用户名: 密码: 验证码:
Inconel625合金等离子弧快速成形组织控制及工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧焊快速成形技术作为金属零件直接成形的一种典型工艺,同其它成形技术相比,具有成形零件致密度高、成本低和效率高等优点,是最有希望实现高质量金属零件经济、快速制造的方法之一。但在连续的热循环作用下,零件内部组织转变复杂,主要体现在组织粗大、不均匀以及严重的成分偏析。这不仅大大增加了控制零件性能的难度,也是制约该技术广泛应用的一个主要原因。镍基合金具有良好的组织稳定性、高温强度、高温疲劳蠕变性能等优异的机械性能,在航空航天、核工业、能源动力等众多领域应用广泛。然而这类合金零件往往形状复杂,制造工序繁琐,生产成本高。因此,利用弧焊快速成形技术直接成形镍基高温合金零件具有突出的技术优越性和广阔的应用前景。
     本文以脉冲等离子弧快速成形技术为研究对象,以Inconel625合金为成形材料,分析了工艺参数、沉积方式、沉积路径以及热处理方式对薄壁和块体试样的快速成形组织及性能的影响,旨在提高快速成形零件的质量。该问题的研究将为镍基合金的广泛应用提供一种比较成熟优异的加工方法。
     研究了等离子弧快速成形Inconel625合金典型的沉积态组织特征,利用成分过冷理论并结合快速成形热过程,分析了组织中枝晶生长和相析出机制。分析了工艺参数对沉积态组织及力学性能的影响规律,最终在试验参数范围内获得了最优的工艺参数。结果发现沉积态组织为柱状枝晶形态,沿着沉积高度方向,具有较强生长取向性的外延枝晶组织特征;析出相为γ相、Laves相和MC碳化物;低的线能量密度有利于细化组织,减弱元素的显微偏析,保持柱状枝晶组织生长的连续性,从而有效提高力学性能。
     利用红外测温和有限元模拟方法研究了连续沉积和间隔冷却沉积方式条件下薄壁和块体试样由底部到顶部的组织特征及性能变化规律。重点总结了两种条件下试样底部到顶部成形过程中温度梯度和冷却速率的演变规律,揭示了温度场分布特征对两种试样沉积态组织的影响机制。通过对沉积态试样的显微硬度和拉伸性能进行表征,分析了两种试样整体力学性能的均匀性以及两种沉积方式对力学性能的影响规律,从而建立组织特征和力学性能的对应关系。结果表明,在连续沉积过程中,热量的不断积累导致温度梯度和冷却速率不断下降,试样从底部到顶部,组织逐渐粗化,析出相数量增多且尺寸变大,力学性能严重不均。间隔冷却方式可降低热量积累,提高组织和性能的均匀性,从而获得更优异的力学性能。两种试样的组织性能对比结果发现,连续沉积块体试样时,更加复杂的热循环导致了大量针状δ相的生成,从而严重影响了力学性能。在相同沉积方式条件下,薄壁试样的力学性能要优于块体试样。
     采用KGT模型预测了温度梯度、枝晶生长速率同枝晶间隙的关系;利用Clyne-Kurz公式计算了两种沉积方式下凝固过程中Nb的偏析,并进一步分析了Inconel625合金快速成形的凝固过程。结果表明,随着枝晶生长速率和温度梯度的降低,枝晶尖端半径不断增加,而枝晶间距也随之增加,枝晶间距接近2~3R,计算结果和测量结果得到了较好的吻合,而Nb的偏析量随着凝固过程的进行呈现逐渐增大的趋势,在凝固开始阶段,冷却速率对Nb的偏析影响较小,Nb偏析量的增加主要集中在凝固的结束阶段。
     研究了四种沉积路径(包括长光栅、短光栅、正反交替以及交叉路径)对块体试样组织及性能的影响规律,利用建立的组织生长模型,揭示了不同沉积路径的组织生长机制。结果表明,在四种沉积路径中,正反交替路径可获得最佳的成形质量和力学性能,交叉路径虽然促进了层内区域细小枝晶的生成和Laves相的弥散析出,但在层与层边界处,严重的元素偏析,大量脆性相的析出以及枝晶的粗化是力学性能没有大幅度提高的根本原因。此外,沉积路径对组织特征的影响机理主要表现为不同的热输入和散热方向,导致了温度梯度的变化,从而影响组织生长特征。
     进一步研究了直接时效、固溶时效、均匀化固溶时效处理以及固溶温度和时间对薄壁和块体试样组织和力学性能的影响,以及两种试样在相同热处理条件下组织和性能的差别,从而获得了最佳的热处理工艺。重点研究了在不同热处理过程中析出相的转变机理,包括Laves相的溶解行为,强化相γ′,γ″以及δ相的析出机制。最后,对优化后的热处理态和沉积态试样高温拉伸性能进行了表征。结果表明,980℃/2h固溶时效处理为最佳热处理工艺;Laves相的溶解过程主要由Nb原子的扩散过程控制,热处理温度的提高为原子扩散提供了更多的能量;扩散系数以及溶质原子在基体中饱和固溶度的增加,有利于加快Laves相的溶解速度;δ相在晶界处的析出机制比晶内更复杂。
As a typical forming process for metal parts, the welding rapid prototypingtechnique has many advantages such as high density, low cost and high formingefficiency over other processing techniques. Thus, it is a favourite way to realizeeconomic and rapid forming for metallic components. However, continues thermalcycle leads to complex internal structural transformation like coarse andnon-homogeneous structure and severe microsegregation. This increases thedifficulty of property control of the parts, and is also a main cause to restrict theapplication of the process. It is well-known that the Ni-based refractory alloy hasgood structural stabilization, and high temperature strength, fatigue and creep, andthus has wide applications in the areas of aerospace, nuclear industry, energy andpower. However, this kind of alloy components often has complex shape, so that themanufacturing process is intricated, and the cost is expensive. Hence, using thewelding rapid prototyping technology to derectly form Ni-based refractory alloyparts has outstanding technical superiority and broad application prospects.
     This thesis aims at studying pulsed plasma arc rapid prototyping, where theni-based refractory alloy is the key object. The influence of processing parameters,depositing strategy, depositing paths and heat treatment on the microstructure andproperties of thin-wall and block components was analyzed, in order to improve thequality of the forming parts. The desired results will find important applications invarious fields.
     The as-deposited structure of the pulsed rapid forming Ni-based refractoryalloy was studied. The constitution undercooling theory and thermal process ofrapid prototyping were used to analize dendritic growth and phase precipitation.The influence of processing parameters on as-deposited structure and mechanicalproperties was investigated. The optimum processing parameters were finallyobtained in the range of experimental parameters. It turns out that the depositedmicrostructures are mainly columnar crystal with strong growth oriented epitaxialdendrites along the deposition height direction. The precipitated phases are γ-phase,Laves and MC carbides. Low energy density is conducive to refine microstructure,weaken elements‘microsegregation and maintain the continuity growth of columnar dendrite, and thus improve mechanical properties.
     By using infrared measuring temperature and finite element analogue, thestructural transformation and mechanical properties of the thin-wall and blocksamples from the bottom to the top under the condition of continuous and intervalcooling deposition were investigated. The distribution characteristics of rapidforming temperature field under two kinds of deposited modes were presented, andthe influence mechanism of distribution characteristics of temperature field on theas-deposited microstructure of two samples was revealed. The as-depositedspecimen microhardness and tensile properties were characterized, the uniformity ofmechanical properties was evaluated and the effects of two deposited methods onthe mechanical properties were analysed, and thus the corresponding relations of thestructure characteristics and mechanical properties could be revealed. The resultsshowed that, in the process of continuous deposition, the temperature gradient andcooling rate decreased gradually because of the heat accumulation. The structure ofthe sample from the bottom to the top gradually coarsened, precipitated phasesincreased, the size became bigger, and mechanical properties were seriusly unequal.However, interval cooling reduced heat accumulation, and improved the uniformityof microstructure and properties, and thus more excellent mechanical propertieswere obtained. The comparison results of structure and mechanical properties oftwo samples showed that the more complex heat cycle of continuous deposition ofblock sample led to a large number of needle-like δ-phases, which seriously affectedthe mechanical properties. The mechanical properties of the thin-wall sample arebetter than the block sample in the same deposited condition.
     The KGT model was used to predict the relationship between the temperaturegradient and dendrite spacing as well as dendrite growth rate, while the Clyne-Kurzformula was used to calculate Nb segregation in the solidification process. Thesolidification process of Inconel625alloy rapid prototyping was further analized.The results revealed that the dendrite spacing and dendrite tip radius increased withthe dendritic growth rate and temperature gradient decreased. The dendritic spacingis two to three times of dendrite tip radius. The measuring results and computingresults are consistent. The segregation of Nb became gradually larger during thesolidification process. At the beginning of solidification process, the effect ofcooling rate on segregation of Nb was small. The increasing of segregation of Nb mainly took place at the end of solidification process.
     The effects of four deposited paths (including long raster, short raster, reversepath and cross path) on the microstructure and mechanical properties of blocksample were investigated. From structure growth model, the growth mechanism ofstructure with different deposited paths was revealed. The results presented that thesample was equiped with good quality and mechanical properties, when the reversepath was used. The cross path promoted the growth of finer dendrites andsegregation of Laves phase in the layer. However, the reasons of un-improvement ofmechanical properties were the segregation of elements, the precipitation of brittlephases and the coarse dendrites at the boundary of layer. Meanwhile, the effect ofdeposited paths on structure revealed that different heat input and radiatingdirections resulted in the change of temperature gradient, affecting the growthcharacteristic of microstructure.
     The influences of direct aging, solid aging and uniform heat treatment, as wellas solid solution temperature and time, on the structure and mechanical propertiesof the thin-walled and block samples, and differences of microstructure andmechanical properties between two kinds of samples under the same heat treatmentwere further investigated. The transformation mechanism of the precipitated phasesincluding dissolution behavior of Laves phases, and precipitation mechanism ofstrengthening phases consisting of γ′, γ″and δ-phases was studied. Finally, theoptimized heat treated state and high temperature tensile properties of theas-deposited samples were characterized. The results showed that980℃/2h solidsolution ageing was the best heat treatment process. The solution process of Lavesphases were mainly controlled by diffusion process of Nb atoms. Thus, improvingheat treatment temperature could provide more energy for atom diffusion. Also,increasing the diffusion coefficients and saturation solid solubility of the soluteatoms in the matrix could help accelerate the dissolution rate of Laves phases. Theprecipitation mechanism of δ phases at the grain boundaries was more complex thanthat in the intragranular.
引文
[1]李超,朱胜,沈灿铎,等.焊接快速成形技术的研究现状与发展趋势[J].中国表面工程,2009,22(3):7-11.
    [2]向永华,吕耀辉,徐滨士,等.基于三维焊接熔覆的快速成形技术及其系统的发展[J].焊接技术,2009,38(7):1-4.
    [3]周龙早,刘顺洪,丁冬平.基于三维焊接熔敷的快速成形技术[J].电加工与模具,2004,(4):1-4.
    [4] Xu B S, Zhu S. Advanced Remanufacturing Technologies Based on Nano-surface Engineering[C]//Proceedings of3rd International Conference onAdvances in Production Engineering,2004:35-43.
    [5]徐滨士.中国再制造工程及其进展[J].中国表面工程,2010,23(2):1-4.
    [6]徐滨士,张伟.现代制造科学之21世纪的再制造工程技术及理论研究[C].国家自然科学基金委员会机械学科前沿及优先领域研讨论文集,北京:机械工业出版社,1999:12.
    [7]李涤尘,曾俊华,周志华,等.光固化快速成形飞机风洞模型制造方法[J].航空制造技术,2008,(8):26-29.
    [8] Pham D T, Gault R S. A Comparison of Rapid Prototyping Technologies [J].International Journal of Machine Tools and Manufacture,1998,38(10):1257-1287.
    [9] Abe F, Osakada K, Shiomi M, et al. The Manufacturing of Hard Tools fromMetallic Powders by Selective Laser Melting [J]. Journal of MaterialsProcessing Technology,2001,111(1):210-213.
    [10] Sachs E, Cima M, Cornie J. Three Dimensional Printing: Rapid Tooling andPrototypes Directly from a CAD Model [J]. CIRP Annals ManufacturingTechnology,1990,39(1):201-204.
    [11] Yan X, Gu P. A Review of Rapid Prototyping Technologies and Systems [J].Computer-Aided Design.1996,28(4):307-318.
    [12] Spencer J D, Dickens P M. Wykes C M. Rapid Prototyping of Metal Parts byThree-dimensional Welding [J]. Journal of Engineering Manufacture,1998,212(3):175-182.
    [13] Zhang Y M, Chen Y W, Li P.Weld Deposition Based Rapid Prototyping: aPreliminary Studies [J]. Journal of Materials Processing Technology,2003,135(2-3):347-357.
    [14] Griffth M L, Keicher D M, Atwood C L, et al. Free Form Fabrication ofMetallic Components Using Laser Engineered Net Shaping (LENS)[C]//In:Proceedings of the Solid Free Form Fabrication Symposium, Austin,1996,8:125-131.
    [15] Milewski J O, Lewis G K, Thoma D J, et al. Directed Light Fabrication of aSolid Metal Hemisphere Using5-axis Powder Deposition [J]. Journal ofMaterials Processing Technology,1998,75(1-3):165-172.
    [16]李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究[D].武汉:华中科技大学博士学位论文,2005:48-60.
    [17]黄卫东,林鑫,陈静,等.激光立体成形[M].西安:西北工业大学出版社.2007:126-153.
    [18] Taminger K M B, Hafley R A. Characterization of2219Aluminum AlloyProduced by Electron Beam Freeform Fabrication [C]//Proceedings of13thSFFsymposium,2002:482-489.
    [19] Jandric Z, Labudovic M, Kovacevic R. Effect of Heat Sink on Microstructureof Three-dimensional Parts Built by Welding-based Deposition [J].International Journal of Machine Tools&Manufacture,2004,44(7-8):785-96.
    [20] Griffth M L, Schlienger M E, Harwell L D, et al. Understanding ThermalBehavior in the LENS Process [J]. Materials&Design,1999,20(2):107-113.
    [21] Richard M. Directed Light Fabrication [J]. Advanced Materials and Processes,1997,151(3):31-33.
    [22] Joseph M C. Advances in Power Metallurgy Processing [J]. AdvancedMaterials and Processes,1999,156(3):33-36.
    [23] Abbott D H, Arcella F G. Laser Forming Titanium Components [J]. AdvancedMaterials and Processes,1998,154(5):29-30.
    [24] Bi G, Gasser A, Wissenbach K. Characterization of the Process Control for theDirect Laser Metallic Powder Deposition [J]. Surface&Coatings Technology,2006,201(6):2676-2683.
    [25] Mazumder J, Dutta D, Kikuchi N, et al. Closed Loop Direct Metal Deposition:Art to Part [J]. Optics and Lasers in Engineering,2000,34(4-6):397-414.
    [26]熊新红,张海鸥,罗继相.等离子熔积直接成形GH163高温合金零件组织研究[J].中国机械工程,2009,20(6):733-736.
    [27]王华明,张凌云,李安,等.先进材料与高性能零件快速凝固激光加工研究进展[J].世界科技研究与发展,2004,26(3):27-31.
    [28]向永华,徐滨士,吕耀辉,等.基于等离子熔覆快速成形零件的组织与性能[J].焊接学报,2009,31(9):49-52.
    [29] Zhong M L, Liu W J, Ning G Q, et al. Laser Direct Manufacturing of TungstenNickel Collimation Component [J]. Journal of Materials ProcessingTechnology,2004,147(2):167-173.
    [30] Kassmaul K, Schoch F W, Lucknow H. High Quality Large Components ShapeWelded by a SAW Process [J]. Welding Journal,1983,(9):17-24.
    [31] McAninch M D, Conrardy C C. Shape Melting a Unique Near-net ShapeManufacturing Process [J]. Welding Review International,1991,10(1):33-40.
    [32] Irving B. How Those Million-dollar Research Projects are improving the Stateof the Arc of Welding [J]. Welding Journal,1993,72(6):61-65.
    [33] Ouyang J H, Wang H, Kovacevic R. Rapid Prototyping of5356-aluminumAlloy Based on Variable Polarity Gas Tungsten Arc Welding Process Controland Microstructure [J]. Materials and Manufacturing Processes,2002,17(1):103-124.
    [34] Yang S Y, Han M W, Wang Q L. Development of a Welding System for3DSteel Rapid Prototyping Process [J]. China Welding,2001,10(1):50-56.
    [35]胡瑢华.基于TIG堆焊技术的熔焊成型轨迹规划研究[D].南昌:南昌大学博士学位论文,2007,12:80-101.
    [36] Wurikaixi A, Zhao W H, Lu B H, et al. Investigation of the OverlappingParameters of MPAW-based Rapid Prototyping [J]. Rapid Prototyping Journal,2006,12(3):165-172.
    [37]乌日开西·艾依提,赵万华,卢秉恒,等.基于微束脉冲等离子弧焊的快速成形系统中的搭接参数[J].机械工程学报,2006,42(5):192-197.
    [38] Song Y A, Park S, Choi D, et al.3D Welding and Milling: Part I-a DirectApproach for Freeform Fabrication of Metallic Prototypes [J]. InternationalJournal of Machine Tools and Manufacture,2005,45(9):1057-1062.
    [39] Song Y A, Park S, Chae S W.3D Welding and Milling: Part II-Optimization ofthe3D Welding Process Using an Experimental Design Approach [J].International Journal of Machine Tools and Manufacture,2005,45(9):1063-1069.
    [40] Yang S Y, Han M W, Wang Q L. Development of a Welding System for3DSteel Rapid Prototyping Process[J]. China Welding,2001,10(1):50-56.
    [41] Yin Y H, Hu S S, Zhang X B, et al. Effects of Processing Parameters onFiguration during the GMAW Rapid Prototyping Process [J]. China Welding,2006,15(4):30-33.
    [42] Waheed U H S, Li L. Effects of Wire Feeding Direction and Location inMultiple Layer Diode Laser Direct Metal Deposition [J]. Applied SurfaceScience,2005,248(1-4):518-524.
    [43] Wang H J, Jiang W H, Ouyang J H, et al. Rapid Prototyping of4043Al-alloyParts by VP-GTAW [J]. Journal of Materials Processing Technology,2004,148(1):93-102.
    [44] Ribeiro A F, Norrish J, Mcmaster R. Practical Case of Rapid Prototyping UsingGas Metal Arc Welding [C]//5thInternational Conference on ComputerTechnology in Welding, Paris, France,1994,6:15-16.
    [45] Ribeiro A F, Norrish J. Case study of Rapid Prototyping Using Robot WeldingSquare to Round‘Shape [C]//27thInternational Symposium on IndustrialRobotics, Milan, Italy,1996,10:6-8.
    [46] Horii T, Ishikawa M, Kirihara S, et al. Development of Freeform Fabricationof Metal by Three Dimensional Micro-welding [J]. Solid State Phenomena,2007,127:189-194.
    [47] Terakubo M, Oh J, Kirihara S, et al. Freeform Fabrication of Ti–Ni and Ti–FeIntermetallic Alloys by3D Micro-Welding [J]. Intermetallics,2007,15(2):133-138.
    [48] Katou M, Oh Janghwan, Miyamoto Y, et al. Freeform Fabrication of TitaniumMetal and Intermetallic Alloys by Three-dimensional Micro-welding [J].Materials&Design,2007,28(7):2093-2098.
    [49] Terakubo M, Oh J, Kirihara S, et al. Freeform Fabrication of Titanium Metalby3D Micro-Welding [J]. Materials Science and Engineering A,2005,402(1-2):84-91.
    [50]黄乾尧,李汉康,陈国良,等.高温合金[M].北京:冶金工业出版社,2000:1-10
    [51]冶军.美国镍基高温合金[M].北京:科学出版社,1978:228-241.
    [52] Shankar V, Rao K B S, Mannan S L. Microstructure and Mechanical Propertiesof Inconel625Superalloy [J]. Journal of Nuclear Materials,2001,288(2-3):222-232.
    [53]庄景云.变形高温合金GH4169[M].北京:冶金工业出版社,2006:1-11.
    [54] Song K H, Nakata K. Effect of Precipitation on Post-heat-treated Inconel625Alloy after Friction Stir Welding [J]. Materials and Design,2010,31(6):2942-2947.
    [55] Rai S K, Kumar A, Shankar V, et al. Characterization of Microstructures inInconel625Using X-ray Diffraction Peak Broadening and Lattice ParameterMeasurements [J]. Scripta Materialia,2004,51(1):59-63.
    [56] Mathew M D, Parameswaran P, Rao K B S. Microstructural Changes in Alloy625during High Temperature Creep [J]. Materials Characterization,2008,59(5):508-513.
    [57] Evans N D, Maziasz P J, Shingledecker J P, et al. Microstructure Evolution ofAlloy625Foil and Sheet during Creep at750℃[J]. Materials Science andEngineering A,2008,498(1-2):412-420.
    [58] Rodriguez R, Hayes R W, Berbon P B, et al. Tensile and Creep Behavior ofCryomilled Inco625[J]. Acta Materialia,2003,51(4):911-929.
    [59] Mathew M D, Rao K B S, Mannan S L. Creep Properties of Service-exposedAlloy625after Re-solution Annealing Treatment [J]. Materials Science andEngineering A,2004,372(1-2):327-333.
    [60] Dinda G P, Dasgupta A K, Mazumder J. Laser Aided Direct Metal Depositionof Inconel625Superalloy: Microstructures Evolution and Thermal Stability [J].Materials Science and Engineering A,2009,509(1-2):98-104.
    [61] Thivillon L, Bertrand P, Laget B, et al. Potential of Direct Metal DepositionTechnology for Manufacturing Thick Functionally Graded Coatings and Partsfor Reactors Components [J]. Journal of Nuclear Materials,2009,385(2):236-241.
    [62] Theriault A, Xue L, Dryden J R. Fatigue Behavior of Laser ConsolidatedIN-625at Room and Elevated Temperatures [J]. Materials Science andEngineering A,2009,516(1-2):217-225.
    [63] Paul C P, Ganesh P, Mishra S K, et al. Investigating Laser RapidManufacturing for Inconel-625Components [J]. Optics&Laser Technology,2007,39(4):800-805.
    [64] Ganesh P, Kaul R, Paul C P, et al. Fatigue and Fracture ToughnessCharacteristics of Laser Rapid Manufactured Inconel625Structures [J].Materials Science and Engineering A,2010,527(29-30):7490-7497.
    [65] Liu F C, Lin X, Yang G L. Microstructure and Residual Stress of Laser RapidFormed Inconel718Nickel-base Superalloy [J]. Optics&Laser Technology,2011,43(1):208-213.
    [66] Liu F C, Lin X, Huang C P, et al. The Effect of Laser Scanning Path onMicrostructures and Mechanical Properties of Laser Solid Formed Nickel-baseSuperalloy Inconel718[J]. Optics&Laser Technology,2011,509(13):4505-4509.
    [67]刘奋成,林鑫,杨高林,等.不同气氛激光立体成形镍基高温合金Inconel718的显微组织和力学性能[J].金属学报,2010,46(9):1047-1054.
    [68] Liu F C, Lin X, Han L, et al. Microstructural Changes in a Laser SolidForming Inconel718Superalloy Thin Wall in the Deposition Direction [J].Optics&Laser Technology,2013,45:330-335.
    [69] Zhao X M, Chen J, Lin X, et al. Study on Microstructure and MechanicalProperties of Laser Rapid Forming Inconel718[J]. Materials Science andEngineering A,2008,478(1-2):119-124.
    [70] Tabernero I, Lamikiz A, Maertinez S, et al. Evaluation of the MechanicalProperties of Inconel718Components Built by Laser Cladding [J].International Journal of Machine Tools&Manufacture,2011,51(6):465-470.
    [71] Janaki Ram G D, Venugopal Reddy A. Improvement in Stress RuptureProperties of Inconel718Gas Tungsten Arc Welds Using Current Pulsing [J].Journal Materials Science,2005,40(6):1497-1500.
    [72] Reddy G M, C. Murthy V S, Rao K S, et al. Improvement of MechanicalProperties of Inconel718Electron Beam Welds-Influence of WeldingTechniques and Postweld Heat Treatment [J]. International Journal AdvanceManufacturing Technology,2009,43(7-8):671-680.
    [73] Gao P, Zhang K F, Zhang B G, et al. Microstructures and High TemperatureMechanical Properties of Electron Beam Welded Inconel718Superalloy ThickPlate [J]. Transactions of Nonferrous Metals Society of China,2011,21(2):315-322.
    [74] Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, et al. Microstructure andTensile Properties of Inconel718Pulsed Nd-YAG Laser Welds [J]. Journal ofMaterials Processing Technology,2005,167(1):73-82.
    [75] Qi H, Azer M, Ritter A. Studies of Standard Heat Treatment Effects onMicrostructure and Mechanical Properties of Laser Net Shape ManufacturedInconel718[J]. Metallurgical and Materials Transactions A.2009,40A(10):2410-2421.
    [76]赵卫卫,林鑫,刘奋成,等.热处理对激光立体成形Inconel718高温合金组织和力学性能的影响[J].中国激光,2009,36(12):3220-3225.
    [77] Kou S. Welding Metallurgy. Wiley-Interscience,1988:143-146.
    [78] Tiller W A, Jackson K A, Rutter J W, et al. The Redistribution of Solute Atomsduring the Solidification of Metals [J]. Acta Metallurgica,1953,1(4):428-437.
    [79]刘东戎. TiAi合金锭凝固组织形成的数值模拟[D].哈尔滨工业大学博士论文,2006:4-10.
    [80]马瑞.镍基合金焊接熔池凝固过程微观组织模拟[D].哈尔滨工业大学博士论文,2010:6-7.
    [81] Ivantsov G P. Temperature Field around a Spheroidal, Cylindrical and AcicularCrystal Growing in Supercoolied Melt [J]. Dokl Akad Nauk SSSR,1947,58(4):567-569.
    [82] Kurz W, Giovanola B, Trivedi R. Theory of Microstructural Developmentduring Rapid Solidification [J]. Acta Metall,1986,34(5):823-830.
    [83] Bontha S, Klingbeil N W, Kobryn P A, et al. Thermal Process Maps forPredicting Solidification Microstructure in Laser Fabrication of Thin-WallStructures [J]. Journal of Materials Processing Technology,2006,178(1):135-142.
    [84] Hofmeister W, Wert M, Smugersky J, et al. Investigating Solidification withthe Laser-Engineeered Net Shaping (LENSTM) Process [J]. The Minerals,Metals&Materials Society,1999,51(7):1-6.
    [85] Hofmeister W, Griffith M, Ensz M, et al. Solidification in Direct MetalDeposition by LENS Processing [J]. Laser Processing,2001,53(9):30-35.
    [86]贾文鹏,林鑫,谭华,等. TC4钛合金空心叶片激光快速成形过程温度场数值模拟[J].稀有金属材料与工程,2007,36(7):1193-1198.
    [87] Zhao H H, Zhang G J, Yin Z Q, et al. A3D Dynamic Analysis of ThermalBehavior during Single-pass Multi-layer Weld-based Rapid Prototyping [J].Journal of Materials Processing Technology,2011,211(3):488-495.
    [88] Zhao H H, Zhang G J, Yin Z Q, et al. Three-dimensional Finite ElementAnalysis of Thermal Stress in Single-pass Multi-layer Weld-based RapidPrototyping [J]. Journal of Materials Processing Technology,2012,212(1):276-285.
    [89] Mughal M P, Fawad H, Mufti R. Finite Element Prediction of Thermal Stressesand Deformations in Layered Manufacturing of Metallic Parts [J]. ActaMechanica,2006,183(1-2):61-79.
    [90] Mughal M P, Fawad H, Mufti R. Numerical Thermal Analysis to Study theEffect of Static Contact Angle on the Cooling Rate of Molten Metal Droplet [J].Numerical Heat Transfer A,2006,49(1):95–107.
    [91]孙茂才.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社.2005:16-35.
    [92]朱刚贤,张安峰,李涤尘,等.激光金属制造薄壁零件z轴单层行程模型[J].焊接学报,2010,31(8):57-60.
    [93]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社.2007:16-53.
    [94] Correa E O, Costa S C, Santos J N. Weldability of Iron-based Powder MetalMaterials using Pulsed Plasma Arc Welding Process [J]. Journal of MaterialsProcessing Technology,2008,198(1-3):323-329.
    [95] Rosenthal D. The Theory of Moving Sources of Heat and its Application toMetal Treatments [J]. Transactions of ASME,1946,68(11):849-866.
    [96]郭建亭,周兰章,秦学智.铁基和镍基高温合金的相变规律与机理[J].中国有色金属学报,2011,21(3):476-479.
    [97]张文钺.焊接冶金学[M].北京:机械工业出版社.1999:116-130.
    [98]黄凤晓.激光熔覆和熔覆成形的组织与性能研究[D].吉林大学博士论文,2011:37-40.
    [99] Zhang Q M, Liu X M, Wang Z D, et al. Theoretical Analysis of Covering Ratefor Laser Cladding by the Powder Feeding [J]. Journal of Iron and SteelRsearch,2000,12(9):61-64.
    [100]赵慧慧. GMAW再制造多重堆积路径对质量影响及优化方法研究[D].哈尔滨工业大学博士论文,2012:60-65.
    [101]Yan W D, Yang A M, Liu H W, et al. Computational Simulation of Microstruc-ture of K4169Superalloy during Solidification Process [J]. Spec Cast Non-Ferrous Alloys,2002,(4):26-28.
    [102]Lin X, Yang HO, Chen J, et al. Microstructure Evolution of316L StainlessSteel during Laser Rapid Forming [J]. Acta Metallurgica Sinica,2006,42(4):361-368.
    [103]Hunziker O. Theory of Plane Front and Dendritic Growth in MulticomponentAlloys [J]. Acta Materialia,2001,49(20):4191-4203.
    [104]Clyne T W, Kurz W. Solute Redistribution during Solidification with RapidSolid State Diffusion [J]. Metallurgical and Materials Transactions A,1981,12(6):965-971.
    [105]Matsumiya T, Kajioka H, Mizoguchi S, et al. Mathematical Analysis ofSegregations in Continuously-cast Slabs [J]. Transactions of the Iron and SteelInstitute of Japan,1984,24(11):873-882.
    [106]ASM International. Metal Handbook, vol.1,9th ed [M]. ASM International:Metals Park,1990:219.
    [107]Mullins W W, Sekerka R F. Stability of a Planar Interface during Solidificationof a Bilute Binary Alloy [J]. Journal of Applied Physics,1964,35(2):444-451.
    [108]Chang S H. In Situ TEM Observation of γ′, γ″and δ Precipitations on Inconel718Superalloy through HIP Treatment [J]. Journal of Alloys and Compounds,2009,486(1-2):716-721.
    [109]Antonsson T, Fredriksson H. The Effect of Cooling Rate on the Solidificationof Inocnel718[J]. Metallurgical and Materials Transactions A,2005,36B(1):85-97.
    [110]Li R B, Yao M, Liu W C, et al. Effects of Cold Rolling on Precipitates inInconel718Alloy [J]. Journal of Materials Engineering and Performance,2002,11(5):504-508.
    [111]盛钟琦,李卫军,王丛林.固溶处理时Inconel718焊接试样中铌的扩散[J].核动力工程,2003,24(3):241-244.
    [112]蔡大勇,张伟红,刘文昌,等. Inconel718合金中δ相溶解动力学及对缺口敏感性的影响[J].有色金属,2003,55(1):4-6.
    [113]蔡大勇,张伟红,刘文昌,等. Inconel718合金中δ相溶解动力学[J].中国有色金属学报,2006,16(8):1349-1353.
    [114]王岩,邵文柱,甄良. GH416合金δ相的溶解行为及对变形机制的影响[J].中国有色金属学报,2011,21(2):341-348.
    [115]缪竹骏. IN718系列高温合金凝固偏析及均匀化处理工艺研究[J].上海交通大学博士论文,2011:118-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700