用户名: 密码: 验证码:
多元统计过程监控若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
统计过程质量控制是一种监控及改善产品质量的有力工具,如果通过该方法能有效地检测、诊断工业过程中的故障,将带来巨大的经济效益。统计过程监控是一种基于多元统计理论的质量控制技术,通过对过程测量数据的分析和解释,可在线检测和识别过程中出现的异常工况。但将经典的统计投影方法直接应用于工业过程仍存在许多问题,论文对相应问题进行分析并取得了以下成果:
    1、提出了以主角度(principal angles)的方式度量任意两个主元模型之间相似性的方法,并将其进行推广以便同时刻画一个主元模型与别的多个主元模型之间相似性的度量。并提出了一种多PCA(principal component analysis)模型过程监控方法及其在线应用的实现,包括多PCA模型合并策略、模型在线切换准则、模型更新及新模型在线添加方法。
    2、提出了一种基于主角度的不同PLS(partial least squares)模型之间相似性的度量,并进一步提出了一种基于多PLS模型的过程监控方案。并分析了模型的在线应用、更新及新模型添加等问题。该方法可应用于多操作模式下的质量指标的估计和异常工况监控。
    3、提出了PLS算法的一种等价形式,将PLS算法分解为投影及重构两个顺序进行但相对独立的步骤。以此为基础,提出了一种新的非线性PLS方法,通过两个连续的步骤可同时得到非线性隐变量及非线性重构。最后,从与PLS算法的一致性、隐变量之间的正交性、计算量大小和精度等不同角度对该新非线性PLS算法与已有算法进行了比较。
    4、开发了具有一定通用性的过程统计监控软件平台,并已成功地将多PCA方法应用到常减压装置、催化裂化装置、大型乙烯裂解炉等工业过程的多元统计监控中。
Statistical process control (SPC) is one of the most powerful tools for process monitoring and product quality improvement. When applied to prompt detecting, diagnosing and appropriately coping with process malfunctions, it will be of considerable benefit. Statistical process monitoring (SPM) is based on multivariate statistical projection methodologies for online process malfunctions detection and diagnosis through analysis and interpretation of the collected measurements. Unfortunately, these conventional methods behave unsatisfactorily when applied to industrial processes. In this dissertation, this problem is addressed accordingly and the related achievements mainly include:1 the similarity metric of any two principal component analysis (PCA) models adopting the concept of principal angles, which is further extended to the case of more than two PCA models. A multiple PCA model based process monitoring methodology and its online applications are then presented, which include the algorithms for developing multiple PCA models, criterion for online models selection and methods for models updating and incorporation of new PCA models.2 the similarity metric of any two partial least squares (PLS) models, which is further incorporated into the framework of process monitoring using multiple PLS models. Issues including online application of the developed PLS models, updating and adding new models are discussed. This approach can be applied to product quality estimation and malfunction detection of processes with multiple operating modes.3 an equivalent presentation of PLS where PLS algorithm is achieved through two sequential but relatively independent steps including projection and reconstruction. A novel nonlinear PLS algorithm is then proposed where both nonlinear latent structures and nonlinear reconstruction are obtained straightforwardly through two consecutive steps. It is also compared with existing nonlinear PLS algorithms with respect to the consistency with PLS, the orthogonality of the latent structures and the computational requirements and accuracies.4, a general-purpose multivariate SPM software platform, where the multiple PCA based methodology is successfully applied to the monitoring of some industrial process including atmospheric distillation unit, fluidized analytic and cracking unit and
    a large-scale ethylene pyrolysis furnace.
引文
[1] J. V. Kresta, J. F. MacGregor, and T. E. Marlin. Multivariate statistical monitoring of process operating performance. Canadian Journal of Chemical Engineering, 69:35-47, 1991.
    [2] E. B. Martin, A. J. Morris, and J. Zhang. Process performance monitoring using multivariate statistical process control. IEE Proceedings on Control Theory and Applications, 143:132-144, 1996.
    [3] A. Negiz and A. Cinar. Monitoring of multivariable dynamic processes and sensor auditing. Journal of Process Control, 8(5-6):375-380, 1998.
    [4] A. Cinar and C. Undey. Statistical process and controller performance monitoring : A tutorial on current methods and future directions. In Proceedings of the American Control Conference, volume 4, pages 2625-2639, San Diego, CA, Jun 2-4 1999.
    [5] I. Nimmo. Adequately address abnormal operations. Chemical Engineering Progress, 91(9):36-45, Sep 1995.
    [6] U. Kruger, X. Wang, Q. Chen, and S. J. Qin. An alternative PLS algorithm for the monitoring of industrial process. In Proceedings of the American Control Conference 2001, pages 4455-4459, Arlington VA, 25-27 Jun 2001.
    [7] B. M. Wise and N. B. Gallagher. The process chemometrics approach to process monitoring and fault detection. Journal of Process Control, 6(6):329-348, 1996.
    [8] H. Wold. Nonlinear estimation by iterative least squares procedures. In F. David, editor, Research papers in statistics, festschrift for J. Neyman, pages 411-444. New York: Wiley, 1966.
    [9] H. Wold. Estimation of principal components and related models by iterative least squares. In P. R. Krishnaiah, editor, Multivariate Analysis II, pages 391-420. Academic Press, New York, 1966.
    [10] 张杰,阳宪惠.多变量统计过程控制.化学工业出版社,2000.
    [11] 王惠文.偏最小二乘回归方法及其应用.国防工业出版社,2000.
    [12] S. Wold. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics, 20(4):397-405, 1978.
    [13] R. Dunia, J. Qin, T. F. Edgar, and T. J. McAvoy. Sensor fault identification and reconstruction using principal component analysis. In Proceedings of IFAC Congress'96, volume N, pages 259-264, San Francisco, CA, Jun 30-Jul 5 1996.
    [14] P. Geladi. Notes on the history and nature of partial least squares(PLS) modeling. Journal of Chemometrics, 2(4):231-246, 1988.
    [15] H. Wold. Nonlinear iterative partial least squares (NIPALS) modelling: some current developments. In P. R. Krishnaiah, editor, Multivariate analysis III, pages 383-407. 1973.
    [16] A. Hoskuldsson. PLS regression methods. Journal of Chemometrics, 2:211-228, 1988.
    [17] J. A. Westerhuis and A. K. Smilde. Deflation in multiblock PLS. Journal of Chemometrics, 15(5):485-493, 2001.
    [18] Y. H. Zhu, H. W. Wang, and X. L. Yang. A simplified algorithm of PLS regression. Journal of Systems Science and Systems Engineering, 9(4):414-419, 2000.
    [19] U. Kruger, Q. Chen, D. J. Sandoz, and R. C. McFarlane. Extended PLS approach for enhanced condition monitoring of industrial processes. AIChE Journal, 47(9):2076-2091, Sep 2001.
    [20] D. W. OSTEN. Selection of optimal regression models via cross-validation. Journal of Chemometrics, 2:39-48, 1988.
    [21] K. Janne, J. Pettersen, N.-O. Lindberg, and T. Lundstedt. Hierarchical principal component analysis(PCA) and projection to latent structures(PLS) technique on spectroscopic data as a data pretreatment for calibration. Journal of Chemometrics, 15(4):203-213, 2001.
    [22] L. E. Wangen and B. R. Kowalski. A multiblock partial least squares algorithm for investigating complex chemical systems. Journal of Chemometrics, 3(3):3-20, 1988.
    [23] X. Wang, U. Kruger, B. Lennox, and P. Goulding. A novel multiblock method using latent variables partial least squares. In Proceedings of the 2001 American Control Conference, volume 4, pages 3136-3141, Arlington VA, 25-27 Jun 2001.
    [24] J. F. MacGregor, C. Jaeckle, C. Kiparissides, and M. Koutoudi. Process monitoring and diagnosis by multiblock PLS methods. AIChE Journal, 40(5):826-838, 1994.
    [25] W. Ku, R. H. Storer, and C. Georgakis. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30(2): 179-196, 1995.
    [26] P. Nomikos and J. F. MacGregor. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 30:97-108, 1995.
    [27] P. Nomikos and J. F. MacGregor. Multivariate SPC charts for monitoring batch processes. Technometrics, 37(l):41-59, Feb 1995.
    [28] 陈耀,王文海,孙优贤.基于动态主元分析的统计过程监视.化工学报,51(5):666—670,2000.
    [29] A. Simoglou, E. B. Martin, and A. J. Morris. A comparison of canonical variate analysis and partial least squares for the identification of dynamic processes. In Proceedings of the American Control Conference, pages 832-837, San Diego, California, USA, Jul 1999.
    [30] M. Aoki. State Space Modeling of Time Series. Springer Verlag, New York, USA, 2nd edition, 1990.
    [31] W. E. Larimore. System identification, reduced-order filtering and modeling via canonical variate analysis. In H. S. Rao and P. Dorato, editors, Proceedings of the 1983 American Control Conference, pages 445-451, San Francisco, CA, 1983.
    [32] W. E. Larimore. Canonical variate analysis in identification, filtering, and adaptive control. In Proceedings of the 29th IEEE Conference on Decision and Control, volume 1, pages 596-604, Honolulu, Hawai, Dec 1990.
    [33] A. Negiz and A. Cinar. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 43(8):2002-2020, 1997.
    [34] N. R. Campbell. Robust procedures in multivariate analysis i: Robust covariance estimation. Applied Statistics, 29(3):231-237, 1980.
    [35] M. Partridge and M. Jabri. Robust principal component analysis. In IEEE Workshop on Neural Networks for Signal Processing, pages 289-298, University of Sydney, Sydney, Australia, Dec 11-13 2000.
    [36] J. Chen, J. A. Bandoni, and J. A. Romagnoli. Robust PCA and normal region in multivariate statistical process monitoring. AIChE Journal, 42(12):3563-3566, 1996.
    [37] I. N. Wakeling and H. H. H. Macfie. A robust PLS procedure. Journal of Chemometrics, 6:189-198, 1992.
    [38] F. Doymaz, J. Chen, J. A. Romagnoli, and A. Palazoglu. A robust strategy for real-time process monitoring. Journal of Process Control, 11:343-359, 2001.
    [39] W. Li, H. H. Yue, S. Valle-Cervantes, and S. J. Qin. Recursive PCA for adaptive process monitoring. Journal of Process Control, 10:471-486, 2000.
    [40] B. S. Dayal and J. F. MacGregor. Recursive exponentially weighted PLS and its applications to adaptive control and prediction. Journal of Process Control, 7(3): 169-179, 1997.
    [41] R. Shaok, F. Jia, E. B. Martin, and A. J. Morris. Wavelets and non-linear principal components analysis for process monitoring. Control Engineering Practice, 7(7):865-879, 1999.
    [42] Q.-S. Xu, Y.-Z. Liang, and H.-L. Shen. General PLS regression. Journal of Chemometrics, 15:135-184, 2001.
    [43] J. de Jong, B. M. Wise, and N. L. Ricker. Canonical partial least squares and continuum power regression. Journal of Chemometrics, 15:85-100, 2001.
    [44] R. Gnanadesikan. Models for Statistical Data Analysis of Multivariate Observations. Wiley, New York, 1977.
    [45] J. E. Amoli and R. P. McDonald. A second generation nonlinear factor analysis. Psychome-trika, 48:315-327, 1983.
    [46] A. Hoskuldsson. Quadratic PLS regression. Journal of Chemometrics, 6:307-334, 1992.
    [47] G. Baffi, E. B. Martin, and A. J. Morris. Non-linear projection to latent structures revisited: the quadratic PLS algorithm. Computers & Chemical Engineering, 23(3):395-411, 1999.
    [48] T. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical Association, 84(406):502-516,Jun 1989.
    [49] D. Dong and T. J. McAvoy. Nonlinear principal component analysis-based on principal curves and neural networks. Computers &; Chemical Engineering, 20(l):65-78, Jan 1996.
    [50] M. Ignova, Y. Glassey, G. A. Montague, A. J. Morris, and C. Kiparissides. Neural networks and nonlinear SPC. In Proceedings of the Third IEEE Conference on Control Applications, volume 2, pages 1271-1276, Glasgow, UK, 24-26 Aug 1994.
    [51] M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 37(2):233-243, Feb 1991.
    [52] S. Tan and M. L. Mavrovouniotis. Reducing data dimensionality through optimizing neural network inputs. AIChE Journal, 41(6):1471-1480, 1995.
    [53] C M. Chessari. Studies in modeling and advanced control. PhD thesis, University of Sydney, Australia, 1995.
    [54] S. J. Qin and T. J. McAvoy. Nonlinear PLS modeling using neural network. Computers & Chemical Engineering, 16(4):379-391, 1992.
    [55] G. Baffi, E. B. Martin, and A. J. Morris. Non-linear projection to latent structures revisited (the neural network PLS algorithm). Computers & Chemical Engineering, 23(9): 1293-1307, 1999.
    [56] Y.-S. Kim, B.-J. Yum, and M. Kim. A hybrid model of partial least squares and artificial neural network for analyzing process monitoring data. In Proceedings of International Joint Conference on Neural Networks, volume 3, pages 2292-2297, Washington, D.C., 14-19 Jul 2001.
    [57] B. R. Bakshi and G. Stephanopoulos. Wave-net: a multiresolution, hierarchical neural network with localized learning. AIChE Journal, 39(1):57-81, Jan 1993.
    [58] M. Reidmiller and B. Heinrich. A direct adaptive method for faster backpropagation learning : The RPROP algorithm. In Ruspini H, editor, Proceedings of the IEEE Int. Conf on NN (ICNN), San Francisco, pages 586-591, 1993.
    [59] B. Lennox, G. A. Montague, A. M. Frith, C. Gent, and V. Bevan. Industrial application of neural networks -an investigation. Journal of Process Control, 11(5):497-507, 2001.
    [60] S. J. Qin. A statistical perspective of neural networks for process modelling and control. In Proceedings of the 1993 Internation Symposium on Intelligent Control, pages 559-604, Chicago, Illinois USA, 1993.
    [61] K. A. Hoo, E. D. Sinzinger, and M. J. Piovoso. Improvements in the predictive capability of neural networks. Journal of Process Control, 12(1): 193-202, 2002.
    [62] S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (7):674-693, 1989.
    [63] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5):961-1005, 1990.
    【64】徐长发,李国宽.实用小波方法.华中科技大学出版社,2001.
    【65】杨福生.小波变换的工程分析与应用.科学出版社,2000.
    【66】李建平,唐远炎.小波分析方法的应用.重庆大学出版社,1999.
    [67] A. Bakhtazad, A. Palazoglu, and J. A. Romagnoli. Process data de-noising using wavelet transform. Intelligent Data Analysis, 3:267-285, 1999.
    [68] H. Zhang, A. K. Tangirala, and S. L. Shah. Dynamic process monitoring using multiscale PCA. In Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, volume 3, pages 1579-1584, Edmonton, Alberta, Canada, May 9-12 1999.
    [69] J. Trygg and S. Wold. PLS regression on wavelet compressed NIR spectra. Chemometrics and Intelligent Laboratory Systems, 42(l-2):209-220, 1998.
    【70】叶昊.小波变换在系统辨识和故障诊断中的应用.博士学位论文,清华大学自动化系, 北京,1997.
    [71] A. A. Safavi, J. Chen, and J. A. Romagnoli. Wavelet-based density estimation and application to process monitoring. AIChE Journal, 43(5):1227-1241, 1997.
    【72】蔡弘.自相似业务模型及其智能控制.博士学位论文,清华大学自动化系,北京,1997.
    [73] T. Zhang, F. Yang, and Q. Tang. A fast algorithm of continuous wavelet transform based on Mellin transform with biomedical application. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 3, pages 1142-1144, Hong Kong Sar, China, 29 Oct-1 Nov 1998.
    [74] J. A. Westerhuis, S. P. Gurden, and A. K. Smilde. Standardized Q-statistic for improved sensitivity in the monitoring of residuals in MSPC. Journal of Chemometrics, 14:335-349, 2000.
    [75] A. Wachs and D. R. Lewin. Improved PCA methods for process disturbance and failure identification. AIChE Journal, 45(8): 1688-1700, 1999.
    【76】冯雄峰.多元统计过程控制研究及在炼油生产过程中的应用.博士学位论文,清华大学自动化系,北京,1999.
    [77] J. E. Jackson and G. S. Mudholkar. Control procedures for residuals associated with principal components analysis. Technometrics, 21(3):341-349, 1979.
    [78] E. B. Martin and A. J. Morris. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control, 6(6):349-358, 1996.
    [79] N. N. Cencov. Evaluation of an unknown distribution density from observations. Soviet Mathematics, 3:1559-1562, 1962.
    [80] S. J. Qin and R. Dunia. Determining the number of principal components for best reconstruction. Journal of Process Control, 10(2-3):245-250, 2000.
    [81] J. Zhang, E. B. Martin, and A. J. Morris. Fault detection and diagnosis using multivariate statistical techniques. Chemical Engineering Research and Design, 74(l):89-96, 1996.
    [82] A. Raich and A. Cinar. Diagnosis of process disturbances by statistical distance and angle measures. Computers & Chemical Engineering, 21(6):661-673, 1997.
    [83] S. Valle, S. J. Qin, M. J. Piovoso, M. Bachmann, and N. Mandakoro. Extracting fault sub-spaces for fault identification of a polyester film process. In Proceedings of the American Control Conference, pages 4466-4471, Arlington, VA, Jun 25-27 2001.
    [84] S. J. Zhao, Y. M. Xu, and J. Zhang. A multiple PCA model based technique for the monitoring of processes with multiple operating modes. In A. Barbosa-Povoa and H. Matos, editors, European Symposium on Computer-Aided Process Engineering -14, volume 18 of Computer
     -Aided Chemical Engineering, pages 865-870, Lisbon, Portugal, 16-19 May 2004. Elsevier B. V.
    [85] S. J. Zhao, J. Zhang, and Y. M. Xu. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Industrial &; Engineering Chemistry Research, 43(22):7025-7035, 2004.
    [86] S. J. Qin. Statistical process monitoring: basics and beyond. Journal of Chemometrics, 17:480-502, 2003.
    [87] S. J. Qin. Recursive PLS algorithms for adaptive data modeling. Computers &; Chemical Engineering, 22(4/5):503-514, 1998.
    [88] B. K. Flury. Two genealizations of the common principal component model. Biometrika, 74(l):59-69, Mar 1987.
    [89] S. Lane, E. B. Martin, R. Kooijmans, and A. J. Morris. Performance monitoring of a multi-product semi-batch process. Journal of Process Control, 11:1-11, 2001.
    [90] D.-H. Hwang and C. Han. Real-time monitoring for a process with multiple operating modes. Control Engineering Practice, 7:891-902, 1999.
    [91] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins Press, Baltimore, third edition, 1996.
    [92] A. Bjorck and G. H. Golub. Numerical methods for computing angles between linear sub-spaces. Mathematics of Computation, 27(123):579-594, Jul 1973.
    [93] J. O. Ramsay, J. T. Berge, and G. P. H. Styan. Matrix correlation. Psychometrika, 49(3):403-423, Sep 1984.
    [94] A. V. Knyazev and M. E. Argentati. Principal angles between subspaces in an A-based scalar product: Algorithms and perturbation estimates. SIAM Journal on Scientific Computing, 23(6):2008-2040, 2002.
    [95] J. E. Jackson. A User's Guide to Principal Components. John Wiley & Sons, New York, 1991.
    [96] W. J. Krzanowski. Between-group comparison of principal components. Journal of the American Statistical Association, 74(367):703-707, Sep 1979.
    [97] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977.
    [98] D. L. Donoho. Denoising by soft thresholding. Technical report, Department of Statistics, Stanford University, 1992.
    [99] D. L. Donoho. Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. In Proceedings of Symposia in Applied Mathematics, volume 00. American Mathematical Society, 1993.
    [100] G. Strang and T. Nguyen. Wavelets and filter banks. Wellesley-Cambridge, Wellesley, 1996.
    [101] J. J. Downs and E. F. Vogel. A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3):245-255, 1993.
    [102] N. L. Ricker and J. H. Lee. Nonlinear model predictive control of the Tennessee Eastman challenge process. Computers & Chemical Engineering, 19(9):961-981, 1995.
    [103] T. J. McAvoy and N. Ye. Base control for the tennessee eastman problem. Computers & Chemical Engineering, 18(5):383-413, 1994.
    [104] N. L. Ricker. Model predictive control of a continuous, nonlinear, two-phase reactor. Journal of Process Control, 3(2): 109-123, 1993.
    [105] P. R. Lyman and C. Georgakis. Plant-wide control of the Tennessee Eastman problem. Computers & Chemical Engineering, 19(3):321-331, 1995.
    [106] N. L. Ricker. Decentralized control of the Tennessee Eastman chanllenge process. Journal of Process Control, 6(4):205-221, 1996.
    [107] N. L. Ricker. Optimal steady-state operation of the Tennessee Eastman chanlenge process. Computers & Chemical Engineering, 19(9):949-959, 1995.
    [108] N. L. Ricker. Tennessee Eastman challenge archieve. available at http://depts . washington.edu/control/LARRY/TE/download.html, 1999.
    [109] M. C. Johannesmeyer, A. Singhal, and D. E. Seborg. Pattern matching in historical data. AIChE Journal, 48(9):2022-2038, Sep 2002.
    [110] F. Lindgren, P. Geladi, and S. Wold. The kernel algorithm for PLS. Journal of Chemometrics, 7(l):45-59, 1993.
    [111] J. F. MacGregor and T. Kourti. Statistical process control of multivariate processes. Control Engineering Practice, 3(3):403-414, 1995.
    【112】王松汉,何细藕.乙烯工艺与技术.中国石化出版社,北京,2000.
    【113】赵仕健,徐用懋.部分最小二乘(PLS)算法的神经元网络实现.清华大学学报(自然科学版),2004.已录用.
    [114] S. J. Zhao, Y. M. Xu, and J. Zhang. A novel nonlinear projection to latent structures algorithm. In Fuliang Yin, Jun Wang, and Chengan Guo, editors, Advances in Neural Networks -ISNN 2004, volume 3174 of LNCS, pages 773-778, Dalian, China, 19-21 Aug 2004. Springer-Verlag Berlin Heidelberg.
    [115] S. J. Zhao, J. Zhang, and Y. M. Xu. A nonlinear projection to latent structures method and its applications, submitted to Chemometrics and Intelligent Laboratory Systems.
    [116] P. Geladi and B. R. Kowalski. Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185:1-17, Jul 31 1986.
    [117] S. Wold, N. Kettaneh-Wold, and B. Skagerberg. Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems, 7(l-2):53-65, Dec 1989.
    [118] S. Wold. Non-linear partial least squares modelling, ii spline inner function. Chemometrics and Intelligent Laboratory Systems, 14:71-84, 1992.
    [119] D. J. H. Wilson, G. W. Irwin, and G. Lightbody. Nonlinear PLS using radial basis functions. Transactions of the Institute of Measurement and Control, 19(4):211-220, 1997.
    [120] T. R. Holcomb and M. Morari. PLS/neural networks. Computers &; Chemical Engineering, 16(4):393-411,1992.
    [121] E. C. Malthouse, A. C. Tamhane, and R. S. H. Mah. Nonlinear partial least squares. Computers & Chemical Engineering, 21(8):875-890, 1997.
    [122] F. Doymaz, A. Palazoglu, and J. A. Romagnoli. Orthogonal nonlinear partial least-squares regression. Industrial & Engineering Chemistry Research, 42(23):5836-5849, Nov 12 2003.
    [123] M. Stone and R. J. Brooks. Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. Journal of the Royal Statistical Society. Series B (Methodological), 52(2):237-269, 1990.
    [124] I. E. Frank and J. H. Friedman. A statistical view of some chemometrics regression tools. Technometrics, 35(2):109-148, May 1993.
    [125] J. Hinkle. Reciprocal components, reciprocal curves, and partial least squares. PhD thesis, Department of Statistics, University of Kentucky, 1995. Directed by W. S. Ravens.
    [126] J. Hinkle and W. S. Rayens. Partial least squares and compositional data: Problems and alternatives. Chemometrics and Intelligent Laboratory Systems, 30(1): 159-172, 1995.
    [127] K. Hornik, M. Stinchombe, and H. White. Multilayer feedforward neural networks are universal approximators. Neural Networks, 2:359-366, 1989.
    [128] K. Hornik, M. Stinchombe, and H. White. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3:551-560, 1990.
    [129] S. C. Huang and Y. F. Huang. Bounds on the number of hidden neurons in multilayer per-ceptrons. IEEE Transactions on Neural Networks, 2:47-55, 1991.
    [130] D. J. H. Wilson, G. W. Irwin, and G. Lightdoby. RBF principal manifolds for process monitoring. IEEE Transactions on Neural Networks, 10(6): 1424-1434, Nov 1999.
    [131] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1. MIT Press, Cambridge, MA, 1986.
    [132] M. T. Hagan and M. B. Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6):989-993, Nov 1994.
    [133] M. A. Kramer. Autoassociative neural networks. Computers & Chemical Engineering, 16(4):313-328, 1992.
    [134] I. Frank. NNPPSS: Neural networks based on PCR and PLS components nonlinearized by smoothers and splines. Presented at InCINC'94, the first International Chemometrics InterNet Conference, 1994.
    [135] J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation, 1:281-294, 1989.
    [136] L. Xu, A. Krzyzak, and E. Oja. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Transactions on Neural Networks, 4(4):636-649, Jul 1993.
    [137] T.-Y. Kwok and D.-Y. Yeung. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks, 8(3):630-645, May 1997.
    [138] T.-Y. Kwok and D.-Y. Yeung. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks, 8(5): 1131-1148, Sep 1997.
    [139] L. Ma and K. Khorasani. New training strategies for constructive neural networks with application to regression problems. Neural Networks, 2004. In Press.
    [140] G. Castellano, A. M. Fanelli, and M. Pelillo. An iterative pruning algorithm fro feedforward neural networks. IEEE Transactions on Neural Networks, 8(3):519-531, May 1997.
    [141] J. Zhang and A. J. Morris. A sequential learning approach for single hidden layer neural networks. Neural Networks, ll(l):65-80, 1998.
    [142] F. Stager and M. Agarwal. Three methods to speed up the training of feedforward and feedback perceptrons. Neural Networks, 10(8): 1435-1443, 1997.
    [143] S. Amari, N. Murata, K. Miiller, M. Finke, and H. H. Yang. Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks, 8:985-996,1997.
    [144] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
    [145] H. H. Thodberg. A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks, 7(l):56-72, Jan 1996.
    [146] F. D. Foresee and M. T. Hagan. Gauss-Newton approximation to Bayesian learning. In Proceedings of the 1997 International Conference on Neural Networks, volume 3, pages 1930-1935, Houston, TX, USA, 9-12 Jun 1997.
    [147] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2:53-58, 1989.
    [148] P. F. Baldi and K. Hornik. Learning in linear neural networks: A survey. IEEE Transactions on Neural Networks, 6(4):837-858, Jul 1995.
    [149] B. Lindqvist. Multivariate prediction and regression. Technical Report 75554, Department of Mathmatical Sciences, Norwegian University of Science and Technology, Nov 1996.
    [150] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, 1991.
    [151] Y. Yabuki and J. F. MacGregor. Product quality control in semibatch reactors using midcourse correction policies. Industrial &; Engineering Chemistry Research, 36(4):1268-1275, 1997.
    [152] G. E. P. Box. Some theorems on quadratic forms applied in the study of analysis of variance problems, i: effect of inequality of variance in the one-way classification. Annals of Mathematical Statistics, 25:290-302, 1954.
    【153】赵仕健,徐用懋.连续工业过程主元模型研究.中国过程控制年会(CPCC)论文集2002,过程建模、仿真与优化控制,pages 103-105,珠海,澳门,Jul 29-Aug 1 2002.
    [154] A. Norvilas, A. Negiz, J. DeCicco, and A. Cinar. Intelligent process monitoring by interfacing knowledge-based systems and multivariate statistical monitoring. Journal of Process Control, 10(4):341-350, 2000.
    [155] W. S. Rayens. The art of maximizing covariance. Technical Report 383, Department of Statistics, University of Kentucky, Jun 30 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700