用户名: 密码: 验证码:
超短波接收机高选择性前端滤波器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短波通信发展极其迅速,已经广泛应用于民用和军事领域。随着科学技术的飞速发展,超短波通信正在向自动化、网络化、智能化方向发展。由于超短波通信具有抗摧毁能力强、临时组网方便、设备简单等特点,超短波电台已经成为通信的重要方式之一,具有很高的研究和开发价值。多个超短波电台在接收和发射信号时相互之间会产生邻道干扰,这时就需要用超短波接收机前端滤波器来滤除干扰信号。
     本文设计的超短波数控抗干扰捷变跟踪预选滤波器是通过改变调谐电压来控制变容二极管参数来实现滤波器的电调谐,实现了高速选频,高效滤波,使得接收机具有更好的选择性。本文综述了超短波接收机前端滤波器研究的目的意义、国内外发展现状和滤波器的基本参数,分析了超短波接收机前端滤波器对整个接收机的影响。对所要设计的滤波器进行建模,利用专业仿真软件ADS进行仿真优化,证明了设计方案的可行性。数控电调谐跟踪预选滤波器以及低噪声放大器是本文工作的重点内容。电调谐预选跟踪滤波器的设计围绕中心频率可调,选择性高,带外衰减大的设计原则进行设计,把整个超短波频段分为(30MHz~39MHz,39MHz~51MHz,51MHz~67MHz,67MHz~88MHz)四个波段,降低了频率覆盖系数,保证了数控电调谐预选跟踪滤波器良好的电调谐特性,利用变容二极管两端电压在反向偏置时,其两端电容可以随反向电压值的改变而改变来实现预选跟踪滤波器的电调谐。使用高速波段选择开关来选择波段,波段选择受2-4译码器的控制,D/A转换器将控制器所存的电调谐数据转换为电调谐电压,进而控制变容二极管两端的反向电压,实现滤波器的电调谐。利用ADS仿真软件对所设计的滤波器进行优化,得出滤波器中元件的最优值。采用噪声系数很小的双栅场效应管3SK223设计低噪声放大器,保证了接收机的高灵敏度。
     完成各个模块电路的设计、安装和调试,按照给出的各项指标的测试方法测试模块电路的指标,再对整个系统的各项指标进行测试,测试出的所有指标均达到课题要求。
With the fast development of Ultra-short wave communication, it has widely used in civil and military. Ultra-short wave communication is gradually developing to automated, network intelligent, direction. Because of the anti-jamming ability, simple equipment and easy for temporary networking, Ultra-short wave radio has become the preferred method of emergency communication, and have great value in research. When communication between radios, then you need to use ultra-short wave receiver front-end filter to filter out interfering signals.
     In this subject, the author use variable capacitance diode by control the voltage of the diode to change the center frequency, it can make the filter have high selectivity. The design of Tunable filter is an important part of the research project. This Paper summarized the structure and the basic parameter of the receiver and the present situation of the RF front-end of the wireless receiver. It analyzed the key function to the indicator of the wireless receiver from the low noise amplifier and the filter. The theory and the engineering practice method of the low noise amplifier and the filter are studied thoroughly. It gives the design goals and the structures commonly used in the low noise amplifier and the filter. The detailed engineering practice plan of the filter and the low noise amplifier is the key content of the article. The primary design of tracking filter attune is based on the center frequency adjustable, high selectivity. The frequency are divided into four band (30MHz~39MHz,39MHz~51MHz,51MHz~67MHz,67MHz~88MHz), this can reduce the frequency cover coefficient, and to ensure the numerical control electric tuned tracking filter has the characteristics of good primary electricity tuned. The capacitance of the diode can change when the voltage of the diode is change, so we can change the voltage to control the capacitance of the diode. Using high-speed band selection switch to select frequency channel which is controlled by2-4decoder.D/A converter turn frequency channel into electricity voltage data, and then control the reverse voltage of the diode to realize the filter electric tuning. ADS simulation software to optimize the design of filter, and concludes that the filter element in the most optimal value. In order to improve the sensitivity of the system, employ a dual-gate FET3SK223whose noise figure is very low to design low noise amplifier.
     Each module is produced, installed and debugged, and then test the technical indicators of each module according to the given testing methods, and then test the various indicators of the system. All of the results of the short-wave receiver meet the subject requirements.
引文
[1]Dandan, L. and Yannis, T. Design techniques for automatically tuned integrated gigahertz-rang active LC filters [J].IEEE Solid-State circuits,2002,37(8):967-977.
    [2]Silva-Martinez J, Steyaert M, and Sansen W. A novel approach for the automatic tuning of continuous time filters [J]. IEEE International Sympoisum on Circuits and System,1991,6: 1452-1453.
    [3]Prophet E.M, Musolf J,Zuck B.F,Jimenez S,Kihlstrom,K.E and Willemsen, B.A. Highly-selective electronically-tunable cryogenic filters using monolithic discretely-switchable MEMS capacitor arrays[J],IEEE Transactions on Applied Superconductivity,2010,15(2):956-959.
    [4]周伟中VHF/UHF接收机的研究与设计[D].成都:西南交通大学,2010.
    [5]林彬.射频电调谐滤波器的研究与设计[D].西安:电子科技大学,2008.
    [6]王燕君.超短波电台接收机射频前端研制[D].西安:电子科技大学,2009.
    [7]施永热,陈霁月.数控跳频电调谐滤波器设计[J].电声技术,2009,33(9):34-38.
    [8]李和委,张丽娟,低噪声接收机模块[J].半导体技术,2004,29(8):25-29.
    [9]Kevin, M.K, H.Long and Tatsuo, I. Advanced and intelligent RF front-end technology [J]. IEEE Topical Conference on Wireless Communication Technology,2003,190-193.
    [10]刘长军,黄卡玛,闫丽萍.射频通信电路设计.北京:科学出版社,2005.
    [11]Barrak, R.,Ghazel, A.,Ghannouchi, F. Design and optimisation of RF filters for multistandard RF sub-sampling receiver[J], Design and Test of Integrated Systems in Nanoscale Technology,2006(10):105-109.
    [12]林彬,张玉兴.电调谐LC滤波器的研究与设计[J].现代电子技术,2008,(04).
    [13]施永热,陈霁月.VHF跳频电台接收机射频前端仿真的研究与设计[J].电子科技,2009,22(9):34-38.
    [14]王军明,何加铬,曾兴斌.LNA设计技术的ADS仿真研究[J].宁波大学学报,2005,18(3):340-343.
    [15]范博,杜平.现代无线电路设计与实现[M].北京:机械工业出版社,2009.
    [16]李琨.低噪声放大器动态范围扩展的理论和方法研究[D].天津大学,2010.
    [17]陈凯,宋长宝,李永生.基于ADS的一种高指标带通滤波器[J].国外电子测量技术,2011,(04).
    [18]谢金娟.超短波接收机前端高中频电路的设计与实现.武汉:武汉理工大学,2010.
    [19]Cotter W Sayre. Complete Wireless Design [M].The McGraw-Hill Companies, INC,2001: 307-311.
    [20]尤志刚,林先其,邓立科.电调谐滤波器的研究与设计[J].通信技术,2011,(01).
    [21]陈永泰,刘泉.通信电子线路原理与应用[M].北京:高等教育出版社,2011.8.
    [22]冯新宇,车向前,穆秀春.ADS2009射频电路设计与仿真.北京:电子工业出版社,2010.
    [23]袁一鹏,王翔.超短波调频电台电磁兼容设计[J].通信技术,2010,(05).
    [24]张玉兴.射频模拟电路与系统[M].成都:电子科技大学出版社,2008-09-01,328-329
    [25]N. Garmendia, J. Portilla. Study of PM Noise and Noise Figure in Low Noise Amplifiers Working under Small and Large Signal Conditions [J], Microwave Symposium,2007. IEEE/MTT-S International, pp:2095-2098,2007.
    [26][美]Thomas H.Lee. CMOS射频集成电路设计[M].北京:电子工业出版社,2004.382-391.
    [27]J. S. Hong, H. Shaman, and Y.H. Chun, Dual-mode microstrip open-loop resonators and filters, IEEE Trans. Microwave. Theory Tech., vol.55, no.8, pp.1764-1770,2007.
    [28]周兰飞,王璨,张玲.一种高频带能LC滤波器的设计方法[J].电讯技,2008,48(6):82-85.
    [29]彭峰,雷李,张里.调频接收机中调谐高放电路的设计[J].信息安全保密,2007,25(1):93-95.
    [30]林云.射频通信电路[M].武汉:华中科技大学出版社,2009.
    [31]刘砚涛,刘玉蓓,尹伟.LC滤波器设计方法介绍及其仿真设计与研究[J].电子测量技术,2010,(05).
    [32]Daniel G. Swanson, Jr. Narrow-Band Microwave Filter Design. IEEE microwave magazine, October 2007.P105.
    [33]Shuzuo Lou and Howard C. Luong. A linearization technique for RF receiver front-end using second-order-intermodulation injection [J].IEEE Journal of solid-state circuits,2008, 43(11):2404-2412.
    [34]Dennis Gee-Wai Yee. A Design Methodology for Highly-Integrated Low-Power Receivers for Wireless Communications. Ph D Dissertation of Berkeler,2001:19-23P.
    [35]Chang Y, Wills J, Choma J, and John J.r. A front-end filter with automatic center frequency tuning circuitry [J]. IEEE Digital Object Identifier,2001,2:28-31.
    [36]江思敏,唐广芝.PCB和电磁兼容设计[M].北京:机械工业出版社,2008.
    [37]袁苑,一种快速调谐的调谐放大器.电视技术,2001,(6).
    [38]许淑军.超短波接收机射频前端电路设计与实现[D].大连:大连海事大学,2011.
    [39]Eric, M.P, Jurgen, M, Betty, F, Zuck, S.J,Kenneth E.K and Balam A.W.Highly-selective electronically-tunable cryogenic filters using monolithic, discretely-switchable MEMS capacitor arrays[J].IEEE Transactions On Applied Superconductivity,2005,15(2):956-959.
    [40]郭倩.宽带接收机射频电路设计[D].北京:北京交通大学,2010.
    [41]张江林,吕善伟,董胜波,等.导频脉冲载波频率的快速捕获与跟踪[J].北京航天航空大学学报,2008,34(6):643-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700