用户名: 密码: 验证码:
Cr~(4+):YAG作为被动调Q开关和激光增益介质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cr~(4+)∶YAG晶体作为近年来人们发现的新型固体激光材料,具有吸收截面大、可饱和吸收稳定性好、热传导性和机械性能良好等优点。本论文基于Cr~(4+)∶YAG晶体既可以作为Nd∶YAG激光器的被动调Q开关、又可以作为激光增益介质的特点,采用理论和实验相结合的研究方法,详细而具体的研究了Cr~(4+)∶YAG晶体被动调Q、调Q倍频和双波长激光输出的特性。
     第一章:介绍了Cr~(4+)∶YAG的光学性能、国内外研究概况和本论文研究的主要内容。Cr~(4+)∶YAG晶体优良的物化性能,使它作为被动调Q开关和激光增益介质已实现了不同种类的调Q和锁模运转。
     第二章:从速率方程出发,研究了Cr~(4+)∶YAG晶体的调Q特性。在光强不太大的情况下,Cr~(4+)∶YAG可作为慢饱和吸收体,其初始透过率越靠近最大初始透过率,损耗调制越大。在平-凸非稳腔中,采用初始透过率为30%和63%的Cr~(4+)∶YAG进行实验,得到能量和脉宽相应为52mJ、8ns和45.7mJ、18ns的调Q脉冲输出,这表明:采用初始透过率越靠近最大初始透过率的Cr~(4+)∶YAG,可得到越理想的实验结果,这与理论分析一致。此外,还分析了Cr~(4+)∶YAG在平-凸非稳腔中的位置、激光器结构和参数对Nd∶YAG激光器调Q脉冲输出的影响。
     第三章:采用CLBO对Cr~(4+)∶YAG调Q Nd∶YAG激光器进行腔内倍频,得到了不同谐振腔中的绿光脉冲输出。理论上分析了影响倍频转换效率的几个因素,分别在平凹腔和双凹腔Nd∶YAG/Cr~(4+)∶YAG被动调Q激光器中插入CLBO进行实验研究,得到了转换效率分别为33.5%,46.8%的绿光脉冲输出。双凹腔中倍频转换效率高的原因是双凹腔中CLBO晶体处于基波光束光腰处,该处光束半径小,光束发散角小。
     第四章:设计了一个复合腔,使Cr~(4+)∶YAG作为可饱和吸收体对1.06μm激光调Q的同时,又作为激光增益介质产生1.44μm激光,在国内首次得到1.06μm和1.44μm双波长激光输出,并对1.44μm激光脉宽进行了理论分析。1.06μm和1.44μm激光脉冲的能量和脉宽分别是18mJ、52ns和0.2mJ、19ns,并采用Cr~(4+)∶YAG晶体的相关参数,从理论上计算了1.44μm激光的脉宽,理论结果和实验结果基本一致。
As a new solid laser material in recent years, Cr4+:YAG crystal has super advantages, such as big absorption cross section, stable saturable absorption, good heat-conducting and mechanical performance. With the theoretical and experimental methods, the characters of Cr4+:YAG are studied from Cr4+:YAG as passive Q-switching in Nd:YAG laser, intracavity frequency-doubling of Q-switching laser and dual-wavelength laser, which is based on Cr4+:YAG's operations of saturable absorption and laser gaining medium.
    Chapter 1: Introducing the Cr4+:YAG's optical function, the general research situation and the main idea of this thesis. The Cr +:YAG crystal has been operated differently as passive Q-switching and mode-locking medium by researchers at home and abroad.
    Chapter 2: Researching the Q-switching performance of Cr4+:YAG crystals with the rate equations. In low laser intensity, Cr4+:YAG can be used as slow saturable absorber. The nearer is the initial transparence to the max initial transparence, the bigger is the loss modulation. The experiment with Cr4+:YAG of 30% and 63% initial transparence was conducted in plane-convex unstable resonators and get the laser's FWHM and output energy are accordingly 8ns and 52mJ, 18ns and 45.7mJ. It is proved that the nearer the max initial transparence is the initial transparence, the stronger intensity and smaller FWHM can be obtained Cr4+:YAG crystal, which is consistent with the theoretical results. In addition, the experimental results acquired in different resonator structures and parameters are also analyzed.
    Chapter 3: Researching the intracavity frequency-doubling of Nd:YAG/Cr4+:YAG Q-switching laser with CLBO crystal. The several factors to affect the frequency doubling conversion efficiency are analyzed theoryretically. The 33.5% and 46.8% frequency doubling conversion efficiency are achieved in plane-concave and dual-concave resonators. The former value is clearly smaller than the latter, because the laser beam radius and the laser beam angle of divergence on the CLBO in the plane-concave resonator is bigger than in the dual-concave resonator.
    Chapter 4: For the first time achieving the dual-wavelength laser of 1.06m and 1.44m in the designed compound resonator in domestic. The Cr4+:YAG is operated as saturable absorber and laser gaining medium simultaneously. The output energy and FWHM of 1.06 m and 1.44m are 18mJ, 52ns and 0.2mJ, 19ns. The theoretical FWHM of \A4jum laser, which is analyzed theoretically with the pertinent parameters of Cr4+:YAG crystal, is consistent with the experimental results.
引文
[1]Eilers, H. Dennis, W.M., Performance of a Cr:YAG Laser, IEEE Journal of Quantum Electronics, 1993, 29(9):2508~2512.
    [2]K.Spariosu, W. Chen, R. Stultz and M.Birnbaum. Dual Q Switching and Laser Action at 1.06/μm and 1.44 μm in a Nd:YAG oscillator at 300K, Optical Letters, 1993,18(10):814~816.
    [3]Y.Shimony, Z. Burshtein, Y Kalisky. Cr~(4+):YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser. IEEE J. Quantum Electron., 1995, 31(10):1738~1741.
    [4]Vshestakov A, Borodin N I, Zhimyuk et al V A. CLEO'91, Paper CPdP 11, 1991.
    [5]Kuck S. Koetke J, Petermann K et al. OSA Proceedings on Advanced Solid-State Lasers. Washington DC. Optical Society of America, 1993, 334.
    [6]徐军,邓佩珍等,Cr~(4+)在晶体中的结构稳定性[J]。人工晶体学报,1996,25(3):220~224。
    [7]Steven A, Markgraf et al, Influence of different divalent co-dopants on the Cr~(4+) content of Cr-doped Y_3Al_5O_12: the only successful co-dopants were Ca and Mg[J], J. Crystal Growth, 1997, 180(1): 81~84.
    [8]董俊,邓佩珍等,Cr~(4+),Yb~(3+):YAG晶体的生长和吸收特性[J]。人工晶体学报,1999,28(2):140~144。
    [9]Ishibashi S, Naganuma K et al, Cr, Ca Y_3Al_5O_12:laser crystal growth by the laser -heated pesdestal growth method[J]. J. Crystal Growth, 1998, 182: 612~621.
    [10]Sugimoto A et al. Crystal Growth and Optical characterization of Cr, Ca:Y_3Al_5O_12[J]. J. Crystal Growth, 1994, 140(3):349~354.
    [11]沈永行,童利民等,YAG激光晶体上自饱和吸收体Cr~(4+):YAG的外延生长,人工晶体学报,29(5):146。
    [12]张国威,可调谐激光技术,国防工业出版社,北京,2002年1月,101.
    [13]Kuck S. Petermann K. Huber G. OSA Proceedings on Advanced Solid-State Lasers. Washington DC. Optical Society of America, 1991:92.
    [14]Petricevic V et al. Laser action in Chromium-actived forsterite for near-infrared excitation. Is Cr the lasing ion? [J]. Appl. Phys. Lett., 1998, 53(26):2590.
    [15]欧阳斌,丁彦华等,Cr~(4+):YAG的可饱和吸收特性与被动Q开关性能研究,光学学报,1996年12月,16(12):1665~1669。
    [16]雷海容,刘宏生等,一种新型固体开关--Cr~(4+):YAG的实验研究,光学学报,1996年8月,16(8):1191~1193。
    [17]巩马理,翟刚等,Cr~(4+):YAG被动调Q开关的Nd:YAG激光器,激光杂志,1997年,18(6):14~16。
    [18]万小珂,林礼煌等,Cr~(4+):YAG被动调Q与激光激发态吸收饱和,光学学报,1997年11月,17(11):1567~1570。
    [19]Y. Shimony, Z. Burshtein, A. Ben-Amar et al.. Repetitive Q-swithing of a CW Nd:YAG laser. IEEE J. Quantum Electron., 1996, 32(2):305~310.
    [20]丁彦华,欧阳斌等,连续Nd:YAG激光器中Cr~(4+):YAG被动调Q的稳定性和功率的提高,中国激光,1997年3月,24(3):197~201。
    [21]王明伟,邢岐荣等,CW Nd:YAG激光器中Cr~(4+):YAG被动调Q的实验研究,中国激光,1998年10月,25(10):872~875。
    [22]何京良,侯伟,全固化连续波Nd:YVO_4激光器中Cr~(4+):YAG被动调Q的实验研究,量子电子
    
    学报,16(15):618~619。
    [23]冯国英,吕百达,Cr~(4+):YAG晶体用于Nd:YAG和磷酸盐钕玻璃激光器被动调Q研究,激光杂志,19(3):38~43。
    [24]赵圣之,张行愚,氟磷酸锶晶体Cr~(4+):YAG被动调Q激光特性研究,光学学报,1999年2月,19(2):211~215。
    [25]Zhou Shouhuan, Lee K K, and Chen Y C. Monolithic self-Q-switched Cr:Nd:YAG Laser. Opt Lett, 1993,18(2):511~512.
    [26]Li Shiqun, Zhou Shouhuan, wang Pei, Chen Y C. Self-Q-switched diode-end pumped Cr:Nd:YAG laser with polarized output, Optics Letters, 1993, 18(3):203~204.
    [27]陈军,葛剑虹等,LD泵浦的Cr~(4+):Nd~(3+):YAG自调Q激光器研究,强激光与粒子束,2000年2月,12(1):1~4。
    [28]赵圣之,张行愚,NYAB晶体Cr~(4+):YAG被动调Q的激光特性研究,中国激光,1999年1月,26(1):6~10。
    [29]French, R.M.W, Mellish P., All-solid-state diode-PuMPed Modelocked Cr:LiSAF laser, Electronics Letters, 19(14): 1262~1263.
    [30]Sennaroglu A, Pollock C R, Nathel H. OSA Proceedings on Advanced Solid-State Lasers, Washing DC, Optical Society of America, 1994:4.
    [31]Alphan Sennaroglu, Clifford R. Pollock. Continuous-wave self-mode-locked operation of a femtosecond Cr~(4+):YAG laser. Opt. Lett., 1994,19(6):390~392.
    [32]Yuzo Ishida, Kazunori Naganuma. Compact diode-pumped all-solide-state femfosecond Cr~(4+):YAG laser. Opt. Lett., 1996,21(1):51~53.
    [33]Tong Y P, Taylor J R, French P M W et al. Opt. Comm., 1997,136, 235.
    [34]Morris J A, Pollock C R. Passive Q-switching of a diode-pumped and Nd:YAG laser with a saturable absorber [J]. Opt. Lett., 1990, 15:440.
    [35]Beach R, Davin J. Mitchell S et al. Q-switched transverse-diode-pumped d:LiYF laser oscillator [J]. Opt. Lett., 1992, 17(2):124~126.
    [36]Hergen Eilers, Willian M. Dennis, William M. Yen et al.. Performance of a Cr~(4+):YAG Laser. IEEE J. Quantum electron., 1993, 29(9):2508~2512.
    [37]Alphan Sennaroglu, C.R. Pollock, H. Nathel, Efficient continuous-wave chromium-doped YAG laser, J. Opt. Soc. Am.(B), 1995, 12(5): 930~937.
    [38]王加贤,张文珍等。Cr~(4+):YAG在对撞脉冲锁模的Nd:YAG激光器中实现被动锁模的研究[J]。光学学报,1998,18(8):983~987。
    [39]Wang Jiaxian et al. Investigation of Cr~(4+):YAG passive mode-locking in a pulsed Nd:YAG Laser [J]. Optics and Laser Technology, 1998, 30: 303~305.
    [40]冷雨欣,林礼煌,欧阳斌等,Cr~(4+):YAG晶体的激发态吸收研究,光学学报,2001年2月,21(2):225~227。
    [41]吴逢铁,张文珍,不同腔型Cr~(4+):YAG被动调Q激光器,华侨大学学报(自然科学版),2000年7月,21(3):239~242。
    [42]Yehoshua shimony, Yehoshua Kalisky, Bruce H. T. Chai, Quantitative studies of Cr~(4+):YAG as a saturable absorber for Nd:YAG laser. Optical Materials, 1995, 4(5): 547~551.
    [43]N. Bloembergen, Nonlinear Optics, Benjamin, New York 1965.
    [44]P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Effects of Dispersion and Focusing
    
    on the Production of Optical Harmonics, Phys. Rev. Lett., 1962, 8:21~22.
    [45]J.A. Giordmaine, Mixing of Light Beams in Crystals, Phys.Rev. Lett., 1962, 8:19.
    [46]Yusuke Mori,Ikuo Kuroda, Satoshi Nakajima, Takatomo Sasaki and Sadao Nakai, New nonlinear optical crystal: Cesium lithium borate, Appl. Phys. Lett., 1995, 67(13): 1818~1820.
    [47]张秀荣,张顺兴等,新型非线性光学晶体硼酸铯锂的研究,人工晶体学报,1998年2月,27(1):26~30。
    [48]周炳琨,高以智等,激光原理(第四版),国防工业出版社,北京,2000年1月,65~66。
    [49]Born W E, Kuhl J, Rhee B K. Phys Rev(B), 1986, 34(10): 6961~6971.
    [50]Ellingson R J, Tang C L. Opt Lett., 1992, 17(5):342~345.
    [51]ellingson R J, Tang C L. Opt Lett., 1993, 18(6):438~440.
    [52]Evans J M, Spence D E, Burns D, Sibbett W. Opt Lett, 1993, 18(13):1074~1076.
    [53]De Barros M R X, Becket P C. SPIE, 1994, 2116: 37~46.
    [54]周炳琨,激光原理,国防工业出版社,北京,1984年,160。
    [55]张国威,增益开关型固体可调谐激光器的时间特性—理论,激光技术,1995年6月,19(3):129~134。
    [56]Evans J M, Spence D E. Double-wavelength self-mode locked Ti:sapphire laser. Opt. Lett., 1993, 18(13):1074~1076.
    [57]Wang Y, Bourkoff E. Ar~+ pulses from the double mode-locked Ar~+-dye laser in the CPM tegime. Opt. Commun., 1988, 65(4):264~268.
    [58]张国威,可调谐激光技术,国防工业出版社,北京,2002年1月,288~295.
    [59]方香云,王惠茹,周寿桓,脉冲肽宝石激光器时间特性的研究,中国激光,1994年11月,21(11):860~863。
    [60]P.J. Conlon, Y. P. Tong, P. M. W. French et al.. Femtosecond pulse generation from a synchronously pumped, self-mode-locked Cr~(4+):YAG laser. J. Mod. Opt., 1995, 42(4): 723~726.
    [61]张国威,可调谐激光技术,国防工业出版社,北京,2002年1月,270~271。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700