用户名: 密码: 验证码:
非热放电与催化耦合降解室内苯和甲苯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实验室前期研究基础上,本文系统研究了不同条件下多针对板电晕放电中O、N自由基的产生特点及其产率优化;利用针阵列电晕放电催化耦合技术对室内空气中常见有机污染物(VOCs)苯和甲苯进行去除实验研究,总结出适用于室内空气净化的以针阵列对板直流电晕放电为核心净化单元的空气净化器运行参数;利用气相色谱—质谱联用仪(GC-MS)等多种气体分析仪研究了针阵列电晕放电—催化耦合技术去除苯和甲苯的作用机理,为以该技术为核心构建实用室内空气净化装置提供理论支撑。
     首先,以激发态O、N原子为研究对象,利用发射光谱技术研究电晕放电中的放电功率、放电极性、电极间距、相对湿度等因素对激发态O和N自由基产量的影响。在稳定放电条件下,获知两种活性自由基的产生规律以及宏观参数与其微观特性之间的相互关系。从而可更加全面地了解多针对板电晕放电产生活性物种的相关规律,为利用这些活性基团净化室内污染气体提供相应的设备优化参数。
     其次,以苯和甲苯为研究对象,在封闭小室内利用针阵列电晕放电技术对两种VOCs去除规律进行研究。在正、负直流电晕放电中,分别考察了初始浓度、放电功率、电极间距以及相对湿度等参数对两种污染物去除率的影响。获知了该放电方式降解苯和甲苯的相关规律,确定了以针阵列对板电晕放电为核心净化单元的净化装置的相关运行参数。在此基础上,构建了等离子体光催化、等离子体协同MnO2和等离子体光催化协同MnO2三种耦合净化体系。在不同放电功率和相对湿度条件下,分别研究三种净化体系中苯和甲苯去除率变化,总结出以针阵列直流电晕放电技术为核心,不同耦合净化体系降解苯和甲苯的相关规律。为针阵列电晕放电催化耦合室内空气净化装置提供设计依据。
     最后,采用GC-MS和CO、等多种气体检测仪,对不同净化体系中苯和甲苯降解产物及放电产生的有害副产物进行了定性和定量分析,探讨了针阵列电晕放电催化耦合技术去除苯和甲苯作用机理,为以针阵列电晕放电为核心的室内空气净化装置的设计提供理论支持。
Based on the former research in our laboratory, the production characteristic of O and N radical produced in needle matrix to plate corona discharge and their yield optimization under different experimental conditions were systematically investigated in this paper. Benzene and toluene are the common Volatile Organic Compounds (VOCs) in indoor air, the removal experiments of these two VOCs by needle matrix corona discharge coupled with catalysis was conducted. The operating parameters of indoor air purifier with needle matrix DC corona discharge as core purification unit were obtained. The removal mechanisms of benzene and toluene by needle matrix to plate corona discharge coupled with catalysis were analyzed using Gas Chromatography-Mass Spectrometer (GC-MS) and other gas analyzers, providing the theoretical support to the application of air purifier with needle matrix DC corona discharge as core technology.
     Firstly, the effects of discharge power, discharge polarity, electrode gap and relative humidity on the production of excited state O and N atom were investigated by optical emission spectroscopy. The production pattern and the relationship between macro parameters and micro characteristics of O and N atom were obtained under stable discharge condition. These results could provide comprehensive understanding to the law of radicals generated in needle matrix to plate corona discharge, and then also provide corresponding optimization parameters for indoor air purifier.
     Secondly, the technique of needle matrix to plate corona discharge was adopted to investigate the removal of benzene and toluene in a closed chamber. The effects of initial concentration, discharge power, electrode gap and relative humidity on the removal efficiencies of benzene and toluene were studied in positive and negative DC corona discharge. The removal patterns of benzene and toluene in this discharge mode were observed, and the operating parameters of purification device with needle matrix DC corona discharge as core purification unit were suggested. On this basis, plasma-photocatalysis, plasma-MnO2and plasma-photocatalysis-MnO2coupled purification systems were constructed. The variation trends of benzene and toluene removal efficiencies under different power and relative humidity were studied, and corresponding removal patterns of the two VOCs in different purification system were observed, providing the basis for air purifier of needle matrix DC corona discharge coupled with catalysis.
     Finally, the qualitative and/or quantitative analysis for benzene and toluene degradation products and harmful byproducts in different purification systems were conducted by GC-MS and other gas analyzers. Then, the removal mechanisms of benzene and toluene by needle matrix DC corona discharge coupled with catalysis were analyzed in detail, providing the theoretical support to air purifier design with needle matrix DC corona discharge as core technology.
引文
[1]李启东.室内环境空气质量研究进展.上海环境科学,2001,20(10):463-466.
    [2]崔成民,康君行,付新平.微量甲醛的分光光度法测定.北京服装学院学报,2000,20(1):28-31.
    [3]周黎明,马虹斌.非热放电等离子体治理有害气体.环境污染与防治,1996,18(6):18-22.
    [4]王俊,张景义,陈双基.室内空气中总挥发性有机物(TVOC)的污染.环境科学与技术,2004,27(1):34-35.
    [5]袁旭东,邢金丽.脉冲电晕放电法低温等离子体净化室内VOCs.建筑热能通风空调,2005,24(1):96-99.
    [6]冯春杨,赵君科.电晕法处理挥发性有机化合物技术研究现状.四川环境,2003,22(2):2-5.
    [7]Daisey J M, Hodgson A T. Volatile Organic Compounds in Tweleve Califonia Office Building:Classes, Concentrations and Sources.Atomspheric Environment,1994,28:3557-3562.
    [8]Ekberg L E. Volatile organic Compounds in Office Buildings. Atomspheric Environ ment,1994,28:3557-3562.
    [9]李辰,梁冰,师彦平,等.室内空气中挥发性有机化合物污染及检测方法.分析测试技术与仪器,2005,11(1):40-44.
    [10]M S Zuraimi,K W Tham, S C Sekhar. The effects of ventilation operations in det ermining contributions of VOC, sources in air-conditioned tropical buildings. Bull ding and Environment,2003,38(1):23-32.
    [11]B F Yu, Z B Hu, M Liu, et al. Review of research on air-conditioning systems and indoor air quality control for human health. International Journal of Refrigerat ion,2009,32(1):3-20.
    [12]A P Jones. Indoor air quality and health. Atmospheric Environment,1999,33(28): 4535-4564.
    [13]张济宇.世界各国对排放VOCs浓度的规定.石油化工环境保护,2000,3:64.
    [14]卢辛成,蒋剑春.挥发性有机物的治理以及活性炭的应用研究进展.生物质化学工程,2009,43(1):45-51.
    [1.5]L Gales, A Mendes, C Costa. Recovery of acetone, ethylacetate and ethanol by the rmal pressure swing adsorption. Chemical Engineering Science,2003,58(23-24):5279-5289.
    [16]李婕,羌宁.挥发性有机物(VOCs)活性炭吸附回收技术综述.四川环境,2007,26(6):101-105.
    [17]李立清,曾光明,唐新村,等.变压吸附技术净化分离有机蒸汽的研究进展.现代化工,2004,24(3):20-25.
    [18]Liu Yu jun, RITTER J A, BAL K K. Simulation of gasoline vapor recovery by pressure swing adsorption. Separation and Purification Technology,2000,20(1):111-127.
    [19]黄正宏,康飞宇,吴慧,等.活性炭纤维对挥发性有机化合物的吸附及其等温线的拟合.离子交换和吸附,2001,17(6):487-493.
    [20]张海波.日本推出高效吸收VOCs的碳纤维.建材工业信息,2003,6:48.
    [21]李守信,金平,张文智,等.采用活性炭纤维吸附装置回收VOCs的优点分析.化工环保,2004,24:274-276.
    [22]谢兰英,罗灵爱,李忠.热电泠凝VOCs广东化工,2005,32(6):11-15.
    [23]Vineet K G, Nishith V. Removal of volatile organic compounds by cryogenic con densation followed by adsorption. Chemical Engineering Science,2002 57(14):2679-2 696.
    [24]阎勇.膜分离技术在有机废气处理中的应用.现代化工,1998,11:19-22.
    [25]McCallion J. Membrane process capture vinylchloride, other VOCs. Chemical Proce ssing,1994,9(1):33-36.
    [26]Baker R W, Jacobs M. Improve monomer recovery from poly-olefin resin degassing. Hydrocarbon Processing,1996,3(3):49-51.
    [27]Ruddy E N, Carroll L A. Select the best VOCs strategy. Chemical Engineering Progress, 1993,89(7):28-34.
    [28]Tarun K Poddar, Ssudipto Majumdar, Kamalesh K Sirkar. Removal of VOCs from air by membrane-based aborption and stripping. Journal of Membrane Science,1996,120 (2):221-237.
    [29]Fransico J M H. Removing aromatic and oxygenated VOCs from polluted air stream using Pt-carbon aerogels:Assessment of their performance as adsorbent and combustion catalysts.Journal of Hazardous Materials.2011,194(30):216-222.
    [30]郝吉明,马广大.大气污染控制工程(第二版)[M].北京:高等教育出版社,2002.
    [31]Abdullah A Z, Abu Bakar M Z, Bhatia S. Combustion of chlorinated volatile organic compounds(VOCs) using bimetallic chromium-coper supported on modified H-ZSM-5 catalyst. Journal of Hazardous Materials.2006,129(1-3):39-49.
    [32]Lou J C, Tu Y J. Incinerating volatile organic compounds with ferrospinel catalyst MnFe204:An example with isoropyl alcohol. Journal of the Air & Waste Management Association,2005,55(12):1809-1815.
    [33]W B Li, J X Wang, H Gong. Catalytic combustion of VOCS on non-noble metal catalysts. Catalysis Today,2009,148(1-2):81-87.
    [34]Sang Chai Kim, Wang Geun Shim. Recycling the copper based spent catalyst for c atalytic combustion of VOCs. Applied Catalysis B:Environmental,2008,79(2):149-15 6.
    [35]0 Sanz,J J Delgado, P Navarro,et al.VOCs combustion catalysed by platinum supported on manganese octahedral molecular sieves. Applied Catalysis B:Environmental, 2011,110:231-237.
    [36]Beatriz D R, Ruben L F, Miguel A G 0, et al. Combustion of chlorinated VOCs usin g k-CeZrO4 catalysts. Catalysis Today,2011,176(1):470-473.
    [37]杨玉霞,孙鲲鹏,丘彦明,等.铁酸盐催化剂上乙醇的催化燃烧.分子催化,2006,30(1):34-38.
    [38]余凤江,张丽丹.苯催化燃烧反应Cu-Mn-Ce-Zr-O催化剂催化活性的研究.北京化工大学学报,2001,28(4):67-72.
    [39]苑宏英.生物净化挥发性有机化合物(VOCs)的研究进展.安全与环境学报,2004,4(S1):1-4.
    [40]周琪,杨尚天.大气污染的生物控制技术.上海环境科学,1997,16(12):6-10.
    [41]羌宁.气态污染物的生物净化技术及应用.环境科学,1996,17(3):87-90.
    [42]杨义飞,姜安玺,谢冰.生物脱臭技术研究进展.环境保护科学,2001,27(105):3-6.
    [43]Gero Leson, Winer A M. Biofiltration:An innovative air pollution control technology for VOC emissions. Air Waste Manage Assoc,1991,41(8):1045-1054.
    [44]赵化桥.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [45]菅井秀郎.离子体电子工程学[M].北京:科学出版社,2002.
    [46]Zhou Y X, Yan P, Cheng Z X, et al. Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash. Powder Technology.2003,135-136(2):345-353.
    [47]Song Y, Kim S, Choi K, et al. Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics.2002,55(2):189-201.
    [48]Roger Atkinson. Atmospheric chemistry of VOCs and NO,. Atmospheric Environment. 2000,34(12-14):2063-2101.
    [49]Y F Guo, X B Liao, D Q Ye. Detection of hydroxyl radical in plasma react ion on toluene removal. Journal of Environmental Sciences.2008,20 (12):1429-1432.
    [50]吴祖良,周勇平,高翔,等.放电等离子体处理VOCs的研究.电站系统工程.2003,19(4):7-12.
    [51]B M Penetrante, M C Hsiao, J N Bardsley, et al. Electron beam and pulsed corona processing of volatile organic compounds gas stream. Pure and Applied Chemistry, 1996,68(5):1083-1087.
    [52]Shoji Hashimoto, Teruyuki Hakoda, Koichi Hirata, et al. Low energy electron beam treatment of VOCS. Radiation Physics and Chemistry,57(3-6):485-488.
    [53]Ki Joon Kim, Jo Chun Kim, Jinkyu Kim, et al. Development of Hybrid technology u sing E-beam and catalyst for aromatic VOCs control. Radiation Physics and Chemistr y,2005,73(2):85-90.
    [54]Koichi Hirota, Teruyuki Hakoda, Hidehiko Arai, et al. Electron beam decompositon of vaorized VOCs in air. Radiation Physics and Chemistry,2002,65(4-5):415-421.
    [55]C Tendero, C Tixier, P Tristant, et al. Atmospheric pressure plasma:A review. Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(1):2-30.
    [56]J W Feng, Z Zheng, Y B Sun,et al. Degradation of diuron in aqueous solution by dielectric barrier discharge. Journal of Hazardous Materials,2008,154(1-3):1081-1 089.
    [57]蔡慧煊,邓启红,周鑫,等.低温等离子体技术去除苯的实验研究.建筑热能通风空调,2008,27(3):78-81.
    [58]D Evans.Plasma remediation of trichloroethylene in silent discharge plasma. Journal of applied Physics,1993,74(9):5378-5386.
    [59]寥劲松,徐红丽,欧阳吉庭.利用低温等离子体技术脱除甲醛的研究.北京理工大学学报,2005,25:189-192.
    [60]蒋洁敏,侯健,郑光云,等.介质阻挡放电常压分解苯、二甲苯.中国环境科学,2001,21(6):531-534.
    [61]郭玉芳,叶代启,陈克复.甲苯在不同背景气氛下的介质阻挡放电降解行为研究.北京理工大学学报,2005,25:212-216.
    [62]Z L Ye, Y N Zhang, P Li,et al. Feasibility of destruction of gaseous benzene with dielectric barrier discharge.Journal of Hazardous Materials,2008,156(1-3):356-364.
    [63]H M Lee, M B Chang. Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chemistry and Plasma Process.2003,23 (3):541-558.
    [64]W J Liang, J Li, J X Li, et al. Formaldehyde removal from gas streams by means of NaN02 dielectric barrier discharge plasma. Journal of Hazardous Materials 2010, 175(1-3):1090-1095.
    [65]李锻,刘明辉,吴彦,等.单极性脉冲电源结合介质阻挡放电降解VOCs.北京理工大学学报,2005,S1:201-204.
    [66]梁文俊,李坚,李依丽,等.低温等离子体法去除苯和甲苯废气性能研究.环境污染治理技术与设备.2005,6(5):51-55.
    [67]王银生,季学李,羌宁.脉冲电晕等离子体净化有机污染物甲苯的实验研究.同济大学学报.2000,28(6):699-701.
    [68]张顺喜,李胜利,吴健婷,等.脉冲等离子体治理二甲苯废气影响因素研究.高压电器,2008,44(2):114-117.
    [69]黄立维,谭天恩.脉冲电晕法治理甲苯废气实验研究.中国环境科学.1997,17(5):449-453.
    [70]S Schmid, M C Jecklin, R Zenobi. Degradation of volatile organic compounds in a non-thermal plasma air purifier. Chemosphere.2010,79(2):124-130.
    [71]T Oda. Non-thermal plasma processing for environmental protection:decomposition of dilute VOCs in air. Journal of Electrostatics.2003,57(3-4):293-311.
    [72]M Schiorlin, E Marotta, M Rea, et al. Comparison of toluene removal in air at atmospheric conditions by different corona discharges. Environmental Science & Technology.2009,43(24):9386-9392.
    [73]M A Malik, Y Minamitani,K H Schoenbach. Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds in a plasma catalytic reactor. IEEE Transactions on Plasma Science.2005,33(1):50-56.
    [74]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1992.
    [75]张晓明,黄碧纯,叶代启.低温等离子体光催化净化空气污染物技术研究进展.化工进展,2005,24(9):964-967.
    [76]J Van Durme, J Dewulf, W Sysmans, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere,2007,68(10):1821-1829.
    [77]王莲芬,何俊发,李育新,等.阵列电极流光放电分解苯系有机物.仪器仪表学报,2004,25(4):37-39.
    [78]袁学远,陶冶,刘培英.直流电晕放电降解甲苯的特性研究.环境污染治理技术与设备,2006,7(8):120-123.
    [79]K F Shang, X C Wang, X Y Zhou, et al. Diagnosis of electron temperature in Ar/02 mixed gas and destruction of toluene/benzene by positive dc discharge plasma. Journal of Electrostatics.2009,67(5):746-750.
    [80]B Ohtani. Preparing articles on photocatalysis-beyond the illusions misconce ptions and speculation. Chemistry letters,2008,37(2):217-229.
    [81]A Fujishima, K Honda. Electrochemical Photolysis of Water at a semiconductor Electrode. Nature,1972,238(5358):37-38.
    [82]Z L Cheng, X J Quan, Y Q Xiong, et al. Synergistic degradation of methyl oran ge in an ultrasound intensified photocatalytic reactor. Ultrasonics Sonochemistry, 2012,19 (5):1027-1032.
    [83]J A Herrera Melian, A J Martin Rodriguez, A Ortega Mendez,et al. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. Journal of Environmental Management.2012,105:53-60.
    [84]H Q Sun, R Ullah, S Chong, et al. Room light induced indoor air purification u sing an efficient Pt/N-TiO2 photocatalyst. Applied catalysis B Environmental,2011, 108 (1-2):127-133.
    [85]D R Park, J L Zhang, K Ikeue, et al. Photocatalytic oxidation of ethylene to CO2 and H2O on Ultraf ing powdered TiO2 photocatalysts in the presence of O2 and H2O. Journal of Catalysis,1999,185(1):114-119.
    [86]J Peral, X Domenech, D F Ollis. Heterogeneous photocatalysis for purification, decontamination and deodorization of air. Journal of Chemical Technology and Biot echnology,1997,70(2):117-140.
    [87]M R Hoffman, S T Martin, W Y Choi, et al. Environmental applications of semico nductor photocatalysis. Chemical Reviews,1995,95(1):69-96.
    [88]M D Hernandez Alsonso, A B Hungria, A Martinez-Arias, et al.EPR study of the photo assisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Applied Catalysis B:Enviromental,2004,50(3):167-175.
    [89]J J Ding, J Bao, S Sun, et al. Combinatorial Discovery of Visible-light Driven Photocatalysts Based on the ABO3-type(A= Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B= Al and Ln) Binary Oxides. Journal of Combinatorial Chemistry,2009,11(4):523-526.
    [90]J J Ding, S Sun,J Bao,et al. Synthesis of CaIn204 Rods and Its Photocatalytic Performance under Visible light Irradiation. Catalysis Letters,2009,130(1-2): 147-153.
    [91]A Fujishima,X T Zhang. Titanium dioxide photocatalysis:present situation and future approaches. Comptes Rendus Chimie,2006,9(5-6):750-760.
    [92]杨瑞,莫金汉,张寅平.TiO2/丝光沸石光催化降解甲醛特性研究.工程热物理学报,2005,26(3):474-476.
    [93]黄婉霞,孙作凤,吴建春,等.纳米二氧化钛光催化作用降解甲醛的研究.稀有金属,2005,29(1):34-38.
    [94]刘洋,尚静,王忠.TiO2纳米粒子光催化降解室内挥发性有机污染物苯的研究.环境污染治理技术与设备,2006,7(10):43-46.
    [95]K L Yeung, A J Maira, J Stolz, et al. Ensemble effects in Nanostructured TiO2 Used in the Gas-Phase Photooxidation of Trichloroethylene. Journal of Physical Chemistry B,2002,106(18):4608-4616.
    [96]T Chen,Z C Feng, G P Wu, et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR a nd time-resolved IR spectroscopy. Journal of Physical Chemistry,2007,111(22):8005-8014.
    [97]L A Dibble, G B Raupp. Kinetics of gas-solid heterogeneous photocatalytic oxi dation of trichloroethylene by near-UV illuminated titanium dioxide. Catalysis le tters,1990,4(4-6):345-354.
    [98]L A Dibble, G B Raupp. Fluidized-Bed Photocatalytic Oxidation of Trichloroeth ylene in Contaminated Air Streams. Environmental Science & Technology,1992,26(3): 492-495.
    [99]T N Obee, R T Brown. TiO2 Photocatalysis for Indoor Air Applications:Effects of Humidity and Trace contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environmental Science & Technology,1995,29(5):1223-1231.
    [100]W A Jacoby, D M Blake, J A Fennell, et al. Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor air. Journal of the Air & Waste Management Association,1996,46(9):891-898.
    [101]L Stevens, J A Lanning, L G Anderson,et al. Investigation of the Photocatalytic Oxidation of Low-Level Carbonyl Compounds. Journal of the Air & Waste Management Association,1998,48(10):979-984.
    [102]张政委,陈志祥,赖小林,等.改性二氧化钛对苯的光催化氧化作用及其结构研究.新疆化工,2006,4:15-19.
    [103]A Linsebigler, C Rusu, T John,et al. Absence of Platinum Enhancement of a Pho toreaction on TiO2-CO Photooxidation on Pt/TiO2(110). Journal of The American Che mical Society,1996,118(22):5284-5289.
    [104]P V Kamat, M Dan. Nanoparticles in advanced oxidation processes. Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35.
    [105]G C Xiao,X C Wang, D Z Li, et al. InVO4-sensitized Ti02 photocatalysts for efficient air purification with visible light. Journal of Photochemistry and Photobiology A:Chemistry,2008,193(2-3):213-221.
    [106]W Y Choi, A Termin, M R Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized Ti02:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry,1994,98(51):13669-13679.
    [107]王文春,吴彦,李学初.(SO2,N2)气体中脉冲放电SO发射光谱测量实验研究.分子科学学报,1999,15(1):1-5.
    [108]吴忠标.室内空气污染及净化技术.北京:化学工业出版社,2005.
    [109]杨武,荣命哲.低温等离子体空气净化原理及应用.电工技术杂志,2000,3:31-32.
    [110]H H Kim, S M Oh, A Ogata, et al. Dcomposition of Gas-phase benzene using plasma-driven catalyst(PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B:Environmental,2005,56(3):213-220.
    [111]H H Kim, Y H Lee,A Ogata et al. Plasma-driven catalyst processing packed wit h photocatalyst for gas-phase benzene decomposition. Catalysis Communications,200 3,4 (7):347-351.
    [112]H H Kim, A Ogata, S Futamura, et al. Decomposition of gas-phase benzene using hybrid systems of a non-thermal plasma and catalysts. Journal of the Korean Physical Society, 2004,44:1163-1167.
    [113]H H Kim, S M Oh, A Ogata, et al. Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor:influence of electrode configuration and Ag-loading amount. Catalysis Letters,2004,96:189-194.
    [114]H H Kim, A Ogata,S Futamura, et al. Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. Journal of Physics D: Applied Physics,2005,38(8):1292-1300.
    [115]S Futamura, H Einaga, H Kabashima,et al. Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catalysis Today,2004,89(1-2):89-95.
    [116]D W Park, S H Yoon, G J Kim,et al. The effect of catalyst on the decomposition of dilute benzene using dielectric barrier discharge. Journal of Industrial and Engineering Chemistry,2002,8:393-398.
    [117]B Y Lee, S H Park,S C Lee, et al. Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system. Catalysis Today,2004,93-95:769-776.
    [118]T Zhu, J Li, Y Jin, et al. Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect. International Journal of Environmental Science and Technology,2008,5(3):375-384.
    [119]D A Li, D Yakushiji, S Kanazawa, et al. Decomposition of toluene by streamer corona discharge with catalyst. Journal of Electrostatics,2002,55(3-4):311-319.
    [120]H B Huang, D Q Ye, D Y C Leung, et al. Plasma-driven catalysis process for toluene abatement:effect of water vapor. IEEE Transactions on Plasma Science,2011,39 (1): 576-580.
    [121]H B Huang, D Q Ye, D Y C Leung. Removal of toluene using UV-irradiated and nonthermal plasma-driven photocatalyst system. Journal of Environmental Engineering: ASCE,2010,136(11):1231-1236.
    [122]H B Huang, D Q Ye, D Y C Leung, et al. Byproducts and pathways of toluene destruction via plasma-catalysis. Journal of Molecular Catalysis A:Chemical,2011,336(1-2):87-97.
    [123]B Lu, X Zhang, X Yu,et al. Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials,2006,137 (1):633-637.
    [124]T Zhu, J Li, Y Q Jin, et al. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. International Journal of Environmental Science and Technology,2009,6(1):141-148.
    [125]S Chavadej, W Kiatubolpaiboon, P Rangsunvigit, et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal. Journal of Molecular Catalysis A:Chemical,2007,263(1-2):128-136.
    [126]H H Kim, H Kobara, A Ogata, et al. Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene.IEEE Transactions on Industry Applications,2005,41:206-214.
    [127]H H Kim, A Ogata, S Futamura. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Applied Catalysis B:Environmental,2008,79(4):356-367.
    [128]A M Harling, V Demidyuk,S J fischer,et al. Plasma-catalysis destruction of a romatics for environmental clean-up:effect of temperature and configuration, App lied Catalysis B:Environmental,2008,82 (3-4):180-189.
    [129]H B Huang, D Q Ye, M L Fu, et al. Contribution of UV light to the decomposition of toluene in dielectric barrier discharge plasma/photocatalysis system. Plasma Chemistry and Plasma Processing,2007,27(5):577-588.
    [130]T Zhu, J Li, W J Liang, et al. Synergistic effect of catalyst for oxidation removal of toluene. Journal of Hazardous Materials,2009,165(1-3):1258-1260.
    [131]C L Chang, T S Lin.Decomposition of toluene and acetone in packed dielectri c barrier discharge reactors. Plasma Chemistry and Plasma Processing,2005,25(3):2 27-243.
    [132]H B Huang, D Q Ye. Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene. Journal of hazardous Materials, 2009,171(1-3):535-541.
    [133]J Van Durme, J Dewulf, W Sysmans, et al. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B:Environmental,2007,74(1-2): 161-169.
    [134]J Van Durme, J Dewulf, K Demeestere, et al. Post-plasma catalytic technology for the removal of toluene from indoor air:effect of humidity. Applied Catalysis B: Environmental,2009,87(1-2):78-83.
    [135]M Kang, B J Kim, S M Cho, et al. Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system. Journal of Molecular Catalysis A:Chemical,2002, 180(1-2):125-132.
    [136]侯立安,吴祖国,王佑君,等.离子、光催化耦合空气净化装置的设计与研究.机电产品开发与创新,2009,22(4):16-18.
    [137]D Li, D Yakushi ji, S Kanazawa, et al Decomposition of Tolunene by Streamer corona Discharge with Catalyst. Journal of Electrostatics,2002,55(3-4):311-319.
    [138]L P Huang, Y H Yu, Q H Wang, et al. Study on Sterilization Efficiency of Non-thermal Plasma Air Cleaning Device. Progress in Environmental Science and Technology,2007, 11(1):580-583.
    [139]Y M Zhu, M X Zhang, P H Su,et al. Study on trapping inhalable particles by no n-thermal plasma. Proceedings of the Fifth International Conference on Applied El ectrostatics,2004:154-157.
    [140]L P Huang,Q H Wang, S Yang, et al. Removal of NO2 produced by corona discharge in indoor air cleaning. Journal of Advanced Oxidation Technologies,2009,12(2):238-241.
    [141]杨树,黄丽萍,朱益民,等.室内空气净化中臭氧产生及其催化分解研究.北京理工大学学报(增刊),2009,12(2):158-160.
    [142]B Sun, M Sato, J Clements. Optical study of active species produced by pulsed streamer corona discharge in water. Journal of Electrostatics,1997,39(3):189-202.
    [143]V Leveille, S Coulombe. Atomic oxygen production and exploration of reaction mechanisms in He-O2 atmospheric pressure glow discharge torch. Plasma Processes and Polymers,2006,3(8):587-596.
    [144]W C Zhu, Q Li,X M Zhu,et al. Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium.Journal of Physics D:Applied Physics, 2009,42(20):1-4.
    [145]刘忠伟,陈强,王正铎,等.大气压射流等离子体中O及OH自由基的发射光谱在线诊断.强激光与粒子束,2010,22(10):2461-2464.
    [146]S E Babayan, G Ding, R F Hicks.Determination of the Nitrogen Atom Density in the afterglow of a Nitrogen and Helium, Nonequilibrium, Atmospheric Pressure P1 asma. Plasma Chemistry and Plasma Processing,2001,21(4):505-521.
    [147]H Hazama, M Fujiwara, M Tanimoto. Removal processes of nitric oxide along positive streamers observed by laser-induced fluorescence imaging spectroscopy. Chemical Physics Letters,2000,323(5-6)-.542-548.
    [148]C Aragon, J A Aguilera. Characterization of laser induced plasmas by optical emission spectroscopy:A review of experiments and methods. Spectrochim Acta B,2008,63(9):893-916.
    [149]刘晶,牛金海,徐勇,等.介质阻挡放电等离子体脱除氮氧化物的发射光谱研究.物理化学学报,2005,21(12):1352-1356.
    [150]S Miyanaga, T Kaneko, H Ishida, et al. Synthesis evaluation of nitrogen atom encapsulated fullerenes by optical emission spectra in nitrogen plasmas. Thin Solid Films,2010,518(13):3509-3512.
    [151]X Yang, M Moravej, G R Nowling, et al.Comparison of an atmospheric pressure, ratio-frequency discharge operating in the α and γ modes. Plasma Sources Scienc e and Technology,2005,14(2):314-320.
    [152]杨树,张零零,葛辉,等.多针对板正电晕放电电场强度及电流密度理论分析.中国科技论文在线,2010,5:377-381.
    [153]S Delagrange, L Pinard, J Tatibouet. Combination of a non-thermal plasma and a catalyst for toluene removal from air:Manganese based oxide catalysts. Applied Catalysis B:Environmental.2006,68(3-4):92-98.
    [154]Y F Guo, X B Liao, J H He,et al. Effect of mangese oxide catalyst on the diel ectric barrier discharge decomposition of toluene. Catalysis Today,2010,153(3-4): 176-183.
    [155]X Fan, T L Zhu, M Y Wang, et al. Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere,2009,75(10):1301-1306.
    [156]R Atkinson, D L Baulch, R A Cox, et al. Evaluated kinetic and photochemical data for atmospheric chemistry:supplement VIII, halogen species-IUPAC Subcommittee on gas kinetic data evaluation for atmospheric chemistry.Journal of physical and chemical reference data,2000,29:167-266.
    [157]D Delimaris, T Loannides. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method. Applied Catalysis B:Environmental,2009,89(1):295-302.
    [158]D Delimaris, T loannides. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method. Applied Catalysis B:Environmental,2008,84(1):303-312.
    [159]A D Koutsospyros,S M Yin, C Christodoulatos, et al. Plasma chemical Degradation of Volatile Organic Compounds (VOC) in a Capillary Discharge Plasma Reactor. IEEE Transactions on Plasma Science,2005,33(1):42-49.
    [160]J Jarrige, P Vervisch. Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Applied Catalysis B:Environmental, 2009,90(1):74-82.
    [161]王洪昌.介质阻挡放电去除气态混合VOCs的研究:(博士毕业论文).大连:大连理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700