用户名: 密码: 验证码:
微生物絮凝与改性沸石吸附联合处理猪场废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国规模化养殖业的高速发展,带来了巨大的环境压力,其中猪场废水是主要的污染来源,猪场废水含有高浓度有机物和氨氮,是较难处理的一类有机废水。国内外主要采用厌氧—好氧技术方法进行处理,虽然厌氧处理能够很大程度上降解废水中的有机污染物,但是,厌氧出水污染物浓度仍然很高,尤其是氨氮基本没有被去除。对于猪场废水厌氧消化液的处理,应用最多的是生物硝化反硝化,虽然利用硝化菌和反硝化菌可以将废水中的含氮有机物和氨转化为氮气去除,但高浓度的有机物和氨氮通常会加大微生物的处理负荷和冲击负荷,导致废水处理效果不佳。实际工程中,为改善氨氮的去除效果,通常在反硝化脱氮过程中补充碱度或碳源,使得处理成本和运行费用增加。这种情况下,高效去除有机污染物的絮凝技术和以天然沸石为吸附剂的离子交换脱氨氮技术逐渐引起人们的重视。
     本论文在充分研究微生物絮凝剂去除高浓度有机污染物的作用机制和氧化镁改性沸石吸附回收高浓度氨氮的作用机理的基础上,提出了微生物絮凝与氧化镁改性沸石吸附联合处理猪场废水厌氧消化液的技术,运用中心复合设计建立废水中污染物去除的二次模型,通过絮凝和离子交换技术提高有机污染物的去除效率,实现废水中高浓度氨氮的吸附回收。一方面,从养猪场废水处理厂污泥中分离耐高浓度有机物和氨氮的絮凝微生物,充分研究其利用猪场废水和污泥生产微生物絮凝剂及去除猪场废水厌氧消化液中高浓度有机物的性能和机理。另一方面,采用焙烧的方法将氧化镁分散在天然沸石上,使其获得强碱性活性位并保留微孔结构,充分研究其吸附猪场废水厌氧消化液中高浓度氨氮的性能和动力学过程。以此为基础,运用响应面分析法设计实验,在氧化镁改性沸石处理猪场废水厌氧消化液的混凝过程中加入微生物絮凝剂,对于废水中高浓度有机物和氨氮的去除和吸附回收具有巩固作用,实现氧化镁改性沸石和微生物絮凝剂在处理猪场废水厌氧消化液中的优势互补,最大限度地去除废水中的COD、氨氮和浊度。
     从湖南省富华养猪场废水处理厂沉淀池污泥中分离出一株高效絮凝微生物菌株R3,通过生理生化实验和16S rDNA鉴定为红球菌属微生物。实验通过优化菌株R3培养基,得出生产絮凝剂的基质组成为(g/L):蔗糖20、酵母粉4.0、脲1.0、NaCl10、MgSO_42.0、K_2HPO_45.0、KH_2PO_42.0。菌株R3可以有效利用猪场废水和碱热处理的污泥生产微生物絮凝剂,无需添加其他可溶性有机物和氮化合物。实验建立了描述菌株R3生长、絮凝剂MBFR3生产和底物蔗糖消耗的数学模型,三种模型的平均相对误差均小于10%,可以认为建立的菌株发酵动力学模型是可行的。菌株R3生产的微生物絮凝剂MBFR3其有效成分为蛋白质,蛋白质含量达99.7%,平均相对分子量为3.99×10~5Da。 MBFR3具有良好的絮凝性能,当投加量在10-30mg/L范围内变化时,对4.0g/L高岭土悬液的絮凝率始终保持在90%以上;MBFR3其絮凝性能相对稳定的适用pH值呈弱碱性,当pH=8.0时,絮凝率达到96.8%。MBFR3对猪场废水中的COD、氨氮、浊度有着明显的去除效果,废水pH为7.0-9.0时,随着投加量从5.0mg/L逐渐增加至20mg/L,废水中COD、氨氮、浊度的去除率也随之快速增加至47.2%、41.9%和72.9%。絮凝机理研究表明,胶体颗粒是通过电中和作用和离子架桥作用被MBFR3絮凝沉降的,助凝剂Ca~(2+)通过库伦引力将带负电荷的胶体颗粒拉近,并与之形成Ca~(2+)—胶体颗粒结合物,MBFR3像一种桥接剂,通过离子键将两个或两个以上的Ca~(2+)—胶体颗粒结合物吸附到分子链上,从而完成了胶体颗粒的絮凝。
     400oC焙烧条件下,将氧化镁按质量比1:4分散负载于浙江缙云天然斜发沸石,制得氧化镁改性沸石。改性沸石对氨氮吸附量可达到24.7mg/g,是天然沸石吸附氨氮量(12.6mg/g)的196.1%。改性沸石投加量在5.0-30g/L范围内变化时,氨氮去除率随着投加量的增加而迅速增加到58.6%。改性沸石吸附氨氮有一个最适pH范围(7.0-9.0),当pH=8.0时,氨氮去除率达到58.9%。改性沸石对氨氮的去除具有快速吸附、缓慢平衡的特点,在反应最初30min内,氨氮去除率迅速增加到49.1%,当反应时间达到80min时,吸附达到平衡。内扩散动力学研究表明NH4+从改性沸石表面扩散到颗粒内部是整个吸附过程的速率控制步骤。吸附等温线研究过程中,随实验温度条件的升高,改性沸石对氨氮的理论吸附量从29.1mg/g下降到27.4mg/g,说明温度对改性沸石的吸附性能有一定影响。相比Freundlich等温线和Tempkin等温线而言,Langmuir等温线能够更好地拟合实验数据。热力学研究过程中发现,氨氮吸附过程是热力学自发过程(ΔG~θ<0),吸附反应是放热反应(ΔHθ<0),改性沸石吸附氨氮的反应增加了固—液界面上物质的无序程度(ΔS~θ<0)。离子交换特征研究表明,Mg~(2+)、Ca~(2+)是主要的交换阳离子。
     采用响应面分析法对MBFR3与氧化镁改性沸石联合处理猪场废水厌氧消化液的过程进行了优化,设定的5个影响因子分别为MBFR3投加量(x1),改性沸石投加量(x2)、废水pH值(x_3)、CaCl_2投加量(x4)和反应时间(x5)。响应面实验分别拟合出了关于COD去除率和氨氮去除率的二次模型,确定猪场废水厌氧消化液的最佳絮凝条件为MBFR324mg/L,氧化镁改性沸石12g/L,pH值8.3,CaCl_20.16g/L,反应时间55min,其中改性沸石可以循环使用6次。最佳絮凝条件下,COD、氨氮、浊度去除率分别为87.9%、86.9%、94.8%。
     本论文运用响应面法优化了微生物絮凝剂与氧化镁改性沸石联合处理猪场废水厌氧消化液的工艺条件,建立的COD和氨氮去除率的二次模型为实际猪场废水处理工程提供了指导意义和参考价值。针对微生物絮凝剂去除有机物的机理、氧化镁改性沸石吸附去除氨氮的机理、微生物絮凝剂与氧化镁改性沸石联合处理废水的性能和机理等关键问题的研究,有望解决国内外猪场废水厌氧消化液好氧后处理难以取得良好效果的问题。微生物絮凝剂与氧化镁改性沸石联合使用,通过絮凝和离子交换技术提高了有机污染物的去除效率,实现了废水中高浓度氨氮的吸附回收,不仅降低了生化处理成本,而且避免了PAC和PAM在废水处理中的不安全性和二次污染。
Over the past decades, with the rapid development of the scale and intensifypoultry farming in our country, the environmental pollution is becoming much moreserious. Nitrogen pollution in livestock wastewater is the most prominent. At homeand abroad, the anaerobic-aerobic method was mainly used in the treatment of swinewastewater, although the most of the organic pollutants in wastewater were degradedin the anaerobic tank, the concentrations of nitrogen were still high in the digestedswine wastewater. Biological systems (biological nitrification–denitrification) haveprovided an effective solution, where ammonium was firstly transformed to nitrite,then to nitrate, and finally to nitrogen gas. However, since biological systems do notrespond well to high shock loads of ammonium, unacceptable peaks over thedischarging levels may frequently appear in the effluent ammonium concentrations.Besides this, the treatment of ammonium nitrogen wastewater of low organic contentby a biological process usually needs to be supplemented with extra carbon source,which may add to the treatment costs. In such solution, the efficient removal oforganic pollutants using bioflocculant has been considered as a potential solution tothe toxicity and the environmental pollution in recent years, and the ammoniumadsorption using zeolites as adsorbent are gaining on interests.
     Based on the degradation of the high concentration of organic pollutants bybioflocculants and adsorption of high-level of ammonium by MgO-modified zeolite,this paper presents a study of the treatment of digested swine wastewater using thecompound of bioflocculant and MgO-modified zeolite. The response surfacemethodology (RSM) was selected to establish the two quadratic models of COD andammonium removal efficiencies to remove the organic pollutants and recycle the highconcentration of ammonium. On the one hand, the production and performance of thebioflocculant MBFR3from swine wastewater and activated sludge were investigatedin the degradation of the high concentration of organic pollutants. On the other hand,the performance and kinetics characteristics of a zeolite modified by calcined withMgO were examined in the adsorption of high-level of ammonium. On this basis, theremoval of organic pollutants and ammonium was cemented by adding MBFR3in thecoagulation of digested swine wastewater by MgO-modified zeolite, and hence, COD,ammonium and turbidity could be maximized remove from the wastewater.
     A high flocculant–producing bacteria R3, screened from activated sludge, wasidentified as Rhodococcus Ruder by a series of physiological and biochemicalexperiments and16S rDNA. This paper presents a study of production andperformance of a bioflocculant from bacteria R3, results showed that the optimalcomponent of1.0L fermentation medium for bioflocculant production was distilledwater1.0L,20g sucrose,4.0g urea,1.0g yeast extract,10.0g NaCl,2.0g MgSO_4,5.0g K_2HPO_4, and2.0g KH_2PO_4. The swine wastewater and activated sludgepre–treated by alkaline–thermal (ALT) treatments can be used as substituting mediumfor bioflocculant production, without adding any other organic and nitrogencompounds. The models about the strain growth, bioflocculant production, andconsumption of sucrose were described, through the comparison of experimental dataand the corresponding calculated values from the models, it was found that the datajoint well. Analysis of the purified bioflocculant by chemical methods indicated thatthe main component was a protein (99.7%), with an approximate molecular weight of3.99×10~5Da. Flocculating rates of kaolin clay (4.0g/L) was above90%when thebioflocculant (MBFR3) dosage was adjusted in the range of10-30mg/L, andincreased with the increasing dosage, and a maximum flocculating rate of96.8%wasachieved when the pH was adjusted to8.0. This bioflocculant also processed anindustrial potential for treatment of digested swine wastewater, when the pH valuewas adjusted to7.0-9.0and20mg of MBFR3was added into1.0L of the sample, themaximum removal efficiencies of COD, ammonium and turbidity of47.2%,41.9%,and72.9%were achieved. In addition, the flocculation mechanism reflected that theflocculation was completed by charge neutralization and bridging mechanism byaddition Ca~(2+)in two steps, coagulation and flocculation. First step was thecoagulation, in which Ca~(2+)draw closer to the negatively charged particles throughcolumbic attraction and Ca~(2+)–particle complexes were formed. Ca~(2+)reduced thethickness of the diffuse double layer of adjacent particles and hence, reducing theinter-particle distance between particles. Second step was the flocculation, in whichbioflocculants act like a bridging agent of two or more Ca~(2+)–particle complexes andreduces inter-particle distances through the ionic bond mechanism, and bridgingoccurred after the Ca~(2+)–particle complexes adsorbed onto the bioflocculants chains.Restated, particles adsorbed to a bioflocculant molecular chain, and they could adsorbsimultaneously to other chains, leading to the formation of three-dimensional flocs,which were capable of rapid settling.
     It can be concluded that the zeolite modified by calcined with MgO at400oC has a good performance for ammonium removal with adsorption capacity as high as24.7mg/g, an increase by96.1%compared to the zeolite not calcinated (12.6mg/g). Arapid increase trend was observed when the zeolite dosage ranging between5and30g/L, and58.6%of ammonium removal efficiency was achieved at zeolite dosage of30g/L. There is an optimum pH range for ammonium adsorption, as solution pH rangingfrom7.0to9.0, the highest ammonium removal efficiency of58.9%was achieved atpH being8.0, and it is likely that ammonium was converted into “free” ammonia(NH3) at pH values above9.0, which can not be exchanged. It is clearly that theammonium removal from digested swine wastewater occurred rapidly within the first30min, and the sorption equilibrium began to establish itself within80min. Theadsorption kinetics indicated that the intraparticle diffusion was the rate-limiting stepfor ammonium adsorption. The adsorption isotherm results indicated that the theoryammonium adsorption capacity of MgO-modified zeolite decreased from29.1mg/g to27.4mg/g with the increasing experimental temperature from25to45oC. Comparedto Freundlich and Tempkin equilibrium, Langmuir model provided the best fit for theequilibrium data. Thermodynamic parameters were also determined in this study, thenegative value of Gibbs free energy change or adsorption energy (ΔG~θ) indicates thespontaneous nature of the adsorption process, the adsorption process was found to beexothermic as confirmed by the negative values of ΔHθ, and the negative value of ΔS~θshowed the decreased randomness at the solid–liquid interface during the adsorptionof ammonium by the modified zeolite. The main mechanisms involved in theadsorption are both ion exchange with mainly Mg~(2+)and Ca~(2+)and surface orintraparticle sharing between ammonium ions and functional groups, such as alkyl,carboxyl and hydroxyl groups.
     The central composite design, which is the standard RSM, was selected toinvestigate the interactions of parameters including the dosage of the MBFR3(x1),modified zeolite (x2), pH (x_3),CaCl_2(x4) and contact time (x5), respectively. The twoquadratic models for the five factors were established with COD and ammoniumremoval rate as the target responses. The optimal flocculent condition obtained fromthe two desirable responses, COD removal rate as100%and ammonium removal rateas100%, which deduced from the frequency of responses, were MBFR3of24mg/L,modified zeolite of12g/L, CaCl_2of0.16g/L, pH of8.3and contact time of55min.Under this optimal condition, COD, ammonium and turbidity removal rates wereappeared as87.9%,86.9%and94.8%, respectively.
     This dissertation fully focused on the flocculation mechanism of organic matters by bioflocculant MBFR3, the adsorption mechanism of ammonium by MgO-modifiedzeolite, and the performance of the compound of MBFR3and MgO-modified zeolitein the treatment of digested swine wastewater. The research results would provide afeasible way to solve the difficulties to achieve good removal efficiencies ofpollutants in the aerobic post-treatment over the world. The process conditions of thedigested swine wastewater treatment by the compound of MBFR3and MgO-modifiedzeolite were optimized by the RSM, and the two quadratic models of COD andammonium removal efficiencies established provide scientific foundation on theactual projects. The use of the compound was not only improving the pollutantremoval and recycling the ammonium nitrogen, but also avoiding the secondarypollution brought by adding PAC and PAM in wastewater treatment.
引文
[1]邓良伟.猪场废水处理新工艺研究:[浙江大学博士学位论文].杭州:浙江大学环境与资源学院环境工程系,2011,1-10
    [2] Yang Z H, Gao F, Zeng G M, et al. Removing the nitrogen from highlynitrogenous piggery wastewater via nitrite. Journal of Basic Science andEngineering,2004,12(2):161-168
    [3]叶晓东.猪场废水处理工艺研究与运用:[南昌大学硕士学位论文].南昌:南昌大学环境与化学工程学院,2010,2-16
    [4]李晓璐.畜禽养殖废水好氧生物处理脱氮除磷效果研究:[四川农业大学硕士学位论文].成都:四川农业大学环境与化学工程学院,2007,1-6
    [5]操卫平.猪场废水厌氧消化液后处理生物脱氮新技术研究:[四川大学硕士学位论文].成都:四川大学环境与化学工程学院,2004,1-7
    [6]张克强,高怀有.畜禽养殖业污染物处理与处置.北京:化学工业出版社,2004,22-23
    [7] Xing Y, Li Z, Fan Y T, et al. Biohydrogen production from dairy manures withacidification pretreatment by anaerobic fermentation. Environmental scienceand pollution research,2010,17(2):392-399
    [8]李淑兰.猪场废水厌氧消化及后处理技术研究:[中南林业科技大学硕士论文].长沙:中南林业科技大学林学院,2003,1-10
    [9] Zhao Y Q, Sun G, Allen S J. Anti-sized reed bed system for animal wastewatertreatment: a comparative study. Water Research,2004,38(2):2907-2917
    [10] Langergraber G, Haber I R, Laber J, et al. Evaluation of substrate cloggingprocesses in vertical flow constructed wetlands. Water Science and Technology,2003,48(5):25-34
    [11] Béline F, Botrsier H, Daumer M L, et al. Modelling of biological processesduring aerobic treatment of piggery wastewater aiming at process optimization.Bioresource Technology,2007,98(17):3298-3308
    [12] Ferreira F L A, Lucas J J, Amaral L A, et al. Partial characterization of thepolluting load of swine wastewater treated with an integrated bio-digestionsystem. Bioresource Technology,2003,90(2):101-108
    [13]杨朝晖,曾光明,高锋,等.固液分离—UASB—SBR工艺处理养猪场废水的试验研究.湖南大学学报(自然科学版),2002,29(6):95-99
    [14]张忠祥,钱易.废水生物处理新技术.北京:清华大学出版社,2004,662-669
    [15] Wang S Y, Gao D W, Peng Y Z, et al. Alternating nitrification-denitrificationvia nitrite for nitrogen removal from soybean wastewater by SBR withreal-time control. Journal of Environmental Science,2004,16(3):458-461
    [16] Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for thetreatment of wastewater with high ammonia concentration. Water Research,2003,37(6):371-377
    [17] Lahav O, Artzi E, Tarre S, et al. Ammonium removal using a novel unsaturatedflow biological filter with passive aeration. Water Research,2001,35(2):397-404
    [18] Alitalo A, Kyr A, Aura E. Ammonia stripping of biologically treated liquidmanure. Journal of environmental quality,2012,41(1):273-280
    [19] Karapiner N. Application of natural zeolite for phosphorus and ammoniumremoval from aqueous solutions. Journal of Hazardous Materials,2009,170(2-3):1186-1191
    [20] Wu Z, An Y, Wang Z, et al. Study on zeolite enhanced contact-adsorptionregeneration-stabilization process for nitrogen removal. Journal of HazardousMaterials,2008,156(1-3):317-326
    [21] Bodalo A, Gomez J, Gomez E, et al. Ammonium removal from aqueoussolutions by reverse osmosis using cellulose acetate membranes. Desalination,2005,184(1-3):149-155
    [22] Zhao Y P, Gao T Y, Jiang S Y, et al. Ammonium removal by modified zeolitefrom municipal wastewater. Journal of Environmental Sciences,2004,16(6):1001-1004
    [23]李伦,汪宏渭,陆嘉竑.城镇高氨氮污水的吹脱除氮试验研究.中国给水排水,2006,22(17):92-95
    [24]雷春生,马军,关小红,等.有机复合脱氮剂/吹脱法与直接吹脱法的除氨对比.中国给水排水,2009,25(23):82-84
    [25] Obaja D, Mace S, Costa J, et al. Nitrification, denitrification and biologicalphosphorus removal in piggery wastewater using sequencing batch rector.Bioresource Technology,2003,87(1):103-111
    [26] Obaja D, Mace S, Mata-Alvarez J. Biological nutrient removal by a sequencingbatch rector (SBR) using an internal organic carbon source in digested piggerywastewater. Bioresource Technology,2005,96(1):7-14
    [27]崔树军,谷立坤,张建云,等.高氨氮废水的处理技术及研究应用现状.中国给水排水,2010,26(14):26-29
    [28]张鸿郭,陈迪云,阎佳,等.垃圾渗滤液同时硝化反硝化处理中有机污染物去除效果.环境工程学报,2009,3(6):965-970
    [29]郑淑玲,袁世斌,王安,等.短程硝化反硝化工艺处理养猪场废水的厌氧消化液.中国给水排水,2010,26(7):96-99
    [30]邓良伟,操卫平,孙欣,等.原水添加比例对猪场废水厌氧消化液后处理的影响.环境科学,2007,28(3):588-593
    [31] Zhang Z J, Zhu J, King J, et al. A two-step fed SBR for treating swine manure.Process Biochemistry,2006,41(4):892-890
    [32]邓良伟,孙欣,陈子爱.基于碱度平衡与反硝化动力学的厌氧—加原水—间歇曝气工艺配水比例模型.环境科学学报,2007,27(10):1643-1651
    [33]杜馨,张可方,方茜,等.碳源对SBR工艺同步硝化反硝化的影响.中国给水排水,2007,23(11):47-51
    [34]邓良伟,郑平,李淑兰,等.添加原水改善SBR工艺处理猪场废水厌氧消化液性能.环境科学,2005,26(6):105-109
    [35]邓良伟,陈子爱,李淑兰,等.缩短厌氧消化时间改善猪场废水厌氧消化液好氧后处理性能的可行性.环境科学学报,2008,28(3):502-509
    [36] Lu W Y, Zhang T, Zhang D Y, et al. A novel bioflocculant produced byEnterobacter aerogenes and its use in defecating the torna suspension.Biochemical Engineering Journal,2005,27(1):1-7
    [37]郑怀礼.生物絮凝剂与絮凝技术.北京:化学工业出版社,2004,15-20,91-194
    [38]刘刚磊.微生物絮凝剂高效菌种的筛选、培养条件优化及在污水中的应用:
    [苏州科技学院硕士学位论文].苏州:苏州科技学院环境科学与工程学院,2011,1-4
    [39]李强.放射状土壤杆菌M-503产生微生物絮凝剂的制备、纯化及应用研究:
    [山东大学博士学位论文].山东:山东大学微生物学院,2005,2-5
    [40] Salehizadeh H, Shojaosadati S A. Extracellular biopolymeric flocculants recenttrends and biotechnological importance. Biotechnology Advances,2001,19(5):371-385
    [41] Shih I L, Van Y T, Yeh L C, et al. Production of a biopolymer flocculant fromBacillus licheniformis and its flocculation properties. Bioresource Technology,2001,78(3):267-272
    [42] Arezoo C. The potential role of aluminium in Alzheimer’s disease. NephrologyDialysis Transplantation,2002,17(2):17-20
    [43] Rudén C. Acrylamide and cancer risk-expert risk assessments and the publicdebate. Food and Chemical Toxicology,2004,42(3):335-349
    [44]阮敏.多粘类芽孢杆菌GA1所产絮凝剂影响因素及絮凝性能的研究:[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2008,9-10
    [45] Wang H J H, Kim S W, Choi J W, et al. Production and characterization ofexopolysaccharides from submerged culture of Phellinus linteus KCTC6190.Enzyme and Microbial Technology,2003,33(2-3):309-319
    [46] Garcia M C, Szogi A A, Vanotti M B, et al. Enhanced solid-liquid of dairymanure with natural flocculants. Bioresource Technology,2009,100(22):5417-5423
    [47]王薇.产絮菌合成生物絮凝剂特性及絮凝成分解析:[哈尔滨工业大学博士学位论文].哈尔滨:市政环境工程学院,2009,3-4
    [48] Wu J Y, Ye H F. Characterization and flocculating properties of an extracellularbiopolymer produced from a Bacillus subtilis DYU1isolate. ProcessBiochemistry,2007,42(7):1114-1123
    [49] Hideshi S, Hideo M, Yasuhiro S. Flocculation of diatomite by a soyprotein-based bioflocculant. Biochemical Engineering Journal,2010,51(1-2):14-18
    [50]朱艳彬,马放,黄君礼,等.生物絮凝剂絮凝特性与絮凝条件优化研究.中国给水排水.2006,22(3):4-8
    [51]夏四清,丁西明,常玉广,等.枯草芽孢杆菌产高效微生物絮凝剂的研究.中国给水排水,2009,25(1):14-17
    [52]邱忠平,茆灿泉,刘源月,等.微生物絮凝剂产生菌的筛选及其絮凝特性.环境工程学报,2009,3(7):1185-1188
    [53]陶然,杨朝晖,曾光明,等.微生物絮凝剂产生菌的筛选、鉴定及其培养条件的优化研究.中国生物工程杂志,2005,25(8):76-81
    [54]尹华,冯绮澜,秦华明,等.利用甘蔗渣制备微生物絮凝剂的预处理方法研究.环境工程学报,2011,5(6):1268-1272
    [55]毛艳丽,王远红,刘瑞群,等.利用糖蜜废水生产微生物絮凝剂及其絮凝条件优化.中国给水排水,2008,24(23):20-28
    [56] Cheng J P, Zhang L Y, Wang W H, et al. Screening of flocculant-producingmicroorganisms and flocculating activity. Journal of Environmental Science,2004,16(6):894-897
    [57] Huang X W, Cheng W, Hu Y Y. Screening of flocculant-producing strains byNTG mutagenesis. Journal of Environmental Science,2005,17(3):494-498
    [58] Xia S Q, Zhang Z Q, Wang X J, et al. Production and characterization of abioflocculant by Proteus mirabilis TJ-1. Bioresource Technology,2008,99(14):6520-6527
    [59] Li Z, Zhong S, Lei H Y, et al. Production of a novel bioflocculant by Bacilluslicheniformis X14and its application to low temperature drinking watertreatment. Bioresource Technology,2009,100(14):3650-3656
    [60] Zheng Y, Ye Z L, Fang X L, et al. Production and characteristics of abioflocculant produced by Bacillus sp. F19. Bioresource Technology,2008,99(16):7686-7691
    [61] He N, Li Y, Chen J, el a1. Identification of a novel bioflocculant from a newlyisolated Corynebacterium glutamicum. Biochemical Engineering Journal,2002,11(2-3):137-148
    [62] Liu W J, Wang K, Li B Z, et al. Production and characterization of anintracellular bioflocculant by Chryseobacterium daeguense W6cultured in lownutrition medium. Bioresource Technology,2010,101(3):1044-1048
    [63] Deng S B, Yu G, Ting Y P. Production of a bioflocculant by Aspergillusparasiticus and its application in dye removal. Colloids and Surfaces B:Biointerfaces,2005,44(4):179-18
    [64] Triveni R, Shamala T R, Rastogi N K. Optimised production and utilization ofexopolysaccharide from Agobacterium radiobacter. Process Biochemistry,2001,36(8-9):787-795
    [65] Kurane R, Takeda K, Suzuki T. Culture condition for production of microbialflocculant by Rhodococcus erythropolis. Agricultural Biology and Chemistry,1986,50(9):2309-2313
    [66] Li Y, He N, Guan H, et al. A novel polygalacturonic acid bioflocculantREA-11produced by Corynebacterium glutamicum: a proposed biosyntheticpathway and experimental confirmation. Applied Microbiology andBiotechnology,2003,63(2):200-206
    [67]杨朝晖,陶然,曾光明,等.多粘类芽孢杆菌GA1产絮凝剂的培养基和分段培养工艺.环境科学,2006,27(7):1444-1448
    [68]周长胜,杨朝晖,曾光明,等.絮凝剂产生菌GA1营养及发酵动力学的研究.中国环境科学,2008,28(4):324-328
    [69]荣宗根.微生物絮凝剂MBFGA1与聚合氯化铝复配对水中残铝影响研究:
    [湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2011,6-23
    [70] Gao Q, Zhu X H, Mu J, et al. Using Rudi tapes philippinarum conglutinationmud to produce bioflocculant and its applications in wastewater treatment.Bioresource Technology,2009,100(21):4996-5001
    [71]刘云洁.微生物絮凝剂连续化生产与实际应用相耦联的工艺设计:[南开大学硕士学位论文].天津:南开大学环境科学与工程学院,2011,3-4
    [72]付伟.微生物MF-04产絮凝剂的研制、絮凝机理及其应用研究:[广西大学硕士学位论文].广西:广西大学应用化学,2008,5-7
    [73]唐静.微生物絮凝剂XM09的活性成分分析及其在水处理中的应用:[南开大学硕士学位论文].天津:南开大学环境科学与工程学院,2011,5-6
    [74]黎忠.微生物絮凝剂ZS-7的制备、纯化及应用研究:[中山大学博士学位论文].广东:中山大学环境学院,2011,12-15
    [75]罗平,罗固源,左赵宏.短芽抱杆菌RL-2絮凝机理研究.环境工程学报,2007,1(6):39-42
    [76]阮敏,杨朝晖,曾光明,等.多粘类芽孢杆菌GA1所产絮凝剂的絮凝性能研究及机理探讨.环境科学,2007,28(10):2336-2341
    [77] Houghton J I, Quarmby J, Stephenson T. Municipal wastewater sludgedewaterability and the presence of microbial extracellular polymer. WaterScience and Technology,2001,44(2-3):373-379
    [78] Li X Y, Yang S F. Influence of loosely bound extracellular polymericsubstances (EPS) on the flocculation, sedimentation and dewaterability ofactivated sludge. Water Research,2007,41(5):1022-1030
    [79] Verma M, Brar S K, Riopel A R, et al. Pre-treatment of wastewatersludge-biodegradability and rheology study. Environmental Technology,2007,28(3):273-284
    [80]杨阿明,张志强,王学江,等.高效微生物絮凝剂用于污泥脱水及其动力学研究.中国给水排水,2007,23(9):24-27
    [81]赵继红,杨劲峰,王清宁,等.微生物絮凝剂改善污泥脱水性能的研究.环境科学与技术,2009,32(11):87-90
    [82]胡秀芳,方琼楼,余婕,等.利用微生物絮凝剂处理养殖废水的方法及所得的复合肥料.中国专利. CN101475249,2009-01-19
    [83] Wang S, Li L, Wu H, et al. Unburned carbon as low-cost adsorbent fortreatment of methylene blue-containing wastewater. Journal of Colloid andInterface Science,2005,292(2):336-343
    [84]杨劲峰,赵继红,曲凤华,等.微生物絮凝剂用于染料废水脱色及其动力学研究.化工科技,2009,17(3):16-19
    [85]王雪.生物絮凝剂混菌发酵条件优化及动力学分析:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学市政环境工程学院,2009,7-9
    [86]朱柏荣.投加沸石粉处理原水中氨氮技术研究:[同济大学硕士学位论文].上海:同济大学环境科学与工程学院,2009,9-10
    [87] Thornton A, Pearce P, Parsons S A. Ammonium removal from digested sludgeliquors using ion exchange. Water Research,2007,41(2):433-439
    [88] Saltali K, Sari A, Ayden M. Removal of ammonium from aqueous solution bynatural Turkish zeolite for environmental quality. Journal of HazardousMaterials,2007,141(1):258-263
    [89]李晔,彭长琪.沸石改性及其对氨氮废水处理效果的研究.非金属矿,2003,26(2):53-55
    [90]林建伟,朱志良,赵建夫,等. HCl改性沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理研究.环境科学,2007,28(3):551-555
    [91]佟小薇,朱义年.沸石改性及其去除水中氨氮的实验研究.环境工程学报,2009,3(4):635-638
    [92] Lei L, Li X J, Zhang X W. Ammonium removal from aqueous solutions usingmicrowave-treated natural Chinese zeolite. Separation and PurificationTechnology,2008,58(3):359-366
    [93] Liang Z, Ni J. Improving the ammonium ion uptake onto natural zeolite byusing an integrated modification process. Journal of Hazardous Materials,2009,166(1):52-60
    [94] Malekpour A, Millani M R, Kheirkhah M. Synthesis and characterization of aNaA zeolite membrane and its applications for desalination of radioactivesolutions. Desalination,2008,225(1-3):199-208
    [95] Juan R, Hernandez S, Andres J M, et al. Ion exchange uptake of ammonium inwastewater from a sewage treatment plant by zeolite materials from fly ash.Journal of Hazardous Materials,2009,161(2-3):781-786
    [96] Sarioglu M. Removal of ammonium from municipal wastewater using naturalTurkish (Dogantepe) zeolite. Separation and Purification Technology,2005,41(1):1-11
    [97]安红梅,吴立波,岳尚超,等.斜发沸石对城市污水处理厂二级出水中氨氮的处理效果研究.环境工程学报,2010,4(5):1111-1115
    [98]唐登勇,郑正,林志荣,等.天然沸石吸附低浓度氨氮废水的研究.环境科学与技术,2010,33(12):206-209
    [99]赵启文,张兴儒,屠兰英,等.斜发沸石对锌冶炼废水中重金属离子的吸附研究.青海大学学报(自然科学版),2009,27(6):1-4
    [100]赵玉华,张旭,常启雷,等.钠型沸石制备及去除氨氮和有机物研究.给水排水,2008,34(2):100-103
    [101]Draginja P, Ljiljana R, Svetlana T, et al. Evaluation of solubility of pumpkinseed globulins by response surface method. Journal of Food Engineering,2008,84(4):591-594
    [102]Wang J P, Chen Y Z, Ge X W, et al. Optimization of coagulation-flocculationprocess for a paper-recycling wastewater treatment using response surfacemethodology. Colloids and Surfaces A,2007,302(1-3):204-210
    [103]Sarayu M, Shalini S, Jyoti D. Response surface methodology for optimizationof medium for decolorization of textile dye direct black22by a novel bacterialconsortium. Bioresource Technology,2008,99(3):562-56
    [104]Tan I A W, Ahmad A L, Hameed B H. Optimization of preparation conditionsof activated carbons from coconut husk using response surface methodology.Chemical Engineering Journal,2008,137(3):462-470
    [105]APHA, AWWA, WEF. Standard Methods for the Examination of Water&Wastewater,21st ed, Washington, DC,2005
    [106]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002,88-89,96-99,102-104,210-212,279-281
    [107]George T, Franklin L B, David S. Wastewater Engineering, fourth ed. Matcalf&Eddy Inc, New York,2003
    [108]Liu W J, Yuan H L, Yang J S, et al. Characterization of bioflocculant frombiologically aerated filter backwashed sludge and its application in dyingwastewater treatment. Bioresource Technology,2009,100(9):2629-2632
    [109]Gong W X, Wang S G, Sun X F, et al. Bioflocculant production by culture ofserratia ficaria and its application in wastewater treatment. BioresourceTechnology,2008,99(11):4668-4674
    [110]Deng S B, Bai R B, Hu X M, et al. Characteristics of a bioflocculant producedby Bacillus mucilaginosus and its use in starch wastewater treatment. AppliedMicrobiology and Biotechnology,2003,60(5):588-593
    [111]Vijayalakshmi S P, Raichur A M. The utility of Bacillus subtilis as abioflocculant for fine coal. Colloids and Surfaces B: Biointerfaces,2003,29(4):265-275
    [112]Yi T, Lee E H, Ahn Y G. Novel biodegradation pathways of cyclohexane byRhodococcus sp. EC1. Journal of Hazardous Materials,2011,191(1-3):393-396
    [113]Zhang Z Q, Lin B, Xia S Q, et al. Production and application of a novelbioflocculant by multiple-microorganism consortia using brewery wastewateras carbon source. Journal of Environmental Science,2007,19(6):667-673
    [114]Tian Y. Behaviour of bacterial extracellular polymeric substances fromactivated sludge: a review. International Journal of Environmental andPollution,2008,32(1):78-89
    [115]Neyens E, Baeyens J, Dewil R, et al. Advanced sludge treatment affectsextracellular polymeric substances to improve activated sludge dewatering.Journal of Hazardous Materials,2004,106(2-3):83-92
    [116]Jorand F, Guicherd P, Urbain V, et al. Hydrophobicity of activated sludge flocsand laboratory-grown bacteria. Water Science and Technology,1994,30(11):211-218
    [117]Vidyarthi A S, Tyagi R D, Valero J R, et al. Studies on the production of B.thuringiensis based biopesticides using wastewater sludge as a raw material.Water Research,2002,36(19):4850-4860
    [118]Drouin M, Lai C K, Tyagi R D, et al. Bacillus licheniformis proteases as highvalue added products from fermentation of wastewater sludge: pre-treatment ofsludge to increase the performance of the process. Water Science andTechnology,2008,57(3):599-605
    [119]Zeng X B, Wang H Y, He L Y, et al. Medium optimization of carbon andnitrogen sources for the production of eucalyptene A and xyloketal A fromXylaria sp.2508using response surface methodology. Process Biochemistry,2006,41(2):293-298
    [120]Adav S S, Lee D. Extraction of extracellular polymeric substances fromaerobic granule with compact interior structure. Journal of HazardousMaterials,2008,154(1-3):1120-1126
    [121]Xiong Y Y, Wang Y P, Yu Y, et al. Production and Characterization of a NovelBioflocculant from Bacillus licheniformis. Applied Microbiology andBiotechnology,2010,76(9):2778-2782
    [122]Chaplin M F, Kennedy J F. Carbohydrate Analysis, second ed, OxfordUniversity Press, New York,1994
    [123]Bradford M M. A rapid and sensitive method for the quantization of microgramquantities of protein utilizing the principle of protein-dye binding. AnalyticalBiochemistry,1976,72(7):248-254
    [124]Li A T, Zhang J D, Yu H L, et al. Significantly improved asymmetric oxidationof sulfide with resting cells of Rhodococcus sp. in a biphasic system. ProcessBiochemistry,2011,46(3):689-694
    [125]Zouboulis A I, Chai X L, Katsoyiannis I A. The application of bioflocculant forthe removal of humic acids from stabilized landfill leachates. Journal ofEnvironmental Management,2004,70(1):35-41
    [126]Zhang J, Liu Z, Wang S, et al. Characterization of a bioflocculant produced bythe marine myxobacterium nannocystis sp NU-2. Applied Microbiology andBiotechnology,2002,59(4-5):517-522
    [127]高洪亮.微生物谷氨酞胺转胺酶分批补料发酵及动力学模型的研究:[华东师范大学硕士学位论文].上海:华东师范大学,2006,42-52
    [128]邢洁.絮凝菌F2产生物絮凝剂的发酵动力学及其活性成分分析:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学市政环境工程学院,2009,44-54
    [129]刘洁.菌株SHD-1发酵动力学及混合菌产絮凝剂的研究:[中国石油大学硕士学位论文].北京:中国石油大学环境工程学院,2009,23-26
    [130]周长胜.絮凝剂产生菌GA1发酵动力学及絮凝性能的研究:[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2009,25-37
    [131]Boltz J P, La M, Enrique J. Kinetics of particulate organic matter removal as aresponse to bioflocculation in aerobic biofilm reactors. Water EnvironmentResarch,2007,79(7):725-735
    [132]Xing J, Yang J X, Ma F, et al. Study on the Optimal Fermentation Time andKinetics of Bioflocculant Produced by Bacterium F2. Advanced MaterialsResearch,2010,113(7):2379-2384
    [133]Mc-swain B S, Irvine R L, Hausmer M. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. AppliedMicrobiology and Biotechnology,2005,71(2):1051-1057
    [134]熊丽娟.絮凝剂产生菌GA1及所产絮凝剂MBFGA1的研究:[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2007,29-35
    [135]Guo X J, Zeng L L, Li X M, et al. Ammonium and potassium removal foranaerobically digested wastewater using natural clinoptilolite followed bymembrane pretreatment. Journal of Hazardous Materials,2008,151(1):125-133
    [136]More T T, Yan S, Hoang N V, et al. Bacterial polymer production usingpre-treated sludge as raw material and its flocculation and dewatering potential.Bioresource Technology,2012,121(4):425-431
    [137]Chen Y, Jiang S, Yuan H, et al. Hydrolysis and acidification of waste activatedsludge at different pHs. Water Research,2007,41(3):683-689
    [138]Sun J, Zhang X H, Miao X J, et al. Preparation and characteristics ofbioflocculants from excess biological sludge. Bioresource Technology,2012,126:362-366
    [139]Aravinthan V, Mino T, Takizawa S, et al. Sludge hydrolysate as a carbonsource for denitrification. Water Science and Technology,2001,43(1):191-199
    [140]Joung H Y, Sung J K, Se H A, et al. Characterization of a novel bioflocculant,p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03.Bioresource Technology,2007,98(2):361-367
    [141]Van M, Sebastiaan E, Ghequire M, et al. Flocculation gene variability inindustrial brewer's yeast strains. Applied Microbiology and Biotechnology,2010,88(6):1321-1331
    [142]Wang S G, Gong W X, Liu X W, et al. Production of a novel bioflocculant byculture of Klebsiella mobilis using dairy wastewater. Biochemical EngineeringJournal,2007,36(2):81-86
    [143]Wang Y Q, Liu S J, Xu Z, et al. Ammonia removal from leachate solution usingnatural Chinese clinoptilolite. Journal of Hazardous Materials,2006,136(3):735-740
    [144]成文.微生物絮凝剂的性能、作用机理与廉价培养基筛选的研究:[华南理工大学博士学位论文].广州:华南理工大学,2004,75-80
    [145]胡勇有,高宝玉.微生物絮凝剂.北京:化学工业出版社,2007,68-107
    [146]Ganigué R, López H, Balaguer M D, et al. Partial ammonium oxidation tonitrite of high ammonium content urban land fills leachates. Water Research,2007,41(15):3317-3326
    [147]段金明,林建清,方宏达,等.改性沸石同步深度脱氮除磷的实验研究.环境工程学报,2009,3(5):829-835
    [148]Huang H M, Xiao X M, Yan B, et al. Ammonium removal from aqueoussolutions by using natural Chinese (Chende) zeolite as adsorbent. Journal ofHazardous Materials,2010,175(1-3):247-252
    [149]Erdo an B C, ülkü S. Ammonium sorption by G rdes clinoptilolite richmineral specimen. Applied Clay Science,2011,54(3-4):217-225
    [150]Watanabe Y, Yamada H, Tanaka J, et al. Hydrothermal modification of naturalzeolites to improve uptake of ammonium ions. Journal of chemical technologyand biotechnology,2005,80(4):376-380
    [151]杨春平,郭俊元,李新平,等.一种改性沸石及其制备方法和应用.中国专利. ZL201110030919,2011-01-13
    [152]Wang Y F, Lin F, Pang W Q, et al. Ammonium exchange in aqueous solutionusing Chinese natural clinoptilolite and modified zeolite. Journal of HazardousMaterials,2007,142(1-2):160-164
    [153]Mungasavalli D P, Viraraghavan T J, Yee C. Biosorption of chromium fromaqueous solutions by pretreated Aspergillus Niger: batch and column studies.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,301(1-3):214-223
    [154]Widiastuti N, Wu H W, Ang H M, et al. Removal of ammonium fromgreywater using natural zeolite. Desalination,2011,277(1-3):15-23
    [155]Wang H B, Bao Y M, Zhang J, et al. Study on the preparation and properties ofNa-modified zeolites. Energy Procedia,2011,11(10):4236-4241
    [156]Du Q, Liu S, Cao Z, et al. Ammonia removal from aqueous solution usingnatural Chinese clinoptilolite. Separation and Purification Technology,2005,44(3):229-234
    [157]Lebedynets M, Sprynskyy M, Sakhnyuk I, et al. Adsorption of ammonium ionsonto a natural zeolite: Transcarpathian clinoptilolite, Adsorption Science andTechnology,2004,22(9):731-741
    [158]Njoroge B N K, Mwamachi S G. Ammonia removal from an aqueous solutionby the use of a natural zeolite. Journal of Environmental Engineering Science,2004,3(2):147-154
    [159]Maranon E, Ulmanu M, Fernandez Y, et al. Removal of ammonium fromaqueous solutions with volcanic tuff. Journal of Hazardous Materials,2006,137(3):1402-1409
    [160]Ho Y S. Selection of optimum sorption isotherm. Carbon,2004,42(10):2115-2116
    [161]Wang Y, Kmiya Y, Okuhara T. Removal of low-concentration ammonia inwater by ion-exchange using Na-mordenite. Water Research,2007,41(2):269-276
    [162]Demir A, Gunay A, Debik E. Ammonium removal from aqueous solution byion-exchange using packed bed natural zeolite. Water SA,2004,28(3):329-336
    [163]付婉霞,聂正武.沸石去除地下水源水中氨氮的试脸研究.给水排水,2007,33(2):106-109
    [164]Hankins N P, Pliankarom S, Hilal N. An equilibrium ion-exchange study on theremoval of NH4+ion from aqueous effluent using clinoptilolite. SeparationScience and Technology,2005,39(15):3639-3663
    [165]Weatherley L R, Miladinovic N D. Comparison of the ion exchange uptake ofammonium ion onto New Zealand clinoptilolite and mordenite. Water Research,2004,38(20):4305-4312
    [166]Sprynskyy M, Lebedynets M, Terzyk A, et al. Ammonium sorption fromaqueous solutions by the natural zeolite clinoptilolite studied under dynamicconditions. Journal of Colloid and Interface Science,2005,284(2):408-415
    [167]Jorgensen T C, Weatherley L R. Ammonia removal from wastewater by ionexchange in the presence of organic contaminants. Water Research,2003,37(8):1723-1728
    [168]Kadir S, Ahmet S. Sorption capacity and thermodynamic properties of naturalTurkish (Resadiye) bentonite for the removal of ammonium ions from aqueoussolution. Adsorption Science and Technology2006,24(9):749-760
    [169]Zheng Y, Zhang J P, Wang A Q. Fast removal of ammonium nitrogen fromaqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite.Chemical Engineering Journal,2009,155(1-2):215-222
    [170]Mall I D, Srivastava V C, Kumar G V, et al. Characterization and utilization ofmesoporous fertilizer plant waste carbon for adsorptive removal of dyes fromaqueous solution. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2006,278(1-3):175-187
    [171]Yusof A M, Keat L K, Ibrahim Z, et al. Kinetic and equilibrium studies of theremoval of ammonium ions from aqueous solution by rice huskash-synthesized zeolite Y and powdered and granulated forms of modernity.Journal of Hazardous Materials,2010,174(1-3):380–385
    [172]Turan M, Celik M S. Regenerability of Turkish clinoptilolite for use inammonia removal from drinking water. Journal of Water Supply: Research andTechnology,2003,52(1):59-66
    [173]Wen D H, Ho Y S, Tang X Y. Comparative sorption kinetic studies ofammonium onto zeolite. Journal of Hazardous Materials,2006,133(1-3):252-256
    [174]杨春平,郭俊元,宋甜甜,等.回收改性沸石制备氯化铵的方法.中国专利.ZL201110030924,2011-01-13
    [175]Wahab M A, Mohamed A, Jellali S, et al. Ammonium biosorption onto sawdust:FTIR analysis, kinetics and adsorption isotherms modeling. BioresourceTechnology,2010,101(14):5070-5075
    [176]Jellali S, Wahab M A, Mohammed A, et al. Biosorption characteristics ofammonium from aqueous solutions onto Posidonia oceanica (L.) fibers.Desalination,2011,270(1-3):40-49
    [177]Kalavathy M H, Karthikeyan T, Rajgopal S, et al. Kinetic and isotherm studiesof Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal ofColloid and Interface Science,2005,292(2):354-362
    [178]Karthikeyan T, Rajgopal S, Miranda L. Chromium (VI) adsorption fromaqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal ofHazardous Materials,2005,124(1-3):192-199
    [179]Malash G F, El-Khaiary M I. Piecewise linear regression: a statistical methodfor the analysis of experimental adsorption data by the intraparticle-diffusionmodels. Chemical Engineering Journal,2010,163(3):256-263
    [180]Mishra A K, Arockiadoss T, Ramaprabhu S. Study of removal of azo dye byfunctionalized multi walled carbon nanotubes. Chemical Engineering Journal,2010,162(3):1026-1034
    [181]Kumar K V, Ramamurthi V, Sivanesan S. Modeling the mechanism involvedduring the sorption of methylene blue onto fly ash. Journal of Colloid andInterface Science,2005,284(1):14-21
    [182]Alkan M, Dogan M, Turhan Y, et al. Adsorption kinetics and mechanism ofmaxilon blue5G dye on Sepiolite from aqueous solutions. ChemicalEngineering Journal,2008,139(2):213-223
    [183]Vadivelan V, Kumar K V. Equilibrium, kinetics, mechanism, and processdesign for the sorption of methylene blue onto rice husk. Journal of Colloidand Interface Science,2005,286(1):90-100
    [184]Balci S. Nature of ammonium ion adsorption by sepiolite: analysis ofequilibrium data with several isotherms. Water Research,2004,38(5):1129-1138
    [185]Riahi K, Thayer B B, Mammou A B, et al. Biosorption characteristics ofphosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers.Journal of Hazardous Materials,2009,170(2-3):511-519
    [186]Moussavi G, Talebi S, Farrokhi M, et al. The investigation of mechanism,kinetic and isotherm of ammonia and humic acid co-adsorption onto naturalzeolite. Chemical Engineering Journal,2011,171(3):1159-1169
    [187]Englert A H, Rubio J. Characterization and environmental application of aChilean natural zeolite. International Journal of Mineral Processing,2005,75(1-2):21-29
    [188]张新颖,吴志超,王志伟,等.天然斜发沸石粉对溶液中NH4+的吸附机理研究.中国环境科学,2010,30(5):609-614
    [189]Lin L, Lei Z F, Wang L, et al. Adsorption mechanisms of high-levels ofammonium onto natural and NaCl-modified zeolites. Separation andPurification Technology,2013,103:15-20
    [190]Leakovic S, Mijatovic I, Cerjan-Stefanovic S, et al. Nitrogen removal fromfertilizer wastewater by ion exchange. Water Research,2000,34(1):185-190
    [191]Ji Z Y, Yuan J S, Li X G. Removal of ammonium from wastewater usingcalcium form clinoptilolite. Journal of Hazardous Materials,2007,141(3):483-488
    [192]Inglezakis V J. The concept of ‘‘capacity’’ in zeolite ion-exchange systems.Journal of Colloid and Interface Science,2005,281(1):68-79
    [193]Zheng H, Han L J, Ma H W, et al. Adsorption characteristics of ammonium ionby zeolite13X. Journal of Hazardous Materials,2008,158(2-3):577-584
    [194]Rozic M, Cerjan S, Kurajica S, et al. Ammoniacal nitrogen removal from waterby treatment with clays and zeolites. Water Research,2000,34(14):3675-3681
    [195]Farinella N V, Matos G D, Arruda M A Z. Grape bagasse as a potentialbiosorbent of metals in effluent treatments. Bioresource Technology,2007,98(10):1940-1946
    [196]Bodalo A, Gomez J L, Gomez E, et al. Ammonium removal from aqueoussolutions by reverse osmosis using cellulose acetate membranes. Desalination,2005,184(1-3):149-155
    [197]Wu D, Zhang B, Li C, et al. Simultaneous removal of ammonium andphosphate by zeolite synthesized from fly ash as influenced by salt treatment.Journal of Colloid and Interface Science,2006,304(2):300-306
    [198]靳慧霞,马放,孟路.复合型微生物絮凝剂与化学絮凝剂的复配及其应用.化工进展,2006,25(1):105-109
    [199]黄兢,杨朝晖,孙珮石,等.微生物絮凝剂与聚合氯化铝复配的响应面优化.中国环境科学,2008,28(11):1014-1019
    [200]黄兢.微生物絮凝剂MBFGA1与聚合氯化铝复配技术研究:[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2009,21-23
    [201]Yang Z H, Huang J, Zeng G M, et al. Optimization of flocculation conditionsfor kaolin suspension using the composite flocculant of MBFGA1and PAC byresponse surface methodology. Bioresource Technology,2009,100(18):4233-4239
    [202]Mohana S, Shrivastava S, Divecha J. Response surface methodology foroptimization of medium for decolorization of textile dye Direct Black22by anovel bacterial consortium. Bioresource Technology,2008,99(3):562-569
    [203]赵选民.试验设计方法.北京:科学出版社,2006
    [204]Pericin D, Radulovic L, Trivic S, et a1. Evaluation of solubility of pumpkinseed globulins by response surface method. Journal of Food Engineering,2008,84(4):591-594
    [205]郭俊元,杨春平,曾光明,等.生物絮凝剂与改性沸石复配处理猪场废水厌氧消化液的响应面优化.中国环境科学,2012,32(10):1309-1313
    [206]Khosravi A, Esmhosseini M, Jalili J et al. Optimization of ammonium removalfrom waste water by natural zeolite using central composite design approach.Journal of Inclusion Phenomena and Macrocyclic Chemistry,2012,74(1-4):383-390

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700