用户名: 密码: 验证码:
沁南煤储层排采水化学动态变化特征及带压解吸/流动物理模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了揭示沁南煤储层排采水地球化学动态变化规律及煤层气解吸-扩散-渗流特征,本文提出了排采水离子浓度动态变化的表征参数——“变化率”和“变化速率”来划分煤储层水系统类型;通过大块煤样带压解吸、煤岩气、水单相、气水两相渗透率以及煤基质扩散系数物理模拟来研究煤储层三级流动特征及煤储层各排采阶段的气、水解吸、流动规律。
     利用排采水离子浓度动态变化表征参数将煤储层水系统划分为“开放型”和“封闭型”两种类型,“封闭型”煤储层水系统的煤层气井各离子浓度“变化率”较“开放型”煤储层水系统大2倍左右,“封闭型”煤储层水系统的“变化速率”比“开放型”煤储层水系统高2~3个数量级。基于高煤级大块煤样的逐级降压解吸模拟,发现了高煤级储层内部过渡孔、微孔吸附气的“解吸滞后”导致了每一压降阶段解吸气量呈现出波动变化、平稳升高、衰减下降的三阶段特征、累计解吸率与废弃压力呈指数关系、废弃压力0.7MPa下,高煤级储层的累计解吸率为53.46%、逐级降压解吸量是常压解吸量的1.46倍。基于不同尺度空间结构渗透率、扩散系数的静态实验,结合有效应力效应、煤基质收缩效应及滑脱效应综合作用下的煤岩渗透率动态模拟,认为煤岩宏观裂隙渗透率为高效渗透率,显微裂隙渗透率为低效渗透率,煤层气的扩散以过渡型扩散为主;指出煤储层三级流动是在煤层气高效渗流场、低效渗流场、煤层气扩散场之间的连续流动。根据煤储层排采的流体响应特征,从煤储层解吸的角度将煤层气井排采划分为水流阶段(I阶段)、不稳定解吸阶段(Ⅱ_1+Ⅱ_2阶段)、稳定解吸阶段(Ⅲ阶段)和衰减解吸阶段(Ⅳ阶段)。I阶段:压裂液及储层动水孔隙中重力水产出,煤层气无解吸;Ⅱ_1阶段:随压力降低,游离气与水溶气产量逐渐增加,出现第一个短期产气高峰;Ⅱ_2阶段:孔隙气解吸滞后及有效应力作用下裂隙渗透率降低,产能出现低谷;Ⅲ阶段:微孔内吸附气平稳解吸,煤基质收缩效应作用下裂隙渗透率增大,产量渐增,形成连续产气的第二个高峰;Ⅳ阶段:煤基块内压差与浓度差小,解吸缓慢,气产量逐渐减少。空间上煤层气解吸由井筒向外递进推进,时间上煤储层各处经历了前述四个阶段的解吸、流动过程,时空上煤储层排采呈现出“接力供气”的特征。
In order to investigate the dynamic change regularities of underground waterduring coal reservoir drainage in southern Qinshui basin and the determination offollow-up CBM desorption, diffusion and flow process to CBM production,“changerate” and “variation velocity”, characterization parameters of dynamic change of ionsconcentration, were put forward to differentiate coal reservoir water systems. Throughdesorption experiments of bulk coal sample at fixed pressures, coal gas and liquidsingle phase permeability, gas-liquid two phases permeability and coal matrixdiffusion coefficient simulation, the three-level flow laws of coal reservoir werediscussed, as well as gas-water desorption and flow features in different drainagestages were revealed.
     In this paper, coal reservoir water systems were classified into two types, i.e.“connected” and “unconnected”, based on the characterization parameters of dynamicchange characteristics of ion concentration. In a short time, the ionic concentration“change rate” of CBM well water of the “unconnected” type was about two timeslarger than that of the “connected” one. In addition, the difference in the magnitude of“variation velocity” of ion concentration between the two water systems was2-3orders. On the basis of desorption experiments of bulk high-rank coal at step-downpressures,“desorption hysteresis” in micro-pore and transitional pore in high-rankcoal reservoir was considered to result in the fluctuations, rise and decline of threedesorption stages in each pressure-drop stage. What’s more, there exists anexponential relationship between the accumulative desorption rate and abandonmentpressure. Under an abandonment pressure0.7MPa, the accumulative desorption ofhigh-rank coal reservoir, and total desorption amount of step-down-pressuredesorption was1.46higher than that of desorption under normal pressure. Based onstatic simulation of permeability and diffusion coefficient on coal structure ofdifferent space scales, combining with dynamic simulation of coal permeability underthe comprehensive function of effective stress effect, coal matrix shrinkage effect andslippage effect, the coal macro-fracture permeability was defined as high-efficiencypermeability while the coal micro-fracture permeability was defined as low-efficiencypermeability and transitional diffusion mode dominated in all the CBM diffusionmodels. The three-level flow was pointed out to be a continuous flow in the CBMhigh-efficiency flow space, low-efficiency flow space and CBM diffusion space.Based on response characteristics of fluid in the coal reservoir drainage process, in terms of desorption in coal reservoir the drainage process was divided into four stagesi.e.(I) liquid flow,(Ⅱ_1+Ⅱ_2) unstable desorption,(Ⅲ) stable desorption, and (Ⅳ)attenuation desorption. Stage I: fracturing fluid and gravity water in reservoir poresoutput without CBM desorption. Stage Ⅱ_1: the first short peak of gas generationoccurred with the increase of free gas and water soluble gas due to the decrease ofpressure. Stage Ⅱ_2: the production reached a low point because of a desorption lag ofadsorbed methane and the reduction of fracture permeability under the function ofeffective stress. Stage Ⅲ: the adsorbed gas desorbed in the micro-pore steadily andthe production gradually increased due to the increase of fracture permeability underthe function of coal matrix shrinkage effect and there went up to the second peak ofgas-generating. Stage Ⅳ: the CBM production gradually reduced due to the differenceof pressure and reduction of concentration difference in the coal matrix, at lastdesorption dried up. The CBM desorption is proceeding from the wellboreprogressive outward in space. Coal reservoir has experienced the four stages ofdesorption and flow process in time and coal reservoir shows the characteristics of therelay gas supply in time and space.
引文
[1]李忠城,唐书恒,王晓锋,等.沁水盆地煤层气井产出水化学特征与产能关系研究[J].中国矿业大学学报,2011,40(3):424-429.
    [2]朱卫平,唐书恒,王晓峰,等.煤层气井产出水中氯离子变化规律回归分析模型[J].煤田地质与勘探,2012,40(5):34-36.
    [3]池卫国.沁水盆地煤层气的水文地质控制作用[J].石油勘探与开发,1998,25(3):31-34.
    [4]王保玉,李友谊.西峰矿区煤层气井产出水地球化学特征及排采状况分析[J].高校地质学报,2012,18(3):579-582.
    [5] Golding S D, Kinnon E C P, Boreham C J, et al. Stable isotope and water quality analysis ofcoal bed methane production waters and gases fromthe Bowen Basin,Australia[J].International Journal of Coal Geology,2010,82(3-4):219-231.
    [6]刘曰武,苏中良,方虹斌,等.煤层气的解吸/吸附机理研究综述[J].油气井测试,2010,19(6):37-44+83.
    [7]康永尚,赵群,王红岩,等.煤层气井开发效率及排采制度的研究[J].天然气工业,2007,27(7):79-82+139-140.
    [8]何伟钢,叶建平.煤层气井排采历史地质分析[J].高校地质学报,2003,9(3):385-389.
    [9]李金海,苏现波,林晓英,等.煤层气井排采速率与产能的关系[J].煤炭学报,2009,34(3):376-380.
    [10]单耀.含煤地层水岩作用与矿井水环境效应[D].中国矿业大学,2009.
    [11]王红岩,张建博,刘洪林,等.沁水盆地南部煤层气藏水文地质特征[J].煤田地质与勘探,2001,29(5):33-36.
    [12]王明明,卢晓霞,金惠,等.华北地区石炭-二叠系煤层气富集区水文地质特征[J].石油实验地质,1998,20(4):77-85.
    [13]冯文光.煤层气藏工程[M].北京:科学出版社,2009:72-74.
    [14]王勃,李谨,张敏.煤层气成藏地层水化学特征研究[J].石油天然气学报,2007,29(5):66-68.
    [15]王勃,巢海燕,郑贵强,等.高、低煤阶煤层气成藏地质特征及控气作用差异性研究[J].地质学报,2008,82(10):1396-1401.
    [16]刘辉,董俊昌,崔勇,等.水相相态变化规律及气井产水成因研究[J].钻采工艺,2011,34(3):52-54.
    [17]楼章华,金爱民,朱蓉,等.松辽盆地油田地下水化学场的垂直分带性与平面分区性[J].地质科学,2006,41(3):392-403.
    [18]徐国盛,宋焕荣,周文.鄂尔多斯盆地中部气田水化学条件与天然气聚集[J].石油实验地质,2000,22(4):330-335.
    [19]叶建平.水文地质条件对煤层气产能的控制机理与预测评价研究[D].中国地质大学,2003.
    [20]张聪,陈洪明,李梦溪,等.樊庄区块固县井区煤层气储层流体化学场研究[J].中国煤层气,2011,8(6):3-7.
    [21]刘会虎.沁南地区煤层气排采井间干扰的地球化学约束机理[D].中国矿业大学,2011.
    [22]菅笑飞,唐书恒,单帅强,等.沁水盆地潘庄区煤层气井产出水水质分析[J].科技视界,2012(24):49-52.
    [23] Harrison S M, Gentzis T, Payne M. Hydraulic, water quality, and isotopic characterization ofLate Cretaceous-Tertiary Ardley coal waters in a key test-well, Perbina-Warburg explorationarea, Alberta, Canada [J]. Bulletin of Canadian Petroleum Geology,2006,54(3):238-260.
    [24] Stefan B, Karsten M. Possible controls of hydrogeological and stress regimes on theproducibility of coalbed methane in Upper Cretaceous-Tertiary strata of the Albertabasin,Canada[J]. AAPG Bulletin,2003,87(29):1729-1754.
    [25] Wayne A V. Geochemical signature of formation waters associated with coalbed methane[J].AAPG Bulletin,2003,87(4):667-676.
    [26] Decker A D, Klusman R, Horner D M. Geochemical techniques applied to the identificationand disposal of connate coal water[J]. Proceedings-international coalbed methane symposilun1987,1987:229-242.
    [27] Mcbeth I H, Reddy K J, Skinner Q D. Chemistry of trace elements in coalbed methaneproduct water[J]. Water Research,2003,37(4):884-890.
    [28] Rice C A, Flores R M, Stricker G D. Chemical and stable isotopic evidence for water/rockinteraction and biogentic origin of coalbed methane, Fort Union Formation, Powder RiverBasin, Wyoming and Montana U.S.A.[J].2008,76:76-85.
    [29] Patz M J, Reddy K, Skinner Q D. Trace elements in coalbed methane produced waterinteracting with semi-arid ephemeral stream channels[J]. Water Air and Soil Pollution,2006,170(4):55-67.
    [30] Jackson R E, Reddy K J. Geochemistry of coalbed natural gas (CBNG) produced water inpowder river basin, wyoming: salinity and sodicity[J]. Water Air and Soil Pollution,2007,184(4):49-61.
    [31]马东民,韦波,蔡忠勇.煤层气解吸特征的实验研究[J].地质学报,2008,82(10):1432-1436.
    [32] Barrer R M. Diffusion in and through solid[M]. Cambridge: Cambridge University Press,1951.
    [33] Anderson R B, Bayer J, Hofer L J E. Equilibrium Sorption Studies of Methane on PittsburghSeam and Pocahontas No.3Seam Coal[M]. Coal Science, American Chemical Society,1966,386-399.
    [34] Gregory J B, Karen C R. Hysteresis of Methane/Coal Sorption Isotherms[C]. New Orleans,Louisiana: SPE Annual Technical Conference and Exhibition,1986.
    [35]唐书恒,张遂安,叶建平,等.煤对甲烷气体吸附—解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44-46.
    [36]张庆玲,崔永君,曹利戈.煤的等温吸附实验中各因素影响分析[J].煤田地质与勘探,2004,32(2):16-19.
    [37]马东民,蔺亚兵,张遂安.煤层气升温解吸特征分析与应用[J].中国煤层气,2011,8(3):11-15.
    [38]马东民.煤层气吸附解吸机理研究[D].西安科技大学,2008.
    [39]叶欣,刘洪林,王勃,等.高低煤阶煤层气解吸机理差异性分析[J].天然气技术,2008,2(2):19-22,93.
    [40]陈振红,王一兵,宋岩.不同煤阶煤层气吸附解吸特征差异对比[J].天然气工业,2008,28(3):30-32.
    [41]乔军伟.低阶煤孔隙特征与解吸规律研究[D].西安科技大学,2009.
    [42]周胜国.煤层含气量模拟试验方法及应用[J].煤田地质与勘探,2002,30(5):25-28.
    [43]张国华,韩永辉,侯凤才,等.含瓦斯煤带压解吸规律的实验研究[J].黑龙江科技学院学报,2011,21(1):31-35.
    [44]李景明,刘飞,王红岩,等.煤储集层解吸特征及其影响因素[J].石油勘探与开发,2008,35(1):52-58.
    [45] Harpalani S, Zhao X. An Investigation of the effect of gas desorption on coalpermeability[Z].1989.
    [46] Bustin R M, Clarksonr C R. Geological controls on coalbed methane reservoir capacity andgas content[J]. International Journal Of Coal Geology,1998,38(24):3-26.
    [47]张力,田晋生.阳泉矿区3~#煤煤层气解吸特性的研究[J].煤田地质与勘探,2002,30(1):25-27.
    [48]李小彦,司胜利.我国煤储层煤层气的解吸特征[J].煤田地质与勘探,2004,32(3):27-29.
    [49]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(28):1563-1568.
    [50]段利江,唐书恒,刘洪林,等.晋城地区煤层气解吸及碳同位素分馏特征[J].高校地质学报,2008,14(3):414-418.
    [51]王乐平,张国华,王现强.煤层气的储层特征及其对煤层气解吸的影响[J].煤炭技术,2009,28(1):156-158.
    [52]刘胖.中高阶烟煤对甲烷的吸附/解吸特征研究[D].西安科技大学,2010.
    [53]傅雪海,秦勇,叶建平,等.中国部分煤储层解吸特性及甲烷采收率[J].煤田地质与勘探,2000,28(2):19-22.
    [54]罗振兴.煤层气排采曲线类型划分及排采因素分析[J].重庆科技学院学报,2012,14(4):56-59.
    [55]何伟钢,叶建平.煤层气井排采历史地质分析[J].高校地质学报,2003,9(3):385-389.
    [56]杨焦生,李安启.樊庄区块煤层气井开发动态分析及分类评价[J].天然气工业,2008,28(3):96-98.
    [57]王国强.影响煤层气井生产特征的关键因素分析—以沁水盆地南部潘河地区为例[C].北京:地质出版社,2008.
    [58] Bumb A C. Unsteady-state Flow of Methane and Water in Coalbeds[D].Wyomimg:University of Wyomimg,1987.
    [59]倪晓明,苏现波.煤层气开发地质学[M].北京:化学工业出版社,2010,166.
    [60]王兴隆,赵益忠,吴桐.沁南高煤阶煤层气井排采机理与生产特征[J].煤田地质与勘探,2009,37(5):19-22.
    [61]田永东.沁水盆地南部煤储层参数及其对煤层气井产能的控制[M].北京:中国矿业大学出版社,2009.
    [62]刘曰武,赵培华,鹿倩,等.煤层气与常规天然气测试技术的异同[J].油气井测试,2010,19(6):6-11,82.
    [63]杨秀春,李明宅.煤层气排采动态参数及其相互关系[J].煤田地质与勘探,2008,36(2):19-23,27.
    [64]魏庆喜,倪小明,苏现波.煤储层渗透率与煤层气垂直井排采曲线关系[J].煤炭学报,2009,34(9):1194-1198.
    [65]秦义,李仰民,白建梅,等.沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J].天然气工业,2011,31(11):22-25,119-120.
    [66]傅雪海,秦勇,韦重韬,等. QNDN1井煤层气排采的流体效应分析[J].天然气工业,2010,30(6):48-51,126-127.
    [67]饶孟余,江舒华.煤层气井排采技术分析[J].中国煤层气,2010,7(1):22-25.
    [68] Harpalani S, Pariti U. Study of coal sorption isotherms using a multicomponents gasmixture[C]. Tuscaloosa Alabama: The1993International coalbed methane symposium,1993.
    [69]桑树勋,朱炎铭.煤吸附气体的固气作用机理(I)—煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-25.
    [70]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [71]李强,欧成华,徐乐,等.我国煤岩储层孔-裂隙结构研究进展[J].煤,2008,17(7):1-3+29.
    [72]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):29-32.
    [73]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].多相介质煤层气储层渗透率预测理论与方法,徐州:中国矿业大学出版社,2003,75-76.
    [74]陈富勇,琚宜文,李小诗,等.构造煤中煤层气扩散-渗流特征及其机理[J].地学前缘,2010,17(1):195-201.
    [75]简星,关平,张巍.煤中CO2的吸附和扩散:实验与建模[J].中国科学:地球科学,2012,42(4):492-504.
    [76]尹小勇.扩散系数微观研究[D].天津大学,2007.
    [77]闫宝珍,王延斌,倪小明.地层条件下基于纳米级孔隙的煤层气扩散特征[J].煤炭学报,2008,33(6):657-660.
    [78]孟昭平,彭素萍,白清昭,等.焦作矿区二1煤储层特征评价[J].中国矿业大学学报,1998,27(2):162-166.
    [79] George J D, Barakat M A. The change in effective stress associated with shrinkage from gasdeportation in coal[J]. International Journal of Coal Geology,2001,45(2-3):105-113.
    [80]尹光志,黄启翔,张东明,等.地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J].岩石力学与工程学报,2010,29(2):336-343.
    [81]彭守建,许江,陶云奇,等.煤样渗透率对有效应力敏感性实验分析[J].重庆大学学报(自然科学版),2009,32(3):303-307.
    [82]黄启翔,尹光志,姜永东,等.型煤试件在应力场中的瓦斯渗流特性分析[J].重庆大学学报(自然科学版),2008,31(12):1436-1440.
    [83] Somerton W, Dudley R C, Soylemezoglu I M. Effect of Stress on Permeability of Coal[C].SPWLA16th Annual Logging Symposium: International Journal of Rock Mechanics andMining Sciences&Geomechanics,1975.
    [84] Mckee C R, Bumb A C, Way S C. Using Permeability vs Depth Correlations to Assess thePotential for Producing Gas from Coal Seams[J]. Quarterly Review of Methane from CoalSeams Technology,1986,4(1):15-26.
    [85] Durucan S, Edwards J S. The Effects of stress and fracturing on permeability of coal[J].Mining Science and Technology,1986,3(3):205-216.
    [86] Gash B W. Measurement of the rock properties in coalbed methane[C]. Dallas Texas USA:Proceedings of the1991SPE Annual Technical Conference&Exhibition,1991.
    [87] Puri R, Evanoff J C, Brugler M L. Measurement of coal cleat porosity and relativepermeability characteristics[C]. Houston: Society of Petroleum Engineers of AIME:1991.
    [88]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987(1):24-31.
    [89]罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报,1991(3):58-64.
    [90]唐巨鹏,潘一山,李成全,等.三维应力作用下煤层气吸附解吸特性实验[J].天然气工业,2007,27(7):35-38,133.
    [91]何伟钢,唐书恒,谢晓东.地应力对煤层渗透性的影响[J].辽宁工程技术大学学报(自然科学版),2000,19(4):353-355.
    [92] Recroft P J, Patel H. Gas-induced swelling in coal[J].1996,65(6):816-820.
    [93] Thomas J, Damberger H H. Internal surface area, moisture content and porosity Illinoiscoals-variations with rank[R]. Urbana (USA): Illinois State Geological Survey, Urbana(USA),1976.
    [94] Levine J R. Coalification: the evolution of coal as source rock and reservoir rock for oil andgas[C]. In: Law B E. Rice D D.(eds), Hydrocarbons from coal. American Association ofPetroleum Geologist, Studied in Geology,1993.
    [95]陈金刚,张世雄,黄志伟.煤岩力学参数与其基质收缩性能的耦合效应[J].武汉理工大学学报,2004,26(11):67-70.
    [96]同登科,张先敏.致密煤层气藏三维全隐式数值模拟[J].地质学报,2008,82(10):1428-1431.
    [97]刘焕杰.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998,1-18.
    [98]张建博,王红岩.山西沁水盆地煤层气有利区预测[M].徐州:中国矿业大学出版社,1999.
    [99]杨起,韩德馨.中国煤田地质学[M].北京:煤炭工业出版社,1979,156-183.
    [100]李德.沁水煤田南部煤层气赋存及开发[J].山西煤炭,2003,23(3):33-34.
    [101]李五忠,王一兵,崔思华,等.沁水盆地南部煤层气田煤层气成藏条件分析[J].煤田地质与勘探,2003,31(2):23-26.
    [102] Close J C. Natural fracture in coal[C]. In: Hydrocarbons from coal. Law B E and Rice DD,eds. AAPG, Studies in Geology,1993.
    [103] Gamson P, Beamish B, Johnson David. Effect of coal microstructure and secondarymineralization on methane recovery [J]. Geological Special Publication,1998(199):165-179.
    [104] Gamson P, Beamish B, Johnson David.夏锁林译,傅雪海校.煤显微构造和次生矿化作用对甲烷回采率的影响[J].煤层气,1998,6(1):21-28.
    [105]傅雪海,秦勇,李贵中.储层渗透率研究的新进展[J].辽宁工程技术大学学报(自然科学版),2001,20(06):739-743.
    [106]樊明珠,王树华.煤层气勘探开发中的割理研究[J].煤田地质与勘探,1997,25(1):31-34.
    [107]姚艳斌,刘大锰,汤达祯,等.沁水盆地煤储层微裂隙发育的煤岩学控制机理[J].中国矿业大学学报,2010,39(1):6-13.
    [108]杨青雄,王生维,刘旺博,等.晋城寺河矿东区3#煤储层流体压力特征研究[J].天然气地球科学,2011,22(2):361-366.
    [109] Van Voast W A. Geochemical signature of formation waters associated with coalbedmethane [J]. AAPG Bulletin,2003,87(4):667-676.
    [110]赵慈平.我国火山地热流体地球化学研究新进展[J].矿物岩石地球化学通报,2011,30(4):382-389.
    [111]王红岩,刘洪林,赵庆波,等.中国煤层气富集成藏规律[M].北京:石油工业出版社,2005.
    [112]于国庆,王翊虹.北京市郊区地下水化学特征分析[J].科技传播,2011(3):14-15.
    [113]梁雄兵,程胜高,宋立军.煤层气勘探开发中的水污染分析及防治对策[J].环境科学与技术,2006,29(1):50-51.
    [114]单耀,秦勇,王文峰.徐州-大屯矿区矿井水类型与水质分析[J].能源技术与管理,2007,(4):41-43.
    [115]张洪良.负压环境煤的瓦斯解吸规律研究[D].河南理工大学,2011.
    [116]王兆丰,李晓华,戚灵灵,等.水分对阳泉3号煤层瓦斯解吸速度影响的实验研究[J].煤矿安全,2010,29(7):1-3.
    [117]李树刚,赵鹏翔,潘宏宇,等.不同含水量对煤吸附甲烷的影响[J].西安科技大学学报,2011,23(4):379-382.
    [118]陈振宏,王一兵,宋岩,等.不同煤阶煤层气吸附、解吸特征差异对比[J].天然气工业,2008,28(3):30-32.
    [119]谢勇强.低阶煤煤层气吸附与解吸机理实验研究[D].西安科技大学,2006.
    [120]马东民.煤层气吸附解吸机理研究[D].西安科技大学,2008.
    [121]曲英杰,汤达祯,徐浩,等.煤储层等温吸附曲线阶段划分及意义[A].2012全国煤层气学术研讨会论文集:煤层气勘探开发技术新进展[C],石油工业出版社,2012:111-119.
    [122]降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,2011,36(4):609-614.
    [123]郝艳丽,姚慧智,瞿定祥.排采曲线在煤层气井评价中的应用[J].断块油气田,2001,8(2):39-40.
    [124]张建博,陶明信.煤层甲烷碳同位素在煤层气勘探中的地质意义-以沁水盆地为例[J].沉积学报,2000,18(4):611-614.
    [125]马东民,韦波,蔡忠勇.煤层气解吸特征的实验研究[J].地质学报,2008,82(10):1432-1436.
    [126]马东民,温兴宏.无烟煤对甲烷等温吸附解吸特性实验研究[J].煤田地质与勘探,2007,35(2):25-27.
    [127]倪小明,陈鹏,朱明阳.煤层气垂直井产能主控地质因素分析[J].煤炭科学技术,2010,38(7):109-113.
    [128]李国富,侯泉林.沁水盆地南部煤层气井排采动态过程与差异性[J].煤炭学报,2012,37(5):798-803.
    [129]郝艳丽,姚慧智,瞿定祥.排采曲线在煤层气井评价中的应用[J].断块油气田,2001,8(2):39-40,68.
    [130]李梦溪,张聪,张绍雄,等.沁水盆地樊庄区块煤层气直井排采特点[J].中国煤层气,2012,9(3):3-7.
    [131]李景明,刘飞,王红岩,等.煤储集层解吸特征及其影响因素[J].石油勘探与开发,2008,35(1):52-58.
    [132]张永生.沁南煤储层理论临界解吸压力与实际排采产气压力对比研究[D].徐州:中国矿业大学,2011.
    [133]汪吉林,秦勇,傅雪海.多因素叠加作用下煤储层渗透率的动态变化规律[J].煤炭学报,2012,37(8):1348-1353.
    [134]李志强,鲜学福.煤体渗透率随温度和应力变化的实验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(S1):156-159.
    [135]李祥春,聂百胜,刘芳彬,等.三轴应力作用下煤体渗流规律实验[J].天然气工业,2010,30(6):19-21.
    [136]傅雪海,李大华,秦勇,等.煤基质收缩对渗透率影响的实验研究[J].中国矿业大学学报,2002,31(02):129-137.
    [137]傅雪海,秦勇,姜波,等.山西沁水盆地中南部煤储层渗透率物理模拟与数值模拟[J].地质科学,2003,38(02):221-229.
    [138]肖晓春,潘一山.滑脱效应影响的低渗煤层气运移实验研究[J].岩土工程学报,2009,31(10):1554-1558.
    [139]肖晓春,潘一山.低渗煤储层气体滑脱效应试验研究[J].岩石力学与工程学报.2008,27(S2):3509-3514.
    [140]肖晓春,潘一山,于丽艳.水饱和度作用下低渗透气藏滑脱效应实验研究[J].水资源与水工程学报,2010,21(05):15-19.
    [141]王锦山.煤层气储层两相流渗透率试验研究[J].西安科技大学学报,2006,26(1):24-26.
    [142]唐巨鹏,潘一山,李成全,等.固流耦合作用下煤层气解吸-渗流实验研究[J].中国矿业大学学报,2006,35(2):274-278.
    [143]李义贤.考虑温度作用下煤层气—水两相流运移规律的研究[D].辽宁工程技术大学,2009.
    [144]彭晓华.辽宁矿区煤层气开采渗流规律研究[D].辽宁工程技术大学,2010.
    [145] O Cicek. Compositional and Non-Isothermal Simulation of CO2Sequestration in NaturallyFractured Reservoirs/Coalbeds: Development and Verification of the Model[C].Denver,Colorado: SPE Annual Technical Conference and Exhibition,2003.
    [146] Scott R, Larry P. Advanced reservoir modeling in desorption-controlled reservoirs[C].Keystone, Colorado: SPE Rocky Mountain Petroleum Technology Conference,2001.
    [147] Prob T, Zuleima T K, Turgay E. Development of a multi-mechanistic, dual-porosity,dual-permeability, numerical flow model for coalbed methane reservoirs[J]. Journal ofNatural Gas Science and Engineering.2012,8:121-131.
    [148]陈家军,尚光旭,杨官光,等.多孔介质水油两相系统相对渗透率与饱和度关系试验研究[J].水科学进展,2009,20(2):261-268.
    [149]窦智,周志芳,李兆峰.多孔介质油水两相k-s-p关系数学模型的实验研究[J].水科学进展,2012,23(2):206-210.
    [150]张时音,桑树勋.不同煤级煤层气吸附扩散系数分析[J].中国煤炭地质,2009,21(3):24-27.
    [151]哈帕拉尼S.,欧阳S.,雷湘沁.测定煤的气体扩散特性的新技术[J].中国煤层气,1999(1):32-37.
    [152]冯增朝,赵东,赵阳升.块煤含水率对其吸附性影响的试验研究[J].岩石力学与工程学报,2009,28(S2):3291-3295.
    [153]易俊,姜永东,鲜学福.煤层微孔中甲烷的简化双扩散数学模型[J].煤炭学报,2009,34(3):355-360.
    [154]张小东,刘炎昊,桑树勋,等.高煤级煤储层条件下的气体扩散机制[J].中国矿业大学学报,2011,40(1):43-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700