texture, and the disinclination becomes blurred. The exfoliated MMT layers have different effects on the glass transitions of the PBT-rich and PHB-rich domains in LCP macromolecules due to their different chain flexibility and structure. With increasing MMT contents, the glass transition temperature (Tg1) of PBT-rich phase in LCP tends to increase, while the Tg2 of PHB-rich phase tends to decrease. Under the induction of LCP, the exfoliated MMT layers are oriented along the force field.
     (3) After talc was modified with methyl methacrylate (MMA) or butyl acrylate (BA) via in-situ polymerization, the talc/PP composites is intercalated in nano-sized level. The thickness of the PMMA-modified talc layers in the PP matrix is in the range 80 nm to 240 nm, while the PBA-modified talc is even thinner. The modified talc enhances the interfacial action between PP and talc, weakens the nucleation effect of talc on crystallization of PP, and decreases the crystallinity of PP. The oriented talc layers induce orientation of PP crystals during molding process, while the degree of PP crystal orientation decreases after talc is modified with PMMA or PBA.
     (4) During the processing of PP/talc composites, the talc particle is delaminated to platelets with multi-scale structure ranged from micro- and nano-size in thickness by high shearing force. The compati1izer (GSP) enhances the interfacial interaction between talc and PP matrix, which makes the thickness of talc platelets decrease further. There is an optimal talc contents for the flexural modulus, tensile strength and izod impact strength of PP/GSP/talc composites. With increasing GSP contents, the tensile strengths of PP/GS-PP/talc composites increase obviously, while the flexural modula of composites change little. The Izod impact strength of PP/GS-PP/talc composites is higher than that of PP. Moreover, there is an optimal GSP contents for the Izod impact strength of PP/GS-PP/talc composites.
     (5) In in-situ polymerization modified talc/PP composites, the delaminated talc layers restrict the formation of crazes in composites. Their two-dimension structure is not beneficial to yielding polymer matrix around talc layers, debonding and cavitating of PP/talc interface, so that the impact strength of talc/PP composites decreases. For PP/GSP/talc composites, two factors, i. e. the multi-scale structure ranged from micro- and nano-size in thickness of talc layers, and enhanced interfacial adhesion between PP and talc due to compati1izer, lead to absorbing more impact energy during fracture, and increasing the toughness of PP/talc composites.
引文
[1]华实.纳米技术新进展[J].科学之友, 2000, (5): 4-6
    [2] Okamoto M, Morida S, Kotaka T. Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites [J]. Polymer, 2001, 42: 2685-2688
    [3]唐建国,胡克鳌,刘海燕等.聚合物基金属复合材料研究进展[J].高分子通报,1999, 4(12): 40-45
    [4] Okamoto M, Morida S, Kim YH, et al. Dispersed structure change of smectic clay/ poly(methyl methacrylate) nanocomposites by copolymerisation with polar comonomers [J]. Polymer, 2001, 42: 1201-1206
    [5] Alexander BM, Jeffey WG, Catheryn LJ. Characterization of the dispersion of clay in a polyetherimide nanocomposites [J]. Macromolecules, 2001, 34: 2735-2738
    [6]李强,赵竹第,欧玉春等.尼龙6/蒙脱土纳米复合材料的结晶行为[J].高分子学报,1997,5(2):188-193
    [7] Hu G, Cartier H. Reactive extrusion toward nanoblends [J]. Macromolecules, 1999, 32: 4713-4718
    [8]潘广锋,肖国民.纳米技术在塑料领域中的应用及研究进展[J].化工时刊, 2001, 15 (10): 1-4
    [9]高德财,刘瑜.聚合物-纳米粒子复合材料的应用研究[J].化学建材, 2001, (5):14-16
    [10] Zhu W, Bartos PJM, Porro A. Application of nanotechnology in construction [J]. Mater. Struct., 2004, 37(9): 649-658
    [11] Laachachi A, Cochez M, Ferriol M, et al. Influence of Sb2O3 particles as filler on the thermal stability and flammability properties of poly(methyl methacrylate) (PMMA) [J]. Polym. Degrad. Stab., 2004, 85(1): 641-646
    [12] Xie XL, Li RKY, Liu QX, et al. Structure-property relationships of in-situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride) nanocomposites [J]. Polymer 2004, 5(8): 2793-2802
    [13] Zhang XG, Guo F, Chen JF, et al. Investigation of interfacial modification for ?ame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites [J]. Polym. Degrad. Stab., 2005, 87: 411-418
    [14] Qiu LZ, Xie RC, Ding P, et al. Preparation and characterization of Mg(OH)2nanoparticles and ?ame-retardant property of its nanocomposites with EVA [J]. Compos. Struct., 2003, 62: 391-395
    [15] Wang ZB, Li GC, Peng HR, et al. Study on novel antibacterial high-impact polystyrene/TiO2 nanocomposites [J]. J. Mater. Sci., 2005, 40(24): 6433-6438
    [16]杨秀健,施朝淑,许小亮.纳米ZnO的研究及其进展[J].无机材料学报, 2003, 18(1): 3-12
    [17] Xie XL, Liu QX, Li RKY, et al. Rheology and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization [J]. Polymer, 2004, 45 (19): 6665-6673
    [18] Li X, Yuan Q, Wang D. ASD/SiO2-TiO2 hybrid material for organic-inorganic second-order nonlinear option [J].合成橡胶工业, 2001, 24(4): 232
    [19] Du H, Xu GQ, Chin WS. Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites [J]. Chem. Mater., 2002, 14(10): 4473-4479
    [20]赵安赤,贺鹏.聚合物改性中纳米复合新技术[J].塑料加工,2000, 29(1): 34-35
    [21] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58
    [22] Iijima S, Ichihashi T. Single shell carbon nanotubes of 1nm diameter [J]. Nature, 1993, 363: 603-605
    [23] Bethune DS, Kiang CH, de Vries MS, et al. Cobalt catalyzed growth of carbon nanotubes with single atomic layer walls [J]. Nature, 1993, 363: 605-607
    [24] Martel R, Schmidt T, Shea HR,et al. Single and multi-wall carbon nanotube field-effect transistors [J]. Appl. Phys. Lett., 1998, 73(17): 2447-2449
    [25] Pan ZW, Xie SS, Chang BH, et al. Very long carbon nanotubes [J]. Nature, 1998, 394: 631-632
    [26] Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology [M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003
    [27] Nalwa HS. Handbook of nanostructured materials and nanotechnology [M], Vol. 5. New York, USA: Academic Press, 2000
    [28] Christensen B. Carbon nanotube ribbon for space elevator. http://www.tech- novelgy.com/ct/science-fiction-news
    [29] Dalton AB, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres [J]. Nature, 2003, 423: 703
    [30] Saito S. Carbon nanotubes for nest-generation electronics devices [J]. Science, 1997,278: 77-79
    [31] Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes-the route toward applications [J]. Science, 2002, 297: 787-792
    [32] Frackowiak E, Gautier H, Gaucher H, et al, Electrochemical storage of lithium multiwalled carbon nanotuhes [J]. Carbon, 1999, 37(1): 61-69
    [33] Liu C, Fan YY, Liu M, et al. Hydrogen storage in single walled carbon nanotubes at room temperature [J]. Science,1999, 286: 1127-1129
    [34] Cheng P, Wu X, Liu J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J]. Science, 1999, 285: 91-93
    [35] Andrews R,Weisenberger MC. Carbon Nanotube Polymer Composites [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 31-37
    [36] Curran SA, Ajayan PM, Blau WJ, et al. Composite from PPV and carbon nanotubes: a novel material for molecular optoelectronics [J]. Adv. Mater., 1998, 10(14): 1091- 1093
    [37] Files BS, Mayeaux BM. Carbon nanotubes [J]. Adv. Mater. Processes, 1999, 156(4): 47-49
    [38] Biercuk MJ, Llaguno MC, Radosavljevic M, et al. Carbon nanotube composites for thermal management [J]. Appl. Phys. Lett., 2002, 80: 2767-2769
    [39] Tang BZ, Xu HY. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes [J]. Macromolecules, 1999, 32(8): 2569-2576
    [40] Sandle J, Shaffer MSP, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties [J]. Polymer, 1999, 40(21): 5967-5971
    [41] Kymakis E, Ameratunga GAJ. Single-wall carbon nanotube/conjugated polymer photovoltaic devices [J]. Appl. Phys. Lett., 2002, 80(1): 112-114
    [42] Fan JK, Wan MX, Zhu DB, et al. Synthesis, characteriza-tions, and physical properties of carbon nanotubes coated by conducting polypyrrole [J]. J. Appl. Polym. Sci., 1999, 74(11): 2605-2610
    [43] Fan JK, Wan MX, Zhu DB, et al. Synthesis and properties of carbon nanotube- polypyrrole composites [J]. Synth. Met., 1999, 102(1): 1266-1267
    [44] Hung SM, Mau AWH, Dai LM, et al. Patterned growth of well-aligned carbon nanotubes: a soft-lithographic approach [J]. J. Phys. Chem. B, 2000, 104(10): 2193- 2196
    [45] Hung SM, Dai LM, Mau AWH, et al. Patterned growth and contact transfer of well-aligned carbon nanotube films [J]. J. Phys. Chem. B, 1999, 103(21): 4223-4227
    [46] Sun TL, Wang GJ, Liu H, et al. Control over the wettability of an aligned carbon nanotube film [J]. J. Am. Chem. Soc., 2003, 125(49): 14996-14997
    [47] Feng L, Li SH, Li YS, et al. Super-hydrophobic surfaces: from natural to artificial [J]. Adv. Mater., 2002, 14(24): 1857-1860
    [48]李贺,刘白玲,高利珍等.高聚物/碳纳米管复合材料研究进展[J].合成化学, 2002, 10(3): 197-199
    [49] Musa I, Baxendale M, Ameratunga GA, et al. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites [J]. Synth. Met., 1999, 102(1-3): 1250
    [50] Curran S, Davey AP, Coleman J, et al. Evolution and evalution of the polymer/ nanotube composite [J]. Synth. Met., 1999, 103: 2559-2562
    [51] Dalton AB, Byrne HJ, Coleman JN, et al. Optical ab-sorption and fluorescence of multi-walled nanotube-polymer composite [J]. Synth. Met., 1999, 102(1-3): 1176- 1177
    [52] Gong X, Liu J, Baskaran S, et al. surfactant-assisted processing of carbon nanotube/polymer composites [J]. Chem. Mater., 2000, 12(4): 1049-1052
    [53] Zhou XP, Xie XL, Zeng FD, et al. Properties of polypropylene/carbon nanotube composites compatibilized by maleic anhydride grafted SEBS [J]. Key Eng. Mater., 2006, 312: 323-228
    [54] Haggenmueller R, Gommans H, Rinzler AG, et al. Aligned single-wall carbon nanotube composites by melt processing methods [J]. Chem. Phys. Lett., 2000, 330(3-4): 219-225
    [55] Jin ZX, Pramoda KP, Xu GQ, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites [J]. Chem. Phys. Lett., 2001, 337: 43-47
    [56] Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review [J]. Mater. Sci. Eng. R., 2005, 49(4): 89-112
    [57] Haggenmuller R, Gommans HH, Rinzler AG, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods [J]. Chem. Phys. Lett., 2000, 330: 219-225
    [58] Safadi B, Andrews R, Grulke EA. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films [J]. J. Appl. Polym. Sci., 2002, 84(14):2660-2669
    [59] Choi ES, Brooks JS, Eaton DL, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing [J]. J. Appl. Phys., 2003, 94(9): 6034-6039
    [60]何宏平.粘土矿物与金属离子作用研究[M].北京:石油工业出版社, 2001. p.1
    [61]曹桐源.石墨夹层化合物——一种很有希望的新材料[J].炭素, 1987, (2): 16-20
    [62] Lee GR, Crayston JA. Sol-gel processing of transition-metal alkoxides for electronics [J]. Adv. Mater., 1993, 5(6): 434-442
    [63] Lira-CantúM, Gómez-Romero P. The organic-inorganic polyaniline/V2O5 system: application as a high-capacity hybrid cathode for rechargeable Lithium batteries [J]. J. Electrochem. Soc., 1999, 146(6): 2029-2033
    [64]白新德,蔡俊,尤引娟等.纳米复合材料—石墨层间化合物(GICs)的电化学合成研究[J].复合材料学报, 1996, 13(2): 53-59
    [65]刘平贵,龚克成.石墨嵌入化合物的研究和进展[J].化学世界, 1999, (5): 227-232
    [66]陈光明,李强,漆宗能等.聚合物/层状硅酸盐纳米复合材料研究进展[J].高分子通报, 1999, (4): 10-19
    [67] Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing [J]. Prog. Polym. Sci., 2003, 28: 1539-1641
    [68] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials [J]. Mater. Sci. Eng. R, 2000, 28: 1-63
    [69]杨雅秀,张乃娴.中国粘土矿物[M].北京:地质出版社, 1994. p.197-235
    [70] Tsiao CJ, Carrado KA, Botto RE. Investigation of the microporous structure of clays and pillared clays by NMR [J]. Microporous Mesoporous Mater., 1998, 21: 45-51
    [71]王丽华,盛京.聚合物/硅酸盐纳米复合材料的研究进展[J].化学工业与工程,2003, 20(4): 225-230
    [72] Cho JW, Paul DR. Nylon 6 nanocomposites by melt compounding [J]. Polymer, 2001, 42(3): 1083-1094
    [73] Okada A, Kaw asuumi M, Kurauchi T, et al. Synthesis and characterization of a nylon 6- clay hybrid [J]. Polym. Prepr., 1987, 28: 447-448
    [74] Gao FG. Clay/polymer composites: the story [J]. Materials today, 2004, (11): 50-55
    [75]湖北建工学院石墨课组.石墨第一讲:石墨的性质和用途[J].非金属矿, 1974, (1): 32-35
    [76] Chae HK, Siberio-Perez DY, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427(6974): 523-527
    [77] Hung MT, Choi O, Ju YS, et al. Heat conduction in graphite-nanoplatelet- reinforced polymer nanocomposites [J]. Appl. Phys. Lett., 2006, 89: 23117-23120
    [78] Zhang YB, Small JP, Amori MES, et al. Electric field modulation of galvanomagnetic properties of mesoscopic graphite [J]. Phys. Rev. Lett., 2005, 94: 176803
    [79]秦玉香,王海涛.可膨胀石墨的制备[J].炭素技术, 2002, 21(3): 21-23
    [80] Ding RF, Hu Y, Gui Z, et al. Preparation and characterization of polystyrene/graphite oxide nanocomposite by emulsion polymerization [J]. Polym. Degrad. Stab., 2003, 81: 473-476
    [81] Cao N, Shen W, Wen S, et al. Surface properties of expanded graphite [J]. Chem. Bull., 1996, 4: 37-42
    [82]刘金鹏,宋克敏.可膨胀石墨的研究[J].功能材料, 1998, 29(6): 659-661
    [83] Uhl FM, Wilkie CA. Preparation of nanocomposites from styrene and modified graphite oxides [J]. Polym. Degrad. Stab., 2004, 84: 215-226
    [84] Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials [J]. Nature, 2006, 442(7100): 282-286
    [85]郭宪古,侯文华,颜其洁等.层柱过渡金属氧化物[J].科学通报, 2002, 47(22): 1681-1689
    [86] Kerr TA, Wu H, Nazar LF. Concurrent polymerization and insertion of aniline in molybdenum trioxide: formation and properties of a [Poly(aniline)]0.24MoO3 nanocomposite [J]. Chem. Mater., 1996, 8(8): 2005-2015
    [87] Wu CG, Kanatzidis MG, Marcy HO, et al. Intercalative of layered V2O5 xerogels with polymers [J]. Mater. Res. Soc. Symp. Proc., 1991, 233: 183-190
    [88] Bissessour R, DeGroot DC, Schindler JL, et al. Inclusion of poly(aniline) into MoO3 [J]. J. Chem. Soc.: Chem. Commun., 1993, (8-15): 687-689
    [89]柯满竹,陈文,徐庆等.聚合物-过渡金属氧化物纳米复合阴极材料的研究进展[J].功能材料, 2003, 34(1): 26-28
    [90]柯满竹,陈文,徐庆等.聚氧化乙烯/纳米复合材料的制备新工艺的探讨[J].硅酸盐通报, 2004, (2): 83-85
    [91] Harreld J, Wong HP, Dave BC, et al. Synthesis and properties of polypyrrole– vanadium oxide hybrid aerogels [J]. J. Non-Crystal. Solids, 1998, 225: 319-324
    [92] Kanatzidis MG, Wu C-G. Conductive Polymer bronzes. Intercalated polyaniline in V2O5 xerogels [J]. J. Am. Chem. Soc., 1989, 111(11): 4139-4141
    [93] Shan SG, Gao DS, Chen W, et al. The nanocomposite film of polymer intercalation in V2O5 xerogel [J]. J. Wuhan Univ. Technol., Mater. Sci. Ed., 2000, 15(3):1-5
    [94] Papaefthimiou S, Lef theriotis G, Yianoulis P. Study of electrochromic cells incorporating WO3, MoO3, WO3-MoO3 and V2O5 coating [J]. Thin Solid Films, 1999, 343-344: 183
    [95]沈培康. WO3电变色膜的保护[J].功能材料, 1995, 26(3): 201
    [96] Goward G, Leroux F, Nazar LF. Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries [J]. Electrochimica Acta, 1998, 43(10-11): 1307-1313
    [97] Leroux F, Goward G, Power WP, et al. Electrochemical Li insertion into conductive polymer/V2O5 nanocomposites [J]. J. Electrochem. Soc., 1997, 144: 3886-3895
    [98] Kurauchi T, Ohta T. Energy absorption in blends of polycarbonate with ABS and SAN [J]. J. Mater. Sci., 1984, 19: 1699-1709
    [99]李东明,漆宗能.非弹性体增韧——聚合物增韧的新途径[J].高分子通报, 1989, (3): 32-38
    [100] Fu Q, Wang G. Effect of morphology on brittle-ductile transition of HDPE/CaCO3 blends [J]. J. Appl. Polym. Sci., 1993, 49(11): 1985~1997
    [101]吕坤.聚合物增韧机理研究进展[J].现代塑料加工应用, 2000, 12(4): 50-53
    [102] Zhang QX, Yu ZZ, Xie XL, et al. Crystallization and impact energy of polypropylene/ CaCO3 nanocomposites with nonionic modifier [J]. Polymer, 2004, 45: 5985-5994
    [103] Bucknall CB. Toughned plastics [M]. London:Applied Science, 1977
    [104]郭卫红,唐颂超,徐种德.聚合物增韧增强机理研究进展[J].化工生产与技术, 1999,6(1): 13-17
    [105] Ramsteiner F, Heckmann W. Mode of deformation in rubber-modified polyamide [J]. Polym. Commun., 1985, 26: 199-200
    [106] Pearson RA, Yee AF. Toughening mechanisms in elastomer-modified epoxies [J]. J. Mater. Sci., 1986, 21(7): 2475-2488
    [107]朱晓光,邓小华,洪萱等.填充增韧聚丙烯复合材料的断裂韧性及增韧机理[J].高分子学报, 1996, (2): 195-201
    [108] Zuiderduin WCJ, Westzaan C, Huétink J, et al. Toughening of polypropylene withcalcium carbonate particle [J]. polymer, 2003, 44: 261-273
    [109] Wu SH. A generalized criterion for rubber toughening: The critical matrix ligament thickness [J]. J. Appl. Polym. Sci., 1988, 35(2): 549-561
    [110] Tjong SC, Li RKY, Cheung T. Mechanical behavior of CaCO3 particulate-filledβ- crystalline phase polypropylene composites [J]. Polym. Engin. Sci., 1997, 37(1): 166-172
    [111] Bartczak Z, Argon AS, Cohen RE, et al. The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates [J]. Polymer, 1999, 40: 2367-2380
    [112] Rong MZ, Zhang MQ, Zheng YX, et al. Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites [J]. Polymer, 2001, 42(1): 167-183
    [113] Yang H, Zhang Q, Guo M, et al. Study on the phase structures and toughening mechanisms in PP/EPDM/SiO2 ternary composites [J]. Polymer, 2006, 47: 2106-2115
    [114]宋桂明,周玉,孙毅.纤维增强陶瓷基复合材料中纤维增韧分析模型[J].固体火箭技术,1999, 22(1): 59-63
    [115] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678-682
    [116] Wong WE, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277: 1971-1975
    [117] Curtin WA. Stress-strain response of brittle matrix composites. In: Kelly A, Zweben C, editors. Encyclopedia of composites [M]. Holland: Elsevier, 2000.
    [118] Gojny FH, Nastalczyk J, Roslaniec Z, et al. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites [J]. Chem. Phys. Lett., 2003, 370: 820-824
    [119] Liu J, Casavant MJ, Cox M, et al. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates [J]. Chem. Phys. Lett., 1999, 303: 125-129
    [120] Dai L, Mau AWH. Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials [J]. Adv. Mater., 2001, 13(12-13): 899-913
    [121] Chen Q, Dai L, Gao M, et al. Plasma activation of carbon nanotubes for chemical modification [J]. J. Phys. Chem. B, 2001, 105: 618-622
    [122] Dai L, Bi J, Zientek P. Biomedical coatings by the covalent immobilization ofpolysaccharides onto gas-plasma-activated polymer surface [J]. Surf. Interface Anal., 2000, 29(1): 46-55
    [123] Blond D, Barron V, Ruether M, et al. Enhancement of modulus, strength, and toughness in poly(methylmethacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes [J]. Adv. Funct. Mater., 2006, 16: 1608-1614
    [124] Blake R, Gun’ko Y K, Coleman J, et al. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites [J]. J. Am. Chem. Soc., 2004, 126(33): 10226-10227
    [125] Ruan SL, Gao P, Yang XG, et al. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes [J]. Polymer, 2003, 44: 5643-5654
    [126] Assouline E, Lustiger A, Barber AH, et al. Nucleation ability of multiwall carbon nanotubes in polypropylene composites [J]. J. Polym. Sci., Polym. Phys., 2003, 41: 520-527
    [127] Wang K, Chen L, Wu JS, et al. Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms [J]. Macromolecules, 2005, 38: 788-800
    [128] Pan MW, Shi XD, Li XC, et al. Morphology and properties of PVC/clay nanocom- posites via in situ emulsion polymerization [J]. J. Appl. Polym. Sci., 2004, 94: 277- 286
    [129] Usuki A, Kojima Y, Kawasumi M, et al. Mechanical properties of nylon 6-clay hybrid [J]. J. Mater. Res., 1993, 8: 1185-1189
    [130] Fornes TD, Yoon PJ, Keskkula H, et al. Nylon 6 nanocomposites: the effect of matrix molecular weight [J]. Polymer, 2001, 42: 9929-9940
    [131] Yang DY, Liu QX, Xie XL, et al. Structure and thermal properties of exfoliated PVC/ layered silicate nanocomposites via in situ polymerization [J]. J. Therm. Anal. Cal., 2006, 84 (2): 355-359
    [132]刘青喜. PVC基纳米复合材料的制备与表征.华中科技大学硕士学位论文[D],2000, p.28
    [133] Mariresi P, Bastide S, Binda N, Crespy A. Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment [J]. Compos. Sci. Technol., 1998, 58(5): 747-752
    [134] Yu ZZ, Yan C, Yang MS, Mai Y-W. Mechanical and dynamic mechanical properties of nylon 66/montmorillonite nanocomposites fabricated by melt compounding [J]. Polym. Int., 2004, 53: 1093-1098
    [135]郜君鹏,李阳,梁伯润等.蒙脱土对PET结晶性能、热稳定性和力学性能的影响[J].中国塑料, 2004, 18(8): 24-28
    [136] Kinloch AJ, Taylor AC. Mechanical and fracture properties of epoxy/inorganic micro- and nano-composites [J]. J. Mater. Sci. Lett., 2003, 22: 1439-144
    [137] Zilg C, Mulhaupt R, Finter J. Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates [J]. Macromol. Chem. Phys., 1999, 200, 661-670
    [138] Dasari A, Yu Z Z, Mai Y-W. Effect of blending sequence on microstructure of ternary nanocomposites [J]. Polymer, 2005, 46(16): 5986-5991
    [139]何天白,胡汉杰主编.功能高分子与新技术[M].北京:化学工业出版社, 2001. Chapter 14, p.220-232
    [140] Messersmith PB, Giannelis EP. Synthesis and barrier properties of poly (ω-caprolactone)-layered silicate nanocomposites [J]. J. Polym. Sci., Part A : Polym. Chem., 1995, 33(7): 1047-1057
    [141]熊传溪,王雁冰,王银珍等.聚合物/无机纳米复合材料的制备技术研究进展[J].材料导报,2002, 16(9): 60-62
    [142] Wang Z, Pinnavaia TJ. Nanolayer reinforcement of elastomeric polyurethane [J]. Chem. Mater., 1998, 10: 3769-3771
    [143] Yao KJ, Song M, Hourston DJ, et al. Polymer/layered clay nanocomposites: 2. Polyurethane nanocomposites [J]. Polymer, 2002, 43: 1017-1020
    [144] Reichert P, Kressler J, Thomann R, et al. Nanocomposites based on a synthetic layer silicate and polyamide-12 [J]. Acta Polym., 1998, 49: 116-123
    [145] Takekoshi T, Khouri FF, Campbell JR, et al. PET nanocomposites prepared by in situ incorporation of varying amouts of four different organoclays [P]. US Pat 5,530.052 (General Electric Co.): June 25, 1996
    [146] Hsu SLC, Chang KC. Synthesis and properties of polybenzoxazole-clay nanocomposites [J]. Polymer, 2002, 43: 4097-4101
    [147] Okamoto M, Morita S, Taguchi H, et al. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay polystylene nanocomposites via in situ inercalative polymerization [J]. Polymer, 2000, 41: 3887-3890
    [148] Akelah A, Moet M. Polymer-clay nanocomposites: freeradical grafting of polystylene on to organophilic montmorillonate interlayers [J]. J. Mater. Sci., 1996, 31: 3589-3596
    [149] Tudor J, Willington L, O’Hare D, et al. Intercalation of catalytically active metal complexes in phyllosilicates and their application as propene polymerization catalyst [J]. Chem. Commun., 1996, 2031-2032
    [150] Jin YH, Park HJ, Im SS, et al. Polyethylene/clay nanocomposites by in situ polymerization exfoliation of montmorillonite during Ziergler-Natta polymerization of ethylene [J]. Macromol. Rapid. Commun., 2002, 23: 135-140
    [151] Vaia RA, Giannelis EP. Lattice of polymer melt intercalation in organically-modified layered silicate [J]. Macromolecules, 1997, 30: 7990-7999
    [152] Aranda P, Ruiz-Hitzky E. Poly(ethylene oxide)-silicate intercalation materials [J]. Chem. Mater., 1992, 4: 1395-1403
    [153] Yano K, Usuki A, Okada A, et al. Synthesis and properties of polyimide–clay hybrid [J]. J. Polym. Sci., Part A: Polym. Chem., 1993, 31(10): 2493-2498
    [154] Burnside SD, Giannelis EP. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites [J]. Chem. Mater., 1995, 7: 1597-1600
    [155] Jimenez G, Ogata N, Kawai H, et al. Structure and thermal/mechanical properties of poly(ω-caprolactone)–clay blend [J]. J. Appl. Polym. Sci., 1997, 64: 2211-2220
    [156] Lim ST, Hyun YH, Choi HJ, et al. Synthetic biodegradable aliphatic polyester/ montmorillonite nanocomposites [J]. Chem. Mater., 2002, 14: 1839-1844
    [157]谢少波,张世民.聚丙烯/层状硅酸盐纳米复合材料的制备、结构和性能[J].高分子通报, 2003, (1): 34-42
    [158] Vaia RA, Jandt KD, Kramer EJ, et al. Kinetics of polymer melt intercalation [J]. Macromolecules, 1995, 28(24): 8080-8085
    [159]杨红梅,郑强.熔融插层制备聚合物-层状硅酸盐纳米复合材料研究[J].功能材料, 2003, 34(3): 235
    [160] Vaia RA, Ishii H, Giannelis EP. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates [J]. Chem. Mater., 1993, 5: 1694-1696
    [161] Vaia RA, Giannelis EP. Polymer melts intercalation in organically-modified layered silicates: model predictions and experiment [J]. Macromolecules, 1997, 30: 8000- 8009
    [162] Liu LM, Qi ZN, Zhu XG. Studies on nylon 6/clay nanocomposites by melt-intercalation process [J]. J. Appl. Polym. Sci., 1999, 71: 1133-1138
    [163] Fornes TD, Yoon PJ, Hunter DL, et al. Effect of organoclay structure on nylon-6 nanocomposite morphology and properties [J]. Polymer, 2002, 43: 5915-5933
    [164] Usuki A, Tukigase A, Kato M. Preparation and properties of EPMD–clay hybrids [J]. Polymer, 2002, 43: 2185-2189
    [165] Davis CH, Mathias LJ, Gilman JW, et al. Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites [J]. J. Polym. Sci., Part B: Polym. Phys., 2002, 40: 2661-2666
    [166] Huang X, Lewis S, Brittain WJ, et al. Synthesis of polycarbonate-layered silicate nanocomposites via cyclic oligomers [J]. Macromolecules, 2000, 33: 2000-2004
    [167]刘生鹏,樊庆春,周兴平.熔融插层法制备聚合物/蒙脱土纳米复合材料[J].合成树脂及塑料, 2005, 22(1): 76-79
    [168] Usuki A. Kojima Y, Kawasumi M, et al. Synthesis of nylon 6-clay hybrid [J]. J. Mater. Res., 1993, 8(5): 1179-1183
    [169] Becker O, Varley R, Simon G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins [J]. Polymer, 2002, 43: 4365-4373
    [170]葛曷一,王继辉.纳米材料改性不饱各聚酯树脂的研究[J].玻璃钢/复合材料, 1999, (3): 13-14
    [171] Schmidt D, Shah D, Giannelis EP. New advances in polymer/layered silicate nanocomposites [J]. Curr. Opin. Solid State Mater. Sci., 2002, 6(3): 205-212
    [172] Kim GM, Lee DH, Hoffmann B, et al. Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites [J]. Polymer, 2001, 42(3): 1095-1100
    [173] Gilman JW, Jackson CL, Morgan AB, et al. Flammability properties of polymer- layered-silicate nanocomposites. polypropylene and polystyrene nanocomposites [J]. Chem. Mater., 2000, 12(7): 1866-1873
    [174] Manias E, Touny A, Wu L, et al. Polypropylene/montmorillonite nanocomposites: review of the synthetic routes and materials properties [J]. Chem. Mater., 2001, 13 (10): 3516-3523
    [175] Yeh JM, Liou SJ, Lin CY, et al. Anticorrosively enhanced PMMA-clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent [J]. Chem. Mater., 2002, 14 (1): 154-161
    [176] Chen GH, Yao KD, Zhao JT. Montmorillonite clay/poly(methyl methacrylate) hybrid resin and its barrier property to the plasticizer within poly(vinyl chloride) composite [J]. J. Appl. Polym. Sci., 1999, 73(3): 425-430
    [177] Gorrasi G, Tortora M, Vittoria V, et al. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion [J]. Polymer, 2003, 44(8): 2271-2279
    [178]王立新,张楷亮,任丽等.聚合物/层状硅酸盐纳米复合材料的研究进展[J].复合材料学报, 2001, 18(3): 5-9
    [179] Mallick PK. Composites engineering handbook [M]. New York: Marcel Dekker Inc., 1997
    [180] Schwartz MM. Joining of composite-matrix materials [M]. Ohio: American Society of Metals, 1994
    [181]王德禧.聚合物纳米复合材料的最新进展[J].工程塑料应用, 2002, 30(11): 57-59
    [182]李同年,周持兴,陈德铨.聚合物-层状硅酸盐纳米复合材料[J].中国塑料, 1999, 13(7): 25-30
    [183] Koros WJ. Barrier Polymers and Structures [M]. Washington DC: American Chemical Society, 1990
    [184]金国珍主编.工程塑料[M].北京:化学工业出版社, 2001. p.16~140
    [185] Ishida H, Campbell S, Blackwell J. General approach to nanocomposite preparation [J]. Chem. Mater., 2000, 12: 1260~1267
    [186] Dasari A, Yu Z Z, Yang MS, et al. Micro- and nano-scale deformation behavior of nylon 66 based binary and ternary nanocomposites [J]. Comp. Sci. Technol., 2006, 66: 3097-3114
    [187] Liu XH, Wu QJ,Berglund LA, et al. Polyamide 6/clay nanocomposites using a cointercalation organophilic clay via melt compounding [J]. J. Appl. Polym. Sci., 2003, 88: 953-958
    [188] Xenopoulous A, Clark ES. Physical structure. In: Kohan MI, editor. Nylon plastics handbook [M]. Cincinnati: Hanser Garder Publications, 1995. P.117-118
    [189] Bureau MN, Denault J, Cole KC, et al. The role of crystallinity and reinforcement in the mechanical behaviour of polyamide-6/clay nanocomposites [J]. Polym. Eng. Sci., 2002, 42: 1897-1906
    [190] Gupta Ak, Purwar SN. Crystallization of PP in PP/SEBS blends and its correlation with tensile properties [J]. J. Appl. Polym. Sci., 1984, 29(5): 1595-1609
    [191] Wang C, Su JX, Li J, et al. Phase morphology and toughening mechanism of polyamide 6/EPDM-g-MA blends obtained via dynamic packing injection molding [J]. Polymer, 2006, 47(9): 3197-3206
    [192] Olabisi O, Robeson LM, Shaw MT. Polymer-Polymer Miscibility [M]. New York: Academic Press, 1979
    [193] Lai MF, Kim JK. Effects of epoxy treatment of organoclay on structure, thermo- mechanical and transport properties of poly(ethylene terephthalate-co-ethylene naphthalate)/organoclay nanocomposites [J]. Polymer, 2005, 46(13): 4722-4734
    [194] Qian Z, Chen X, Xu J, et al. Chain extension of PA1010 by reactive extrusion by diepoxide 711 and diepoxide TDE85 as chain extenders [J]. J. Appli. Polym. Sci., 2004, 94: 2347-2355
    [195] Galgalia G, Agarwalb S, Lele A. Effect of clay orientation on the tensile modulus of polypropylene-nanoclay composites [J]. Polymer, 2004, 45(17): 6059-6069
    [196] Fong H, Liu W, Wang C, Vaia RA. Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite [J]. Polymer, 2002, 43(3): 775-780
    [197] Varlot K, Reynaud E, Kloppfer M, et al. Clay-reinforced polyamide: Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae [J]. J. Polym. Sci., Pat B: Polym. Phys., 2001, 39(12): 1360-1370
    [198] Lee JY, Park MS, Yang HC, et al. Alignment and orientational proliferation of HEX cylinders in a polystyrene-block-polyisoprene-block-polystyrene copolymer in the presence of clay [J]. Polymer, 2003, 44(5): 1705-1710
    [199] Lin-Gibson S, Kim H, Schmidt G, et al. Shear-induced structure in polymer–clay nanocomposite solutions [J]. J. Colloid Interface Sci., 2004, 274: 515-525
    [200]周其凤,陈寿羲.液晶高分子的研究.见:施良和,胡汉杰主编.高分子科学的今天与明天[M].北京:化学工业出版社, 1994. P. 74-81
    [201] Vaia RA, Giannelis EP. Liquid crystal polymer nanocomposites: direct intercalation of thermotropic liquid crystalline polymers into layered silicates [J]. Polymer, 2001, 42(3): 1281-1285
    [202] Patil AJ, Muthusamy E, Seddon AM, et al. Higher-order synthesis of organoclay pipes using self-assembled lipid templates [J]. Adv. Mater., 2003, 15: 1816-1819
    [203] Kawasumi M, Hasegawa N, Usuki A, et al. Liquid crystal/clay mineral composites [J]. Appl. Clay Sci., 1999, 15: 93-108
    [204] Jackson WJ, Kuhfuss HF. Liquid crystsl Polymers I. Preparation and properties ofp-hydroxybenzoic acid copolymers [J]. J. Polym. Sci., Part A: Polym. Chem., 1976, 14(8): 2043-2058
    [205]王勇,吴大诚.对羟基苯甲酸/聚对苯二甲酸丁二酯共聚酯的热行为及液晶性[J].应用化学, 1994, 11(5): 95-97
    [206]周其凤,王新久.液晶高分子[M].北京:科学出版社, 1999: p.190
    [207]郭朝莹,毛联波,周兴平,解孝林. PBT/PHB热致液晶共聚酯的原位乙酰化合成与表征[J].塑料工业, 2004, 32(1): 4-6,25
    [208] Kawasumi M, Hasegawa N, Kato M, et al. Preparation and mechanical properties of polypropylene-clay hybrids [J]. Macromolecules, 1997, 30(20): 6333-6338
    [209]解孝林,李伯耿,潘祖仁.具有分子间氢键的刚性长侧链液晶高分子的合成[J].高等学校化学学报, 1999, 20(3): 489-491
    [210] Fu X, Qutubuddin S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene [J]. Polymer, 2001, 42(2): 807-813
    [211] Vaia RA, Teukolsky RK, Giannelis EP. Interlayer structure and molecular environ- ment of alkylammonium layered silicates [J]. Chem. Mater., 1994, 6(7): 1017-1022
    [212] Menczel J, Wunderlich B. Phase transitions in mesophase macromolecules. I. Novel behavior in the vitrification of poly(ethylene terephthalate-co-p-oxybenzoate) [J]. J. Polym. Sci., Part B: Polym. Phys., 1980, 18(6): 1433-1438
    [213] Yu ZZ, Yang MS, Zhang QX, et al. Toughening and reinforcing of nylon 66 with organoclay and maleated elastomer [C]. Proceedings of 3rd East-Asia Polymer Conference, Chengdu, 2004
    [214] Radosta JA, Trivedi NC. Talc. In: Katz HS, Milewski JV, editors. Handbook of fillers and reinforcements for plastics [M]. New York: Van Nostrand Reinhold Co, 1978. P.160-170
    [215] Wu G, Wen B, Hou S. Preparation and structural study of polypropylene-talc gradient materials [J]. Polym. Int., 2004, 53(6): 749-755
    [216] Denac M, Musil V, ?mit I. Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties [J]. Composites: Part A, 2005, 36(9): 1282-1290
    [217] Garcia-Martinez JM, Laguna O, Collar EP. Polypropylene/talc composites: interfacial modifications induced by chemically modified [J]. J. Polym. Eng., 1997, 17(4): 269-280
    [218] Taranco J, Garcia-Martinez JM, Laguna O, et al. Polypropylene/talc composites:interfacial modifications by surface treatments on the solid particles [J]. J. Polym. Eng., 1994, 13(4): 287-304
    [219] Zbik M, Smart RStC. Dispersion of kaolinite and talc in aqueous solution: nano-morphology and nano-bubble entrapment [J]. Minerals Eng., 2002, 15(4): 277-286
    [220] Wang Z, Massam J, Pinnavaia TJ. Epoxy-clay nanocomposites. In: Pinnavaia TJ, Beall GW, editors. Polymer-Clay nanocomposites [M]. New York: John Wiley & Sons, 2000. P.127-150
    [221] Sánchez-Soto PJ, Wiewióra A, Avilés MA, et al. Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape [J]. Appl. Clay Sci., 1997, 12(4): 297-312
    [222] Xie XL, Li, BG, Pan ZR, et al. Effect of talc/MMA in situ polymerization on mechanical properties of PVC-matrix composites [J]. J. Appl. Polym. Sci., 2001, 80(11): 2105-2112
    [223] Van Krevelen DW. Properties of polymer [M], 3rd Ed. New York: Elsevier Science, 1990. P. 120-144
    [224] Ferrage E, Martin F, Boudet A, et al. Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization [J]. J. Mater. Sci., 2002, 37(8): 1561-1573
    [225] Naike M, Fuku Y, Matsumura T, et al. The effect of talc on the crystallization of isotactic polypropylene [J]. J. Appl. Polym. Sci., 2001, 79(9): 1693-1703
    [226] Papageorigiou GZ, Achilias DS, Bikiaris DN, et al. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites [J]. Thermochimica. Acta., 2005, 427(1-2): 117-128
    [227] Liu SL, Chung TS. Crystallization and melting behavior of regioregular poly (3-dodecylthiophene) [J]. Polymer, 2000;41(8): 2781-2793
    [228] Supaphol P, Thanomkiat P, Phillips RA. Influence of molecular characteristics on non-isothermal melt-crystallization kinetics of syndiotactic polypropylene [J]. Polymer Testing, 2004, 23(8): 881-895
    [229] Supaphol P. Application of the Avrami, Tobin, Malkin, and Urbanovici–Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene [J]. Thermochimica. Acta., 2001, 370(1-2): 37-48
    [230] Xie XL, Fung KL, Li RKY, et al. Structural and mechanical behavior of polypropyl- ene/maleated styrene-(ethylene-co-butylene)-styrene/sisal fiber composites preparedby injection molding [J]. J. Polym. Sci.: Part B-Polym. Phys., 2002, 40(12): 1214- 1222
    [231] Li JX, Cheung WL. Effect of mould temperature on the formation ofα/βpolypropyl- ene blends in injection moulding [J]. J. Mater. Process. Technol., 1997, 63(1-3): 472-475
    [232] Alonso M, Velasco JI, De Saja JA. Constrained crystallization and activity of filler in surface modified talc polypropylene composites [J]. Eur. Polym. J., 1997, 33(3): 255-62
    [233] Karger-Kocsis J. Polypropylene: Structure, blends and composites [M]. London: Chapman & Hall, 1995. P. 33
    [234] Alexander LE. X-ray diffraction methods in polymer science [M]. New York: Wiley Interscience, 1969
    [235] Fujiyama M, Wakino T. Crystal orientation in injection molding of talc-filled polypropylene [J]. J. Appl. Polym. Sci., 1991, 42(1): 9-20
    [236]仰大勇,毛联波,吴进高等.甲基丙烯酸缩水甘油酯/苯乙烯固相接枝聚丙烯研究[J].化学研究与应用, 2005, 17(1): 30-32
    [237] Gedde UW. Polymer physics [M]. London: Chapman & Hall, 1995. P. 172
    [238] Kano J, Saito F. Correlation of powder characteristics of talc during planetary ball milling with the impact energy of the balls simulated by the particle element method [J]. Powder Technol., 1998, 98: 166-170
    [239] Zhang H, Zhang Z, Breidt C. Comparison of short carbon fibre surface treatments on epoxy composites I. Enhancement of the mechanical properties [J]. Compos. Sci. Technol., 2004, 64: 2021-2029

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700