用户名: 密码: 验证码:
气体发生式推进系统降温与点火特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以气体发生式推进系统作为研究对象,通过建立数学模型和仿真模型,对其降温、点火装置的结构进行了研究设计。并建立了地面实验系统,通过实验验证了降温组件的性能。主要内容包括:
     1、对翅片辐射降温器的设计方法进行了探索。采用螺旋通道使气体与降温器内壁面充分对流换热,用翅片加强降温器壳体与外界的辐射换热;建立数学模型,并运用流体仿真计算软件进行数值仿真计算,通过对仿真计算结果的分析比较,得出最佳设计参数。
     2、对三种翅片辐射降温器进行地面实验。针对应用领域的要求,设计并加工出了三种不同的翅片辐射降温器,并建立了地面实验系统,检验了三个加工件的降温性能。
     3、研究了气体发生剂单元的点火过程。运用热力计算的方式探索了气体发生剂配方的设计方法,完成了对气体发生剂单元结构的设计;并对点火技术进行了研究,确定了最佳的点火方式。
     4、对仿真软件的原理进行了介绍,通过对共用节点法、接触耦合法和流固耦合法三种爆炸仿真方法的分析,结合本文研究对象的特点,在仿真过程设计过程中采用了以多物资流固耦合法为主、其它方法为辅的方法,取得了较好的效果。
     5、为气体发生剂单元建立了仿真模型,并采用较为合适的材料模型、状态方程和仿真参数,对它的工作过程进行了仿真分析,直观地观察了燃气的膨胀过程、燃气对膜片的切割分离过程和膜片的破口形状。
This paper aims to study Gas-Generating Propulsion System. The research is mainly focused on the structure of its cooling system and ignition device by building mathematical model and simulation model. And the ground experimental system was built to test the performance of the cooling instrument. The content of the study can be summarized as below.
     1. The finned radiation cooler was designed and explored. Spiral channels were used to make the heat convection between working medium and cooler pipe wall to be full. Meantime, the fin was used for strengthening radiation heat transfer between cooler shell and external. A mathematical model was established to imitate the process and fluid simulation software was used for the numerical simulation of the model. Then the best design parameters were obtained through the simulation results analysis.
     2. Three finned radiation coolers were studied in the ground laboratory. According to the requirements from application fields, three different finned radiation coolers were designed and manufactured. And the cooling performances of three manufactures were tested in ground laboratory.
     3. The ignition process of gas generating unit was studied. After exploring the design method for gas generating reagents formula by using thermodynamic calculation, we succeeded in the structure design of the gas generating unit. And we studied the ignite methods and got the best one.
     4. The principle of the simulation software was introduced and three explosion simulation method including shared node, contact coupling and fluid-solid coupling were analyzed. We gained good results in the simulation process by using the multi-material fluid-solid coupling methods as the major method and other method for supplement.
     5. The simulation model of gas generating agent was built and its working process was analyzed by using proper material model, state equation and simulation parameters. The process of fuel gas expand, the process of diaphragm cutting separation cut by fuel gas and the shape of crevasse in diaphragm were all observed directly during the analysis.
引文
[1]毛根旺,唐金兰,等.航天器推进系统及其应用[M].西安:西北工业大学出版社,2009.10.
    [2]张炜,朱慧,等.固体推进剂性能计算原理[M].长沙:国防科技大学出版社,1996.3.
    [3]田德余,刘剑洪.化学推进剂计算能量学[M].郑州:河南科学技术出版社,1999.12.
    [4]张仁.固体推进剂的燃烧和催化[M].长沙:国防科技大学出版社,1992.
    [5]侯林法,等.复合固体推进剂[M].北京:中国宇航出版社,1994.12.
    [6]郑子浩.固体火箭推进剂[M].长沙:国防科学技术大学,1981.8.
    [7]李保萱.固体推进剂性能[M].西安:西北工业大学出版社,1990.
    [8] B.Larangot, V.Conedera, P.Dubreuil, T.Do Conto, C.Rossi. Solid Propellant MicroThruster: an alternative propulsion device for nanosatellite. NanoTech2002 - "At the Edge of Revolution" 9-12 September 2002.
    [9]徐超. MEMS固体微推进器的设计与制备[D].国防科技大学硕士学位论文. 2006.11.
    [10]李兆泽. MEMS固体微推进器的设计与制作[D].国防科技大学硕士学位论文. 2006.11.
    [11]尤政,张高飞,林杨,任大海. MEMS固体化学推进器设计与建模研究[J].光学精密工程.2005(4),13(2):117-126.
    [12]周海清,张高飞,尤政.固体微推力器设计与数值分析[J].推进技术.2007;28(3):230-234.
    [13]马立志.化学微推力器装药及其推力性能研究[D].南京理工大学硕士学位论文. 2002.12.
    [14]张高飞,尤政,胡松启,李葆萱,王伯雄.基于MEMS的固体推进器阵列[J].清华大学学报,2004,44(11):1489-1492.
    [15]阎皓峰,甘永平.新型换热器与传热强化[M].北京:宇航出版社,1991.4.
    [16]王松汉,等.板翅式换热器[M].北京:化学工业出版社,1984.4.
    [17]余建祖.换热器原理与设计[M].北京:北京航空航天大学出版社,2006.1.
    [18]朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987.7.
    [19]温正,石良臣,任毅如. FLUENT流体计算应用教程[M].北京:清华大学出版社,2009.1.
    [20]李进良,李承曦,胡仁喜,等.精通FLUENT6.3流场分析[M].北京:化学工业出版社,2009.9.
    [21]刘云飞,刘继华,罗秉和. AP/DHG/CTPB燃气发生剂的研究[J].火炸药学报,2000(3):25-27.
    [22]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.8.
    [23] Data Teasdale. Solid Propellant Microrockets[D]. Berkeley:University of California, 2000.
    [24] FLEETER R. Microspacecraft [M]. Reston, VA: The Edge City Press, 1995.
    [25] GEORGE T. Overview of MEMS/NEMS technology develo-pment for space applications at NASA/JPL[J]. SPIE, 2003, 5116: 136-148.
    [26] ongkwang Lee, Dae Hoon Lee, Sejin Kwon. Design and performance evaluation of components of micro solidpropellant thruster[J]. Joint Propulsion Conference and Exhibit 11-14 July2004, Fort Lauderdale, Florida.
    [27]周伟勇,张育林.基于有效比冲的小卫星冷气推进系统设计[J].宇航学报,2010(1),31(1):173-178.
    [28]杨湘洪,郑燕妮,厉春元.翅片热板散热器的设计[J].机械研究与应用,2007(2); 20(1):68-69.
    [29]薛永飞,陈爱东,刘飞.翅片热传导方程的数值计算[J].河南纺织高等专科学校学报,2007(12);19(4):21-24.
    [30]刘建,魏文建,丁国良,等.翅片管式换热器传热与压降特性的实验研究进展[J].制冷学报,2003(3):25-31.
    [31] Ricardo R M, Sen M, Yan K T, et al. Effect of fin spacing on convection in a plate fin and tube heat exchanger[J], Int.J.Heat MassTransfer, 2000, 43: 39-51.
    [32]康海军,李妩,李慧珍,等.平直翅片管换热器传热与阻力特性的实验研究[J].西安交通大学学报,1994,28(1):91-98.
    [33]何江海,陈蕴光,徐正本,等.风冷式平直翅片管换热器的数值分析[J].制冷与空调,2003,3(4) :26-28.
    [34] He Yaling, Zhang W, Tao Wenquan, et al. Numerical simulation ofheat transfer of air across finned tube-banks[A], Proceedings of the 3rd International Symposium on the Heat Transfer and Energy Conservation[J]. Guangzhou, 2004(1): 697-702.
    [35] Bernard W G. Heat and mass transfer of fluid solid system[J]. Chemiacal Engineering Progress, 1951, 47(1): 10-28.
    [36] Goldstein L J, Sparrow E M, Experiments on the heat transfer characteristics of a corrugated fin and tube heat exchanger configuration[J]. Int. J. HeatTransfer, 1976, 98: 26-34.
    [37]辛荣昌,李慧珍,康海军,等.三角形波纹翅片管传热与阻力特性的实验研究[J].西安交通大学学报,1994,28(2):77-84.
    [38] Wang C C, Fu WL, Chang C T. Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers[J]. Experimental Thermal and Fluid Science, 1997, 14(2): 174-186.
    [39] Madi M A, John R A, Heikal M R.Performance characteristics correlation for round tube and plate finned heat exchangers[J]. Int. J. Refrig, 1998, 21(7): 507-517.
    [40] Wang C C, Chi K Y, Chang Y J. An experimental study of heat transfer and friction chanracteristics of typical louver fin-and-tube heat exchangers[J]. Int. J. Heat and Mass Transfer, 1998, 41(4): 817-822.
    [41] Wang C C, Lin Y T, Lee C J.Heat and momentuem transfer for compact compact louvered fin-and-tube exchangers in wet conditions[J]. Int. J. Heat and Mass Transfer, 2000, 43(18): 3443-3452.
    [42] Fiebig M, Valencia A, Mitra N K.Wing type vortex generators for fin-and-tube heat exchangers[J]. Exp Thermal and Fluid Science, 1993, 7: 287-295.
    [43] Torii K, Kwak KM, Nishino K.Heat transfer enhancement accompany pressureloss reduction with winglet-type vortex generators for fine-tube exchangers[J]. Int. J. Heat and Mass Transfer, 2002, 45, 3795-3801.
    [44] Leu J S, Liu M S, Liaw J S, et al.A numerical investigation oflouvered fin-and tube heat exchangers having circular and oval tube configurations[J]. Int. J. Heat and Mass Transfer, 2001, 44: 4235-4243.
    [45]张智,涂旺荣,韩蔚,等.空调用冷凝器中的空气流动与传热分析[J].制冷技术,2002,(1):8-13.
    [46] Du YJ, Wang C C.An experimental study of the air-side performance of the superslit fin-and-tube heat exchangers[J]. Int. J. HeatMass Transfer, 2000, 43(24): 4475-4482.
    [47] Tao WQ, He YL, Qu Z G, et al.Application of the field synergyprincple in developing new type heat transfer enhanced surfaces[A]. Proceedings of the 3rd International Symposium on the Heat Transfer and Energy Conservation[J]. Guangzho, 2004.(2): 921-933.
    [48] Guo Z Y, Li D Y, Wang B X. A novel concept for convective heattransfer enhancement[J]. Int. J. Heat Mass Transfer, 1998, 41: 2221-2225.
    [49]国防科技大学503教研室编.复合固体推进剂[M].长沙:国防科技大学,1979.
    [50] R.L.Wilkins. Theoretical Evaluations of Chemical Pr-opellant. Prentice Hall Inc. Englewood Cliffs, 1963.
    [51] R.F.Gould. Propellants Manufacture, Hazards and Test-ings. ACS Advances in Chemistry Series 88, Washington, 1969.
    [52]马立志,沈瑞琪,叶迎华.国外几种新型微化学推力器[J].上海航天,2003(3):39-43.
    [53] Siegfried W. Janson. Chemical and electric micro-propulsion concepts fornanosatellites, In Proceedings of the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapotis IN, June 1994, Paper AIAA-94-2998.
    [54] DeGroot W. Oleson S. Chemical Microthruster Options, N I9970001472/HDN.
    [55] J.Mueller, W.Tang, A.Wallace, W.Li, D. Bame, I. Chakraborty, R. Lawton. Design, Analysis and Fabrication of a Vaporizing Liquid Micro-Thruster, AIAAPaper97-3054, Seattle, WA, USA, July 1997.
    [56] E.V. Mukerjee, A. P. Walace, K. Y. Yan, D .W .Howard, R .L.Smith, S. D. Colins. Vaporizing liqud microthruster, Sensors and Actuators 83(2000): 231-236.
    [57] Daniel W. Youngner, Son Thai Lu, Edgar Choueiri, Jamie B. Neidert, Robert E.Black III, Kenneth J.Graham, Dave Fahey, Rodney Lucus, Xiaoyang Zhu. MEMS Mega-pixel Micro-thruster Arrays for Small Satellite Stationkeeping.
    [58] Daniel W. Youngner, Son Thai Lu, Edgar Choueiri et al. MEMS Mega-pixelMicro-thruster Arrays for Small Satellite Stationkeeping. 14th Annual/USU Conference on Small Satellites, 2000, 1-8.
    [59] M.Bao, W.Wang. Future of microelctromechanical systems(MEMS), Sensors andAetuators A56(1996): 135-141.
    [60] Wesley C. Chang. Precision MEMS Nano-Cutting Device For Cellular Microsurgery, Proceedings of IMECE2004.
    [61]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [62]王富耻,张朝晖. ANSYS 10.0有限元分析理论与工程应用[M].北京:电子工业出版社,2006.
    [63]尚晓江,苏建宇. ANSYS LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2006.
    [64]米双山等.基于流固耦合方法的爆炸仿真分析[J].先进制造与管理,2008,27(3):33-35.
    [65]张世臣,米双山.爆炸冲击波损伤靶板问题中的流固耦合算法[J].科学技术与工程,2008,8(7):1656-1664.
    [66]张奇,张若京. ALE方法在爆炸数值模拟中的应用[J].力学季刊,2005,26(4):639-642.
    [67]恽寿榕,涂侯杰,梁德寿,等.爆炸力学计算方法[M].北京:北京理工大学出版社,1995.
    [68]曹德清等.用ALE方法实现射流侵彻靶板的三维数值模拟[J].北京理工大学学报,2000,20(4):171-173.
    [69]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社,2005.
    [70] Livermore Soft Technology Corporation. LS-DYNA Keyword User’s Manual(Version 970), Livemore, April 2003.
    [71] Yoshikazu S. Haruji T, Yoshiyuki K, Norihide K. Analytical studies on local damage to reinforce concrete structures under impact loading by discrete method[J]. Nuclear Engineering and Design, 1998, (179):1 572 117.
    [72] 8th International LS-DYNA Users Conference[C].
    [73]苏霄燕,章本照,方勇军,陈华军.旋转方形截面螺旋管内流动与传热特性[J].应用力学学报.2004,21(4).46~50
    [74]陈华军.旋转曲线管道内流动结构与换热特性研究[D].浙江大学博士学位论文,2003.05
    [75]麻剑锋.旋转曲线管道内湍流流动结构和传热特性研究[D].浙江大学博士学位论文,2007.04

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700