用户名: 密码: 验证码:
急斜煤层综放开采“固—液—气”耦合作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急斜煤层是指赋存角度45-90°的煤层。由于急斜煤层的形成是由于后期地质构造运动而造成的,从而其赋存条件、煤层结构、开采应力环境、地质力学条件都比其它类煤层赋存环境特殊。在其开采过程中围岩运动规律、矿井水移动规律和气体迁移规律更比其它条件煤层复杂。因此,研究急斜煤层开采“固-液-气”(Solid-Liquid-Gas,S-L-G)耦合作用过程不论是对现场安全生产技术改进,还是对急斜煤层开采理论的拓展都具有十分重要的意义。
     论文以急斜煤层综放开采为研究对象,利用“固-液-气”三相介质物理相似模拟实验、数值计算和现场生产实践相结合的技术手段,分析了“固-液-气”三相介质在急斜煤层综放开采过程中的耦合作用特征。
     研究表明,煤层属于中硬煤层,解理裂隙发育,孔隙大小分布不均,吸附瓦斯能力较差,瓦斯易于解吸。并且煤层孔喉连通状况差,而持水性极强,工作面及巷道极易产生塑性变形,容易发生整体垮落或剪切滑移,容易造成矿井水或瓦斯涌入工作面造成灾害的潜在危险。在急斜煤层综放开采过程中“顶煤-水-瓦斯”三相介质在不同开采阶段和不同围岩介质条件下,其耦合作用特征有明显区别,在开采扰动区内围岩损伤程度、破坏强度与幅度也明显不同,围岩变形、垮落具有明显的非对称性,周期来压显现强烈。根据压力、位移和声发射指标及相关特征参数,得出了在三相介质耦合效应作用下损伤破坏、加速破坏和瞬间破坏3种煤岩体失稳判别模式,这为现场动力失稳预测提供了定量的指标参数,为现场安全开采提供理论依据。
Steep coal seams refer to the occurrence of 45-90°angle of the seam. Since the formation of steep coal seam is due to the late geological formation motion, so its occurrence conditions,coal seam structure,mining stress environment,geomechanics conditions are more special than other kinds of coal seams’occurrence environment. During its exploration, the rules of rock movement, mine water movement and gas migration are more complex than other conditions coal seam’s rules. Therefore, the study of "solid-liquid-gas" (S-L-G) coupling effect process during mining the steep coal seam is great significance for improving production technology on site, or the development of mining theory in steep seam.
     Papers mainly research on the fully-mechanized caving of the steep coal seam, using the technical means of "solid-liquid-gas" three-phase mediator physical simulation experiments, numerical calculation,and combination of on site production practice,we analysis the features of coupling effect process of "solid-liquid-gas" three-phase mediator during mining in steep coal seam.
     Research shows that, coal seam belongs to medium-hard seam,it contains lots of cleavages and fissures;the capicity of absorbing methane is poor, and methane.is easy to release. And pore connectivity in coal seam is poor,while the capacity of water-holding is extremely strong,face and roadway can easily generate plastic deformation,inclined to occur overall collapse or shear slip,easily formating the potential risks of mine water or gas disaster influxing into face.In the region of mining disturbances, damage degree of surrounding rock,the strength and amplitude of destruction have significantly difference,surrounding rock deformation and collapse has obvious non-symmetry,periodic pressure behavior shows strong,displacements,acoustic emission target and related characteristics parameters,the three identification modes of coal and rock,damage,accelerated destruction and transient failure are obtained under coupling effect of three-phase mediator,which provides quantitative parameters for predict dynamic buckling on-site, and has some reference for safety mining on-site.
引文
[1]徐永圻.采矿学[M].徐州:中国矿业大学出版社,2003.
    [2]李栖凤.急倾斜煤层开采[M].北京:煤炭工业出版社,1984.
    [3]曹建涛,来兴平,张坤,崔峰,魏引尚.急斜煤层综放开采“固-液-气”耦合作用模拟实验[J].煤炭科学技术,2010,38(2):6~10.
    [4]易永忠,曹建涛,来兴平,李立波,崔峰.急斜煤层水平分段综放开采围岩失稳特征分析[J].西安科技大学学报,2009,29(5);505~509.
    [5]来兴平.大尺度采空区失稳及衍生灾害监测与预报研究[M],西安:西安地图出版社, 2004.
    [6]来兴平.西部矿山大尺度采空区衍生动力灾害控制[J],北京科技大学学报, 2004,26(1):1~3.
    [7]伍永平,来兴平,曹建涛,等.多场耦合下急斜煤层开采三维物理模拟(1)[J].西安科技大学学报,2009,29(6):647~653.
    [8]来兴平,伍永平,张坤,曹建涛,等.多场耦合下急斜煤层开采三维物理模拟(2)[J].西安科技大学学报,2009,29(6):654~660.
    [9]吴爱祥,王贻明,胡国斌.采空区顶板大面积冒落的空气冲击波[J],中国矿业大学学报,2007,36(4): 473~477.
    [10]周维垣.高等岩石力学[M],北京:北京水力电力出版社,1993.
    [11]王金安,冯锦艳,蔡美峰.急倾斜煤层开采覆岩裂隙演化与渗流的分形研究[J],煤炭学报.2008 33(2):162~165.
    [12] Lianyong Tao. Movement and failure of overlying strata in a face in steep seam[J]. Journal of the China Coal Society.1996,3(11):582~585.
    [13]魏引尚,邓敢博,吴晓凡,曹建涛.急倾斜工作面采空区瓦斯分布规律的相似模拟研究[J].湖南科技大学学报,2009,24(1):13~17.
    [14]周志芳,钱孝星.坝基各向异性岩体内渗透力的三维边界元分析[J].岩土工程学报,1992.3(12):78~83.
    [15] Wilson,C.R,Withersppon,P.A.Long.Large-Scale Hydraulic Condu-ctivity Measurements in Fractured Granite[J], Int.J.Rock Mech.Min.Sci.&Geomech. Abstr,1983,6(20):269~276.
    [16] Long,C.S.Gilmour,P. Model for Steady Fliudin Random Three Dimensional Networks of Disc-shaped Fractures[J],Water Resources Res.1985,8(21):21~4.
    [17]万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型,水利水运科学研究,1993.4(8):51~58.
    [18] Heping Xie,Zhonghui,Chen,Jiachen Wang.Three-dimensional numerical analysis of deformation and failure during top coal caving. International Journal of Rock Mechanics and Mining Sciences,1999,5(36):651~658.
    [19]涂敏,谢广祥.走向短壁水力采煤顶板周期垮落规律研究[J].岩石力学与工程学报,2004,23(15):2547~2550.
    [20]石平五,张幼振,张嘉凡.急斜水平分段放顶煤放煤实验研究[J],矿山压力与顶板管理,2005,22(1):4~6.
    [21]田开铭,对裂隙岩石渗透性的初步探讨[J].地质研究,1982.1(4):34~38.
    [22]杜延龄,许国安,黄一和.复杂岩基三维渗流分析研究[J].水利学报,1984.3(14):26~30.
    [23]速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报1995.5(19):159~164.
    [24]王媛.王媛裂隙岩体渗流及其与应力的全耦合分析[D],河海大学博士学位论文.1995.6.
    [25]张有天.裂隙岩体渗流数学模型研究现况[J],人民长江,1991.3(5),13~17.
    [26]杨太华.水裂隙岩体相互作用理论及其应用研究[D].同济大学博士论文.1995.6.
    [27]魏引尚,邓敢博,吴晓凡,曹建涛.急倾斜工作面采空区瓦斯分布规律的相似模拟研究[J].湖南科技大学学报,2009,24(1):13~17.
    [28]耿克勤.复合岩基的渗流力学及其耦合分析研究及工程应用[D],清华大学博士论文1994.4.
    [29]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质和工程地质,1988,(2):22~28.
    [30]周创兵,熊文林.岩体节理的渗流广义立方定理[M].岩石力学,1996,17(4):1~7.
    [31]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997,18(4):59~62.
    [32]赵阳升,杨栋,郑少河.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):82~86.
    [33]沈洪俊.应力作用下裂隙岩体渗流特性的试验研究[J],长江科学院院报,1998,15(3):35~39.
    [34] Liu J.Linking stress dependent effective porosity and hydraulic conductivity fields to RMR[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1999,36(2):581~589.
    [35] Carlsson,A.and Olsson,T,The Analysis of Fractures,Stress and Water Flow for RockEnginerring Project[J].Comprehensive Rock Engineering ,1993,2(17):415~437.
    [36] Esaki J.Shear Flow Couping Test on Rock Joints[J]. Conf.ISRM, 1992,7(11):35~39.
    [37] Nooris had.J,Ayatollahi.M.S,Witherspoon.P.A.Afinite-element meth-od for coupledstress and fluid flow analysis infractured rock masses[J]. Int.J.Rock Mech.Min.Sci.&Geomech. Abstr., 1982,3(19):185~193.
    [38] OdaM.An equivalent model for coupled stress and fluid flow analysis in jointed rockmasses[J].Water Resources Res.1986,22(3):1845~1856.
    [39] Xing-ping Lai, Fen-hua Ren, Yong-ping Wu,etal. Comprehensive assessment on dynamic roof instability under fractured rock mass conditions in the excavation disturbed zone. International Journal of Minerals,Metallurgy and Materials,2009,16(1):12~18.
    [40] Lai Xingping, Cai Meifeng.Assessment of rock mass characteristics and excavation disturbed zone in the Linxin coal mine beneath the Xitian river, China. International Journal of Rock mechanics & Mining Science,2006,34(4):640~647.
    [41] X.P.Lai,M.F.Cai,M.W.Xie,etal. In situ monitoring and analysis of rock mass behavior prior to collapse of the main transport roadway in Linglong mine,China. International Journal of Rock mechanics & Mining Science,2006,34(4):647~655.
    [42] Helmut K. Mining subsidence engineering[M].Berlin Springer, 1983.
    [43] R.C.Sidle. Stream response to subsidence from underground coal mining in central Utah. Environmental Geology,2000,39(3-4):279~291.
    [44]来兴平,王宁波,曹建涛,等.复杂环境下急倾斜特厚煤层安全开采[J].北京科技大学学报,2009,31(3):276~280.
    [45]来兴平,伍永平,曹建涛,等.复杂环境下围岩变形大型三维模拟实验[J].煤炭学报学报, 2010,35(1):31~36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700