用户名: 密码: 验证码:
CD36对骨骼肌脂肪酸代谢调控的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨骼肌是胰岛素刺激下糖脂代谢的主要外周组织,在维持机体能量平衡中起到了重要的作用。骨骼肌胰岛素抵抗是2型糖尿病的重要特征,表现为因过量脂肪酸及其衍生物的堆积导致的骨骼肌对胰岛素敏感性的下降。在正常骨骼肌细胞中,脂肪酸的摄取、转运及氧化三者处于平衡状态,使骨骼肌细胞内脂肪酸及其衍生物的浓度保持在较低的水平,避免因高浓度脂类积聚对细胞功能造成的损伤。CD36是一种能够转运长链脂肪酸进入骨骼肌细胞的整合膜蛋白。目前对CD36的研究多集中在脂肪酸的转运及摄取方面,对CD36在脂肪酸氧化代谢中的作用及作用机制研究还较少。AMPK作为调控骨骼肌脂肪酸氧化代谢的关键因素,CD36是否能够通过激活AMPK对脂肪酸氧化代谢进行调控,尚不清楚。
     目的:本研究描述了CD36-AMPK通路在骨骼肌脂肪酸摄取及氧化过程中的调控作用。首先利用细胞模型,探讨了基础状态下CD36缺乏激活AMPK的作用机制,期望可以为研究CD36对骨骼肌脂肪酸氧化代谢的调控,提供一个新的思路;另鉴于棕榈酸代谢对骨骼肌及整个机体能量代谢的重要意义,本研究进一步探讨了棕榈酸作用下CD36激活AMPK的作用机制,期望可以为认识胰岛素抵抗等代谢性疾病的发生、发展提供一些科学参考;最后,通过建立骨骼肌脂肪酸氧化代谢水平不同的高脂膳食、自主运动及能量限制干预的动物模型,观察了不同干预方式对CD36总蛋白含量的影响,期望可以为CD36总蛋白含量在小鼠骨骼肌脂肪酸氧化代谢的适应性调控过程中的研究,提供依据。
     方法:
     1.基础状态下CD36缺乏对小鼠骨骼肌脂肪酸氧化代谢调控的机制研究
     (1)CD36缺乏对AMPK活化水平的影响
     1)细胞水平研究CD36对AMPK活化水平的影响:利用siCont或siCD36作用于分化成熟的C2C12小鼠骨骼肌细胞,用western blot法检测CD36缺乏对小鼠骨骼肌细胞AMPK磷酸化水平的影响;
     2)动物水平研究CD36对AMPK活化水平的影响:以野生型和CD36基因敲除小鼠腓肠肌和心肌组织为研究对象,用western blot法检测CD36缺乏对小鼠骨骼肌和心肌组织AMPK磷酸化水平的影响。
     (2)CD36缺乏激活AMPK的作用机制研究
     1)CD36缺乏对LKB1磷酸化水平的影响:以CHO-Vector和CHO-CD36细胞为研究对象,用immunoprecipitation法检测CD36缺乏对LKB1磷酸化水平的影响。
     2)CD36缺乏对LKB1向细胞核转运的影响:用immunofluorescent microscopy法观测CD36的缺乏对LKB1向细胞核转运的影响。
     (3)CD36缺乏对小鼠骨骼肌细胞棕榈酸氧化水平的影响
     1)将siCont或siCD36作用于分化成熟的C2C12小鼠骨骼肌细胞,用Oxygraph-2k线粒体呼吸仪检测CD36缺乏对骨骼肌细胞棕榈酸氧化水平的影响;
     2)将siCont或siCD36作用于分化成熟的C2C12小鼠骨骼肌细胞,用western blot法检测CD36缺乏对棕榈酸诱导AMPK/ACC活化水平的影响。
     2.棕榈酸作用下CD36对小鼠骨骼肌脂肪酸代谢调控的机制研究
     (1)棕榈酸对AMPK活化水平的影响:利用棕榈酸作用于分化成熟的C2C12小鼠骨骼肌细胞,用western blot法检测棕榈酸对小鼠骨骼肌细胞AMPK磷酸化水平的影响。
     (2)CD36在棕榈酸诱导AMPK激活中的作用机制研究:以CHO-CD36细胞为研究对象,经过3001μM棕榈酸作用15分钟后,用immunofluorescent microscopy法检测棕榈酸对LKB1向细胞核转运的影响;用co-immunoprecipitation法检测CD36与Fyn、LKB1及AMPK的结合能力。
     (3)棕榈酸对CD36向细胞膜转运的影响:以完全分化的C2C12小鼠骨骼肌细胞为研究对象,经过300gM棕榈酸作用0、5、15、30分钟后,用In-Cell Western法检测棕榈酸对CD36向细胞膜转运的影响;用western blot法检测棕榈酸对小鼠骨骼肌细胞AMPK磷酸化水平的影响;用immunoprecipitation法检测棕榈酸对被AMPK磷酸化的TBC1D1水平的影响。
     3.高脂膳食、运动及能量限制干预下小鼠骨骼肌脂肪酸氧化代谢水平不同对CD36总蛋白含量的影响
     清洁级雄性C57小鼠40只,随机分为四组:对照组(N,n=10)、高脂膳食组(HD,n=10)、自主跑轮运动组(E,n=10)及能量限制组(CR,n=10)。经过8周干预后,实验结束。小鼠断颈处死,摘取右侧股四头肌。
     (1)不同干预方式对小鼠骨骼肌脂肪酸氧化代谢水平的影响:用western blot法分别检测了高脂膳食、自主运动及能量限制对小鼠骨骼肌脂肪酸氧化信号通路AMPK/ACC活化水平的影响。从而建立了小鼠骨骼肌脂肪酸氧化水平不同的动物模型。
     (2)小鼠骨骼肌脂肪酸氧化水平不同对CD36总蛋白含量的影响:用western blot法首先检测了不同干预方式对CD36总蛋白含量的影响,然后进一步检测了CD36总蛋白含量在不同骨骼肌脂肪酸氧化代谢水平中的差异。
     结果:
     (1)与siCont相比,经2种siCD36干扰后的C2C12细胞中pAMPK(T172)/AMPK显著增加(P<0.05,P<0.01);与WT小鼠相比,CD36-/小鼠骨骼肌(P<0.01)及心肌组织中pAMPK(T172)/AMPK显著增加(P<0.05)。
     (2)与CHO-CD36细胞相比,CHO-Vector细胞中LKB1的磷酸化水平有明显的减少,并且LKB1大量存在于细胞质中(P<0.05)。与此同时,CHO-Vector细胞中AMPK磷酸化水平整体较高(P<0.01)。
     (3)棕榈酸作用于经siCont转染的C2C12细胞15分钟后,AMPK活化水平明显增加(P<0.001),然而棕榈酸并没有导致经siCD36转染的C2C12细胞AMPK活化水平的进一步增加(P>0.05)。
     (4)在CHO-CD36细胞中,棕榈酸能够明显抑制LKB1向细胞核的转运。
     (5)在CHO-CD36细胞中,棕榈酸能够减少CD36与Fyn的结合能力,同时增加CD36与LKB1及AMPK的结合能力。
     (6)在完全分化的C2C12细胞中,细胞膜CD36的含量随着棕榈酸作用时间的延长而增加,其中在棕榈酸作用30分钟时,细胞膜CD36的含量有显著的增加(P<0.05);并且AMPK、TBC1D1磷酸化水平的增加也呈棕榈酸作用的时间依赖性。
     (7)与对照组小鼠相比,经过8周高脂膳食干预的小鼠骨骼肌CD36总蛋白表达水平显著减少(P<0.01),经过8周自主运动干预的小鼠骨骼肌CD36总蛋白表达水平无明显变化(P>0.05),经过8周能量限制干预的小鼠骨骼肌CD36总蛋白表达水平显著增加(P<0.01);与高脂膳食组小鼠相比,经过8周自主跑轮运动及能量限制的小鼠骨骼肌CD36总蛋白表达水平有显著增加(P<0.01)。
     结论:
     (1)离体、在体实验均表明,CD36缺乏能够激活骨骼肌AMPK。其作用机制可能为:CD36缺乏导致了CD36对Fyn的磷酸化水平减少,进一步减少了Fyn对LKB1的磷酸化作用,LKB1磷酸化水平的减少抑制了LKB1向细胞核的转运,从而激活AMPK。
     (2)基础状态下CD36的缺乏导致了骨骼肌AMPK/ACC磷酸化水平及脂肪酸氧化水平的增加,然而CD36的缺乏又损伤了棕榈酸对AMPK激活的敏感性。说明CD36的存在对骨骼肌脂肪酸氧化代谢的调控起到了重要作用。
     (3)当外源性棕榈酸附着于细胞膜CD36表面时,Fyn与CD36相分离,减少了Fyn对LKB1的磷酸化作用,抑制LKB1向细胞核的转运,从而增加了LKB1对AMPK的激活作用。与此同时,棕榈酸与CD36的结合,还可能通过增加CD36与LKB1及CD36与AMPK的结合能力,在棕榈酸的作用下形成CD36-LKB1-AMPK复合物,LKB1与AMPK空间距离的靠近,进一步增加了LKB1对AMPK的激活作用。
     (4)棕榈酸可能通过激活骨骼肌AMPK/TBC1D1信号通路,诱导CD36向细胞膜的转运,但无法诱导CD36向线粒体膜的转运。
     (5)骨骼肌脂肪酸氧化水平较高的自主运动及能量限制小鼠CD36的总蛋白含量也显著高于高脂膳食小鼠。该结果说明了CD36总蛋白含量的变化可能是对不同小鼠骨骼肌脂肪酸氧化代谢水平的一种适应性调控。
Skeletal muscle plays a key role in maintaining FA homeostasis. The balance of fatty acid uptake, transportation and oxidation is well maintained in healthy skeletal muscle. However, the accumulation of FA derivatives and metabolites would compromise muscle function, and result in insulin resistant which is a key characteristic of type2diabetes. CD36is an integral membrane protein and plays an important role in transporting long chain fatty acids (LCFAs) into skeletal muscle cells. Most findings of CD36focus on its role in facilitating fatty acid uptake. However, the role that CD36plays in regulating FA oxidation remains unclear. Adenosine monophosphate-activated protein kinase (AMPK) is a known major regulator of FA metabolism in skeletal muscle. The role of CD36in regulating FA oxidation by triggering AMPK signaling activation remains unclear.
     Objective:The current research was designed to study the role of CD36in regulating FA uptake and FA oxidation in muscle, as well as its underlying mechanism. The role of CD36in activating AMPK at basal level was observed firstly, which would provide a new view in CD36-mediated muscle FA oxidation. Secondly, due to the importance of PA in regulating the metabolic homeostasis of skeletal muscle as well as whole body, the mechanism of CD36in regulating AMPK activation with the addition of PA was further investigated, which might be helpful for understanding the occurrence and development of metabolic diseases. Finally, in order to reveal the impact of oxidation level of FAs on CD36contents, an animal model displaying different muscle FA oxidation levels was built to support the possible role of CD36in participating FA oxidation.
     Methods:
     1. The role and corresponding mechanism of CD36in regulating muscle fatty acid oxidation in basal conditions
     (1) The effect of CD36depletion on AMPK activation.
     1) Cell culture study with C2C12:Differentiated C2C12cells were depleted of CD36by RNAi-mediated knockdown (KD). The effect of CD36deficiency on AMPK phosphorylation levels was detected by Western Blot;
     2) Animal study:To investigate the contribution of CD36to AMPK activation regulation in vivo, AMPK phosphorylation levels in skeletal muscle (gastrocnemius) and cardiac muscle of CD36-/-and WT mice were detected by Western Blot.
     (2) The mechanism of CD36depletion on AMPK activation.1) The effect of CD36depletion on LKB1phosphorylation level was detected by IP in CHO-Vector and CHO-CD36cells;
     2) The effect of CD36depletion on LKB1relocation to nuclear was observed by IF in CHO-Vector and CHO-CD36cells.
     (3) The effect of CD36depletion on palmitic acid oxidation in myotubes.
     1) Differentiated C2C12cells were depleted of CD36by RNAi-mediated knockdown (KD). The effect of CD36deficiency on PA oxidation was determined by high-resolution respirometry (Oxygraph-2k);
     2) Differentiated C2C12cells were depleted of CD36by RNAi-mediated knockdown (KD) and then incubated with PA. The effect of CD36deficiency on PA-induced AMPK and ACC phosphorylation levels was detected by Western Blot.
     2. The role of CD36in regulating muscle fatty acid metabolism with the stimulation of PA.
     (1) The effect of PA on AMPK activation:Differentiated C2C12cells were stimulated by PA, and AMPK phosphorylation levels were detected by Western Blot.
     (2) CHO-CD36cells were stimulated by300μM PA for15mins. The direct association of CD36with Fyn, LKB1and AMPK was determined by co-IP; The effect of PA on LKB1relocation to nuclear was observed by IF.
     (3) PA-induced CD36translocation to plasma membrane via AMPK/TBC1D1signaling pathway:The differentiated C2C12cells were stimulated by300μM PA for 0,5,15and30mins, respectively. The PA-facilitated CD36translocation to plasma membrane was examined by In-Cell Western; The effect of PA on AMPK phosphorylation levels were detected by Western Blot; The effect of PA on AMPK-dependent phosphorylation of TBC1D1was examined by TBC1D1immunoprecipitation followed by probing with phospho-(Ser/Thr) antibody specific for AMPK phosphorylation motifs.
     3. The effect of fatty acid oxidation level in groups HD, E and CR on muscle CD36contents.
     40male C57mice were randomly assigned into four groups:control (N), high fat diet (HD), voluntary exercise (E) and caloric restriction (CR) with10mice in each group. The intervention peroid lasted for8weeks and the body weight of the four groups was recorded weekly.
     (1) An animal model with different muscle FA oxidation levels was built: AMPK/ACC phosphorylation levels in skeletal muscle of groups HD, E and CR were measured by Western Blot.
     (2) Groups HD, E and CR were used to determine the effect of muscle fatty acid oxidation level on CD36content. CD36expression level in skeletal muscle was measured by Western Blot.
     Results:
     (1) CD36depletion in C2C12myotubes with2independent siCD36oligonucleotides resulted in a robust increase of AMPK phosphorylation at T172(P<0.05, P<0.01). Moreover, CD36deficiency in CD36-/-mouse resulted in a significant increase in AMPK phosphorylation at T172in both skeletal muscle (P<0.01) and cardiac muscle (P<0.05).
     (2) Compared with CHO-CD36cells, CHO-Vector cells showed a significant decrease in LKB1phosphorylation, and LKB1was predominantly found in the cytoplasma (P<0.05). This was also accompanied with a higher basal level of AMPK phosphorylation (P<0.01).
     (3) The addition of PA to C2C12cells treated with irrelevant siRNA significantly increased AMPK T172-phosphorylation at15min of stimulation (P<0.001). The basal level of pAMPK in CD36-depleted cells was higher and did not increase further in response to PA stimulation (P>0.05).
     (4) PA could obviously inhibit LKB1relocation into nucleus in CHO-CD36cells.
     (5) The addition of PA markedly weakened the direct association of CD36with Fyn, however significantly enhanced the direct association of CD36with LKB1and AMPK.
     (6) AMPK and TBC1D1phosphorylation levels were increased with PA stimulation in a time-dependent manner, which was associated with the increase in CD36relocation to the plasma membrane (P<0.05).
     (7) Compared with group N, the expression level of CD36in the skeletal muscle of HD mice was significantly decreased (P<0.01), the expression of CD36in the skeletal muscle of CR group was significantly increased (P<0.01), and the expression of CD36in the skeletal muscle of E group was not changed (P>0.05); When compared to group HD, the total CD36content in skeletal muscle of E and CR groups was with a higher level (P<0.01).
     Conclusions:
     (1) CD36depletion induced an increase in muscle AMPK activation in vitro and in vivo. In the absence of CD36, Fyn-dependent LKB1phosphorylation decreased results in LKB1nuclear relocation inhibited, thus advancing its access to cytosolic AMPK and resulting in increased LKB1phosphorylation of AMPK.
     (2) In basal condition, the deficiency of CD36induced an increase in AMPK and ACC phosphorylation levels, as well as FA oxidation levels. However, the depletion of CD36could not induce PA-stimulated AMPK phosphorylation levels further increased, suggesting the existence of CD36played a key role in regulating FA oxidation via AMPK/ACC signaling pathway.
     (3) PA binding to CD36induced Fyn dissociating from the CD36-LKB1-AMPK complex, allowing LKB1to remain in the cytosol and to phosphorylate AMPK. Besides that, the addition of PA could enhance the direct association of CD36with LKB1and AMPK, which could further increase LKB1phosphorylation of AMPK.
     (4) PA induced CD36translocation to plasma membrane via AMPK/TBC1D1signaling pathway, but not to mitochondrial membrane.
     (5) Compared with HD group, CD36content was significantly higher in E and CR groups in which muscle FA oxidation was also higher, indicating that total CD36content was probably related to the adaption of fatty acid oxidation in skeletal muscle.
引文
[1]Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism:implications for metabolic disease. Physiol Rev,2010, 90(1):367-417.
    [2]Nickerson JG, Alkhateeb H, Benton CR, Lally J, Nickerson J, Han XX, Wilson MH, Jain SS, Snook LA, Glatz JFC, Chabowski A, Luiken JJ, Bonen A. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J Biol Chem,2009, 284(24):16522-16530.
    [3]Choi CS, Befroy DE, Codella R, Kim S, Reznick RM, Hwang YJ, Liu ZX, Lee HY, Distefano A, Samuel VT, Zhang D, Cline GW, Handschin C, Lin J, Petersen KF, Spiegelman BM, Shulman GI. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci,2008,105(50):19926-19931.
    [4]Holloway GP, Jain SS, Bezaire V, Han XX, Glatz JF, Luiken JJ, Harper ME, Bonen A. FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle. Am J Physiol Regul Integr Comp Physiol,2009,297(4):R960-967.
    [5]Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev,2006,86(2):465-514.
    [6]Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J,2008, 413(2):201-215.
    [7]Schroeder F, Petrescu AD, Huang H, Atshaves BP, Mclntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock D, Landrock KK, Payne HR, Kier AB. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids,2008,43(1):1-17.
    [8]Nahle Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA, Zhang MQ, Das D, Abumrad NA. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress. J Biol Chem 2008, 283(21):14317-14326.
    [9]Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, Febbraio M, Finck BN, Kelly DP. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res, 2007,100(8):1208-1217.
    [10]Buteau J, Accili D. Regulation of pancreatic beta-cell function by the forkhead protein FoxO1. Diabetes Obes Metab,2007,9 (Suppl 2):140-146.
    [11]Schwenk RW, Luiken JJ, Bonen A, Glatz JF. Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease. Cardiovasc Res,2008,79(2):249-258.
    [12]Ehehalt R, Fullekrug J, Pohl J, Ring A, Herrmann T, Stremmel W. Translocation of long chain fatty acids across the plasma membrane--lipid rafts and fatty acid transport proteins. Mol Cell Biochem,2006,284(1-2):135-140.
    [13]Black PN, DiRusso CC. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta,2007,1771(3):286-298.
    [14]Stremmel W, Pohl L, Ring A, Herrmann T. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids,2001,36(9):981-989.
    [15]Bonen A, Holloway GP, Tandon NN, Han XX, McFarlan J, Glatz JF, Luiken JJ. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats. Am J Physiol Regul Integr Comp Physiol,2009,297(4):R1202-1212.
    [16]Hajri T, Abumrad NA. Fatty acid transport across membranes:relevance to nutrition and metabolic pathology. Annu Rev Nutr,2002,22:383-415.
    [17]Febbraio M. CD36 goes native. Arterioscler Thromb Vasc Biol,2008, 28(7):1209-1210.
    [18]Greenwalt DE, Lipsky RH, Ockenhouse CF, Ikeda H, Tandon NN, Jamieson GA. Membrane glycop rotein CD36:a review of its roles in adherence, signal transduction, and transfusion medicine. Blood,1992,80(5):1105-1115.
    [19]Febbraio M, Hajjar DP, Silverstein RL. CD36:a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest,2001,108(6):785-791.
    [20]Su X, Abumrad NA. Cellular fatty acid uptake:a pathway under construction. Trends Endocrinol Metab,2009,20(2):72-77.
    [21]Steinbusch LK, Schwenk RW, Ouwens DM, Diamant M, Glatz JF, Luiken JJ. Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci,2011,68(15):2525-2538.
    [22]Habets DD, Luiken JJ, Ouwens M, Coumans WA, Vergouwe M, Maarbjerg SJ, Leitges M, Bonen A, Richter EA, Glatz JF. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake. Front Physiol, 2012, (3):artica1361.
    [23]Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans,2003, 31(Pt1):162-168.
    [24]Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J,2003,375 (Pt 1): 1-16.
    [25]Jeppesen J, Jordy AB, Sjoberg KA, Fullekrug J, Stahl A, Nybo L, Kiens B. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle. PLoS One,2012,7(1):e29391.
    [26]Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev,2010,90(1):207-258.
    [27]Maschberger P, Bauer M, Baumann-Siemons J, Zangl KJ, Negrescu EV, Reininger AJ, Siess W. Mildly oxidized low density lipoprotein rapidly stimulates via activation of the lysophosphatidic acid receptor Src family and Syk tyrosine kinases and Ca2+ influx in human platelets. J Biol Chem,2000,275(25):19159-19166.
    [28]Zimman A, Podrez EA. Regulation of platelet function by class B scavenger receptors in hyperlipidemia. Arterioscler Thromb Vasc Biol,2010,30(12): 2350-2356.
    [29]Smith BK, Bonen A, Holloway GP. A dual mechanism of action for skeletal muscle CD36 during exercise. Exerc Sport Sci Rev,2012,40(4):211-217.
    [30]Bonen A, Luiken JJ, Arumugam Y, Glatz JF, Tandon NN. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem,2000,275(19):14501-14508.
    [31]Holloway GP, Bezaire V, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Bonen A, Spriet LL. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol,2006,571(Pt 1):201-210.
    [32]Clarke DC, Miskovic D, Han XX, Calles-Escandon J, Glatz JF, Luiken JJ, Heikkila JJ, Bonen A. Overexpression of membrane associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiol Genomics,2004,17(1):31-37.
    [33]Holloway GP, Lally J, Nickerson JG, Alkhateeb H, Snook LA, Heigenhauser GJ, Calles-Escandon J, Glatz JF, Luiken JJ, Spriet LL, Bonen A. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. J Physiol,2007,582(Pt 1):393-405.
    [34]Bonen A, Han XX, Habets DD, Febbraio M, Glatz JF, Luiken JJ. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin-and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab,2007, 292(6):E1740-1749.
    [35]Smith BK, Jain SS, Rimbaud S, Dam A, Quadrilatero J, Ventura-Clapier R, Bonen A, Holloway GP. CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem J,2011,437(1):125-134.
    [36]Bonen A, Luiken JJ, Liu S, Dyck DJ, Kiens B, Kristiansen S, Turcotte LP, Van Der Vusse GJ, Glatz JF. Palmitate transport and fatty acid transporters in red and white muscles. Am J Physiol,1998,275(3 Pt 1):E471-478.
    [37]Luiken JJ, Coort SL, Willems J, Coumans WA, van der Vusse GJ, Glatz JF. Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes, 2003,52(7):1627-1634.
    [38]Distler AM, Kerner J, Peterman SM, Hoppel CL. A targeted proteomic approach for the analysis of rat liver mitochondrial outer membrane proteins with extensive sequence coverage. Anal Biochem,2006,356(1):18-29.
    [39]Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev,2006,86(1):205-243.
    [40]van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol,2001,536(Pt 1):295-304.
    [41]Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol,1993,265(3 Pt 1):E380-391.
    [42]Turcotte LP, Raney MA, Todd MK. ERK1/2 inhibition prevents contraction-induced increase in plasma membrane CD36 content and FA uptake in rodent muscle. Acta Physiol Scand,2005,184(2):131-139.
    [43]Raney MA, Turcotte LP. Regulation of contraction-induced FA uptake and oxidation by AMPK and ERK1/2 is intensity dependent in rodent muscle. Am J Physiol Endocrinol Metab,2006,291(6):E1220-1227.
    [44]Jeppesen J, Albers P, Luiken JJ, Glatz JF, Kiens B. Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma. Mol Cell Biochem,2009, 326(1-2):45-53.
    [45]Koonen DP, Benton CR, Arumugam Y, Tandon NN, Calles-Escandon J, Glatz JFC, Luiken JJ, Bonen A. Different mechanism can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab, 2004,286(6):1042-1049.
    [46]Perry CG, Heigenhauser GJ, Bonen A, Spriet LL. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab,2008,33(6):1112-1123.
    [47]Talanian JL, Holloway GP, Snook LA, Heigenhauser GJ, Bonen A, Spriet LL Exercise training Increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am J Physiol Endocrinol Metab,2010,299(2): E180-188.
    [48]Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, Cameron-Smith D. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab,2002,283(1):E66-72.
    [49]Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol,2010, 588(Pt23):4795-4810.
    [50]Benton CR, Holloway GP, Han XX, Yoshida Y, Snook LA, Lally J, Glatz JF, Luiken JJ, Chabowski A, Bonen A. Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1 alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats. Diabetologia,2010,53(9):2008-2019.
    [51]Benton CR, Nickerson J, Lally J, Han XX, Holloway GP, Glatz JFC, Luiken JJFP, Graham TE, Heikkila JJ, Bonen A. Modest PGC-1α overexpression inmuscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, notintermyofibrillar, mitochondria. J Biol Chem,2008,283(7): 4228-4240.
    [52]Jain SS, Chabowski A, Snook LA, Schwenk RW, Glatz JF, Luiken JJ, Bonen A. Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1,4 and 6. FEBS Lett,2009,583(13): 2294-2300.
    [53]Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GE. The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol,2003,17(12):2477-2493.
    [54]Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARdelta agonists are exercise mimetics. Cell,2008,134(3):405-415.
    [55]Holloway GP, Gurd BJ, Snook LA, Lally J, Bonen A. Compensatory increases in nuclear PGC1 alpha protein are primarily associated with subsarcolemmal mitochondrial adaptations in ZDF rats. Diabetes,2010,59(4):819-828.
    [56]Yoshida Y, Jain SS, McFarlan JT, Snook LA, Chabowski A, Bonen A. Exercise-and training-induced upregulation of skeletalmuscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J Physiol,2013, 591(Pt 18):4415-4426.
    [57]Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, DeLany JP, Denkins YM, Rood JC, Veldhuis J, Bray GA. Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care,2002, 25(8):1283-1288.
    [58]Turcotte LP, Swenberger JR, Zavitz Tucker M, Yee AJ. Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats. Diabetes,2001,50(6):1389-1396.
    [59]Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 2001,292(5522):1728-1731.
    [60]Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ, Dyck DJ. Triacylglycerol accumulation in human ovesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J,2004, 18(10):1144-1146.
    [61]Yang H, Chang J, Chen W, Zhao L, Qu B, Tang C, Qi Y, Zhang J. Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alpha expression in adipose tissue of high-fat diet rats. Endocrine,2013, 43(3):579-585.
    [62]Ruohonen ST, Vahatalo LH, Savontaus E. Diet-induced obesity in mice overexpressing neuropeptide y in noradrenergic neurons. Int J Pept,2012, 2012:452524.
    [63]Levin BE. Acurate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am J Physiol,1999,276(2):382-387.
    [64]Choi JW, Liu H, Choi DK, Oh TS, Mukherjee R, Yun JW. Profiling of gender-specific rat plasma proteins associated with susceptibility or resistance to diet-induced obesity. J Proteomics,2012,75(4):1386-1400.
    [65]王舒然,麻微微,赵丹,王国秀,蘭威鸣.高脂饮食诱导肥胖与肥胖抵抗动物模型建立[J].中国公共卫生,2007,23(7):774-775.
    [66]李后开.肥胖易感与肥胖抵抗大鼠的代谢组学与转录组学研究[D].上海:上海交通大学,2008,1-121.
    [67]郭光,田荣,曲卉,李杰.高脂饮食诱导下的肥胖和肥胖抵抗大鼠细胞形态及瘦素、AMPK表达变化的研究[J].北京体育大学学报,2011,34(3):67-70.
    [68]Lopez-Miranda J, Perez-Martinez P, Marin C, Fuentes F, Delgado J, Perez-Jimenez F. Dietary fat, genes and insulin sensitivity. J Mol Med,2007,85(3): 209-222.
    [69]季东林,李晓琼,郭锡熔.脂联素受体1基因在大鼠脂肪组织中的表达及其与肥胖易感性的关系[J].实用儿科临床杂志,2006,21(11):681-682.
    [70]Ouwens DM, Diamant M, Fodor M, Habets DD, Pelsers MM, El Hasnaoui M, Dang ZC, van den Brom CE, Vlasblom R, Rietdijk A, Boer C, Coort SL, Glatz JF, Luiken JJ. Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevate CD36-mediated fatty acid uptake and esterification. Diabetologia,2007,50(9):1938-1948.
    [71]Brands M, Verhoeven AJ, Serlie MJ. Role of mitochondrial function in insulin resistance. Adv Exp Med Biol,2012,942:215-234.
    [72]Bonen A, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ. The fatty acid transporter CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. Int J Obes,2006,30(6):877-883.
    [73]Severson DL. Diabetic cardiomyopathy:recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol,2004,82(10):813-823.
    [74]Coort SL, Hasselbaink DM, Koonen DP, Willems J, Coumans WA, Chabowski A, van der Vusse GJ, Bonen A, Glatz JF, Luiken JJ. Enhanced sarcolemmal CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes,2004,53(7):1655-1663.
    [75]Aguer C, Mercier J, Man CY, Metz L, Bordenave S, Lambert K, Jean E, Lantier L, Bounoua L, Brun JF, Raynaud de Mauverger E, Andreelli F, Foretz M, Kitzmann M. Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase CD36 in obese patients. Diabetologia, 2010,53(6):1151-1163.
    [76]Van den Brom CE, Huisman MC, Vlasblom R, Boontje NM, Duijst S, Lubberink M, Molthoff CF, Lammertsma AA, van der Velden J, Boer C, Ouwens DM, Diamant M. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats:studies using positron emission tomography. Cardiovasc Diabetol,2009, (8):39.
    [77]Hardie D G, Sakamoto K. AMPK:a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda),2006,21:48-60.
    [78]Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes,2009,58(3):550-558.
    [79]Koonen DP, Sung MM, Kao CK, Dolinsky VW, Koves TR, Ilkayeva O, Jacobs RL, Vance DE, Light PE, Muoio DM, Febbraio M, Dyck JR. Alterations in skeletal muscle fatty acid handling predisposes middle-aged mice to diet-induced insulin resistance. Diabetes,2010,59(6):1366-1375.
    [80]Sadler NC, Angel TE, Lewis MP, Pederson LM, Chauvigne-Hines LM, Wiedner SD, Zink EM, Smith RD, Wright AT. Activity-based protein profiling reveals mitochondrial oxidative enzyme impairment and restoration in diet-induced obese mice. PLoS One,2012,7(10):e47996.
    [81]Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes,2006,55(Suppl 2):S9-S15.
    [82]O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis:implications for obesity. Mol Cell Endocrinol,2013,366(2):135-151.
    [83]Fei-Wang, Tian DR, Han JS. Diet-induced obese rats exhibit impaired LKB1-AMPK signaling in hypothalamus and adipose tissue. Peptides,2012, 35(l):23-30.
    [84]Olesen J, Kiilerich K, Pilegaard H. PGC-1a-mediated adaptations in skeletal muscle. Pflugers Arch,2010,460(1):153-162.
    [85]Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin,2011,43(4):248-257.
    [86]Teboul L, Febbraio M, Gaillard D, Amri EZ, Silverstein R, Grimaldi PA. Structural and functional characterization of the mouse fatty acid translocase promoter:activation during adipose differentiation. Biochem J,2001, 360(Pt2):305-312.
    [87]Holloway GP, Luiken JJ, Glatz JF, Spriet LL, Boene A. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation:an overview. Acta Physiol,2008,194(4):293-309.
    [88]Prentki M, Murthy Madiraju SR. Glycerolipid Metabolism and Signaling in Health and Disease. Endocr Rev,2008,29(6):647-676.
    [89]Goudriaan JR, Dahlmans VE, Teusink B, Ouwens DM, Febbraio M, Maassen JA, Romijn JA, Havekes LM, Voshol PJ. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res, 2003,44(12):2270-2277.
    [90]Yamashita S, Hirano KI, Kuwasako T, Janabi M, Toyama Y, Ishigami M, Sakai N. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem,2007, 299(1-2):19-22.
    [91]An P, Freedman BI, Hanis CL, Chen YD, Weder AB, Schork NJ, Boerwinkle E, Province MA, Hsiung CA, Wu X, et al. Genome-wide linkage scans for fasting glucose, insulin, and insulin resistance in the National Heart, Lung, and Blood Institute Family Blood Pressure Program:evidence of linkages to chromosome 7q36 and 19q13 from meta-analysis. Diabetes,2005,54(3):909-914.
    [92]Malhotra A, Elbein SC, Ng MC, Duggirala R, Arya R, Imperatore G, Adeyemo A, Pollin TI, Hsueh WC, Chan JC, et al. Meta-analysis of genome-wide linkage studies of quantitative lipid traits in families ascertained for type 2 diabetes. Diabetes, 2007,56(3):890-896.
    [93]Love-Gregory L, Sherva R, Sun L, Wasson J, Schappe T, Doria A, Rao DC, Hunt SC, Klein S, Neuman RJ, et al. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Genet, 2008,17(11):1695-1704.
    [94]Nicholls HT, Kowalski G, Kennedy DJ, Risis S, Zaffino LA, Watson N, Kanellakis P, Watt MJ, Bobik A, Bonen A, Febbraio M, Lancaster GI, Febbraio MA. Hematopoietic cell-restricted deletion of CD36 reduces high-fat diet-induced macrophage infiltration and improves insulin signaling in adipose tissue. Diabetes, 2011,60(4):1100-1110.
    [95]Heilbronn LK, Gregersen S, Shirkhedkar D, Hu D, Campbell LV. Impaired fat oxidation after a single high-fat meal in insulin-sensitive nondiabetic individuals with a family history of type 2 diabetes. Diabetes,2007,56(8):2046-2053.
    [96]Carley AN, Severson DL. What are the biochemical mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Cardiovasc Drugs Ther,2008,22(2):83-89.
    [97]Luiken JJ, Arumugam Y, Bell RC, Calles-Escandon J, Tandon NN, Glatz JF, Bonen A. Changes in fatty acid transport and transporters are related to the severity of insulin deficiency. Am J Physiol Endocrinol Metab,2002,283(3):E612-621.
    [98]Tanaka T, Nakata T, Oka T, Ogawa T, Okamoto F, Kusaka Y, Sohmiya K, Shimamoto K, Itakura K. Defect in human myocardial long-chain fatty acid uptake caused by FAT/CD36 mutations. J Lipid Res,2001,42(5):751-759.
    [99]Drover VA, Ajmal M, Nassir F, Davidson NO, Nauli AM, Sahoo D, Tso P, Abumrad NA. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest,2005,115(5):1290-1297.
    [100]Masuda D, Hirano KI, Oku H, Sandoval JC, Kawase R, Yuasa-Kawase M, Yamashita Y, Takada M, Tsubakio-Yamamoto K, Tochino Y, et al. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res. 2009,50(5):999-1011.
    [101]Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem,2007,282(27):19493-19501.
    [102]Drover VA, Nguyen DV, Bastie CC, Darlington YF, Abumrad NA, Pessin JE, London E, Sahoo D, Phillips MC. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J Biol Chem,2008, 283(19):13108-13115.
    [103]Nauli AM, Nassir F, Zheng S, Yang Q, Lo CM, Vonlehmden SB, Lee D, Jandacek RJ, Abumrad NA, Tso P. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology,2006,131(4):1197-1207.
    [104]Goudriaan JR, den Boer MA, Rensen PC, Febbraio M, Kuipers F, Romijn JA, Havekes LM, Voshol PJ. CD36 deficiency in mice impairs lipoprotein lipase-mediated triglyceride clearance. J Lipid Res,2005,46(10):2175-2181.
    [105]Sclafani A, Ackroff K, Abumrad NA. CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp Physiol,2007,293(5):R1823-R1832.
    [106]Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest,2005,115(11):3177-3184.
    [107]Kawai T, Fushiki T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am J Physiol Regul Integr Comp Physiol,2003,285(2):R447-454.
    [108]Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, Lee JH, Khadem S, Ren S, Li S, et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology,2008,134(2):556-567.
    [109]Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P, Kiviluoto T, Laitinen S, Kolak M, Fisher RM, Hamsten A, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol,2008,294(5):G1281-G1287.
    [110]Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ, Petretto E, Hubner N, Wallace CA, Zimdahl H, et al. Identification of renal CD36 as a determinant of blood pressure and risk for hypertension. Nat Genet,2008, 40(8):952-954.
    [111]Zhu W, Smart EJ. Myristic acid stimulates endothelial nitric-oxide synthase in a CD36-and an AMP kinase-dependent manner. J Biol Chem,2005, 280(33):29543-29550.
    [112]Susztak K, Ciccone E, McCue P, Sharma K, Bottinger EP. Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med,2005,2(2):e45.
    [113]Nicholson AC, Han J, Febbraio M, Silversterin RL, Hajjar DP. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann N Y Acad Sci, 2001,947:224-228.
    [114]Nozaki S, Kashiwagi H, Yamashita S, Nakagawa T, Kostner B, Tomiyama Y, Nakata A, Ishigami M, Miyagawa J, Kameda-Takemura K. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest,1995,96 (4):1859-1865.
    [115]Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF, Silverstein RL. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem,1999,274 (27):19055-19062.
    [116]Silverstein RL. Inflammation, atherosclerosis, and arterial thrombosis role of the scavenger receptor CD36. Cleve Clin J Med,2009,76 (S2):S27-30.
    [117]Teupser D, Mueller MA, Koglin J, Wilfert W, Ernst J, von Scheidt W, Steinbeck G, Seidel D, Thiery J. CD36 mRNA expression is increased in CD14(+) monocytes of patients with coronary heart disease. Clin Exp Pharmacol Physiol, 2008,35(5-6):552-556.
    [118]Handberg A, Skjelland M, Michelsen AE, Sagen EL, Krogh-Sorensen K, Russell D, Dahl A, Ueland T, Oie E, Aukrust P, Halvorsen B. Soluble CD36 in plasma is increased in patients with symptomatic atherosclerotic carotid plaques and is related to plaque instability. Stroke,2008,39 (11):3092-3095.
    [119]Cai L, Wang Z, Ji A, Meyer JM, Van der Westhuyzen DR. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLoS One,2012,7(5):e36785.
    [120]Abumrad NA, Ajmal M, Pothakos K, Robinson JK. CD36 expression and brain function:does CD36 deficiency impact learning ability?. Prostaglandins Other Lipid Mediat,2005,77(1-4):77-83.
    [121]Smith AG, Muscat GE. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biology, 2005,37(10):2047-2063.
    [122]Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature,2001,414(6865):782-787.
    [123]Liu Y, Wan Q, Guan Q, Gao L, Zhao J. High-fat diet feeding impairs both the expression and activity of AMPKa in rats'skeletal muscle. Biochem Biophys Res Commun,2006,339(2):701-707.
    [124]Fujii N, Ho RC, Manabe Y, Jessen N, Toyoda T, Holland WL, Summers SA, Hirshman MF, Goodyear LJ. Ablation of AMPactivated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes, 2008,57(11):2958-2966.
    [125]Capurso C, Capurso A. From excess adiposity to insulin resistance:the role of free fatty acids. Vascul Pharmacol,2012,57(2-4):91-97.
    [126]Wei Y, Chen K, Whaley-Connell AT, Stump CS, Ibdah JA, Sowers JR. Skeletal muscle insulin resistance:role of inflammatory cytokines and reactive oxygen species. Am J Physiol Regul Integr Comp Physiol,2008,294(3):R673-680.
    [127]Steinberg GR. Inflammation in obesity is a common link between defects in fatty acid metabolism and insulin resistance. Cell Cycle,2007,6(8):888-894.
    [128]Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes,1997,46(6):983-988.
    [129]Straczkowski M, Kowalska I, Baranowski M, Nikolajuk A, Otziomek E, Zabielski P, Adamska A, Blachnio A, Gorski J, Gorska M. Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes. Diabetologia, 2007,50(11):2366-2373.
    [130]Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, Cooney GJ. Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab,2000, 279(3):E554-560.
    [131]Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys.2003,419(2):101-109.
    [132]Turcotte LP, Petry C, Kiens B, Richter EA. Contraction-induced increase in Vmax of palmitate uptake and oxidation in perfused skeletal muscle. J Appl Physiol, 1998,84(5):1788-1794.
    [133]Luiken JJ, Arumugam Y, Dyck DJ, Bell RC, Pelsers MM, Turcotte LP, Tandon NN, Glatz JF, Bonen A. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem,2001,276(44):40567-40573.
    [134]Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Lee WM. Regulation of acetyl-CoA carboxylase. Biochem Soc Trans,2006,34:223-227.
    [135]Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett,2008,582(1):81-89.
    [136]Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet inCD36-null mice. J Clin Invest.2002,109(10):1381-1389.
    [137]Yamada E, Pessin JE, Kurland IJ, Schwartz GJ, Bastie CC. Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1. Cell Metab,2010,11(2):113-124.
    [138]Kuda O, Jenkins CM, Skinner JR, Moon SH, Su X, Gross RW, Abumrad NA. CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. J Biol Chem,2011,286(20): 17785-17795.
    [139]El-Yassimi A, Hichami A, Besnard P, Khan NA. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem,2008,283(19):12949-12959.
    [140]Bastie CC, Zong H, Xu J, Busa B, Judex S, Kurland IJ, Pessin JE. Integrative metabolic regulation of peripheral tissue fatty acid oxidation by the SRC kinase family member Fyn. Cell Metab,2007,5(5):371-381.
    [141]Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest,2013,123(7):2764-2772.
    [142]Sanchez AM, Candau RB, Csibi A, Pagano AF, Raibon A, Bernardi H. The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Am J Physiol Cell physiol,2012,303(5):C475-485.
    [143]Kraegen EW, Bruce C, Hegarty BD, Ye JM, Turner N, Cooney G. AMP-activated protein kinase and muscle insulin resistance. Front Biosci,2009,14: 4658-4672.
    [144]Pulawa LK, Eckel RH. Overexpression of muscle lipoprotein lipase and insulin sensitivity. Curr Opin Clin Nutr Metab Care,2002,5(5):569-574.
    [145]Samuel VT, Shulman GI. Mechanisms for insulin resistance:common threads and missing links. Cell,2012,148(5):852-871.
    [146]Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues:lipoprotein lipase-and CD36-mediated pathways. J Lipid Res,2009,50 Suppl:S86-90.
    [147]Pietka TA, Sulkin MS, Kuda O, Wang W, Zhou D, Yamada KA, Yang K, Su X, Gross RW, Nerbonne JM, Efimov IR, Abumrad NA. CD36 protein influences myocardial Ca2+ homeostasis and phospholipid metabolism:conduction anomalies in CD36-deficient mice during fasting. J Biol Chem,2012,287(46):38901-38912.
    [148]Sinha S, Perdomo G, Brown NF, O'Doherty RM. Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem,2004,279 (40):41294-41301.
    [149]Wang X, Yu W, Nawaz A, Guan F, Wang C. Palmitate induced insulin resistance by PKCtheta-dependent activation of mTOR/S6K pathway in C2Cl2 myotubes. Exp Clin Endocrinol Diabetes,2010,118 (9):657-661.
    [150]彭恭,刘延波,刘平生.棕榈酸的组织吸收分布及对骨骼肌胰岛素抵抗的影响[J].生物物理学报,2012,28(1):45-52.
    [151]Bergman BC, Howard D, Schauer IE, Maahs DM, Snell-Bergeon JK, Clement TW, Eckel RH, Perreault L, Rewers M. The importance of palmitoleic acid to adipocyte insulin resistance and whole-body insulinsensitivity in type 1 diabetes. J Clin Endocrinol Metab,2013,98 (1):E40-E50.
    [152]Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F. Activation of AMP-activated protein kinase in the liver:a new strategy for the management of metabolic hepatic disorders. J Physiol,2006,574 (Ptl): 41-53.
    [153]Campbell PJ, Carlson MG, Hill JO, Nurjhan N. Regulation of free fatty acid metabolism by insulin in humans:role of lipolysis and reesterification. Am J Physiol, 1992,263(6 Pt 1):E1063-E1071.
    [154]Singer P, Godicke W, Voiqt S, Hajdu I, Weiss M. Postprandial hyperinsulinemia in patients with mild essential hypertension. Hypertension,1985, 7(2):182-187.
    [155]Chabowski A, Zendzian-Piotrowska M, Konstantynowicz K, Pankiewicz W, Miklosz A, Lukaszuk B, Gorski J. Fatty acid transporters involved in the palmitate and oleate induced insulin resistance in primary rat hepatocytes. Acta Physiol (Oxf), 2013,207 (2):346-357.
    [156]Pu J, Peng G, Li L, Na H, Liu Y, Liu P. Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J Lipid Res,2011, 52(7):1319-1327.
    [157]Salvado L, Coll T, Gomez-Foix AM, Salmeron E, Barroso E, Palomer X, Vazquez-Carrera M. Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia,2013,56 (6):1372-1382.
    [158]Steinbusch LK, Dirkx E, Hoebers NT, Roelants V, Foretz M, Viollet B, Diamant M, van Eys G, Ouwens DM, Bertrand L, Glatz JF, Luiken JJ. Overexpression of AMP-activated protein kinase or protein kinase D prevents lipid-induced insulin resistance in cardiomyocytes. J Mol Cell Cardiol,2013,55: 165-173.
    [159]Pimenta AS, Gaidhu MP, Habib S, So M, Fediuc S, Mirpourian M, Musheev M, Curi R, Ceddia RB. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase inskeletal muscle cells. J Cell Physiol,2008,217 (2):478-485.
    [160]Yamada E, Lee TW, Pessin JE, Bastie CC. Targeted therapies of the LKB1/AMPK pathway for the treatment of insulin resistance. Future Med Chem, 2010,2(12):1785-1796.
    [161]Drover VA, Abumrad NA. CD36-dependent fatty acid uptake regulates expression of peroxisome roliferator activated receptors. Biochem Soc Trans,2005, 33(Pt1):311-315.
    [162]Mastick CC, Saltiel AR. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem,1997,272(33):20706-20714.
    [163]Bull HA, Brickell PM, Dowd PM. Src-related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal micro vascular endothelial cells. FEBS Lett,1994,351(1):41-44.
    [164]Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci USA,1991, 88(17):7844-7848.
    [165]Silverstein RL, Li W, Park YM, Rahaman SO. Mechanisms of cell signaling by the scavenger receptor CD36:implications in atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc,2010,121:206-220.
    [166]Huang MM, Indik Z, Brass LF, Hoxie JA, Schreiber AD, Brugge JS. Activation of Fc gamma RII induces tyrosine phosphorylation of multiple proteins including Fc gamma RII. J Biol Chem,1992,267(8):5467-5473.
    [167]Chen K, Febbraio M, Li W, Silverstein RL. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res,2008,102(12):1512-1519.
    [168]Koonen DP, Glatz JF, Bonen A, Luiken JJ. Long-chain fatty acid uptake and CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta,2005, 1736(3):163-180.
    [169]Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJ, Glatz JF, Bonen A. A novel function for fatty acid translocase (FAT)/CD36:involvement in long chain fatty acid transfer into the mitochondria. J Biol Chem,2004,279(35):36235-36241.
    [170]Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res,2012,53(4):709-717.
    [171]Bezaire V, Bruce CR, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Boneri A, Spriet LL. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes:essential role in fatty acid oxidation. Am J Physiol Endocrinol Metab,2006,290(3):E509-E515.
    [172]Greenwalt DE, Watt KW, So OY, Jiwani N. PAS IV, an integral membrane protein of mammary epithelial cells, is related to platelet and endothelial cell CD36 (GPIV). Biochemistry,1990,29(30):7054-7059.
    [173]Jochen A, Hays J. Purification of the major substrate for palmitoylation in rat adipocytes:N-terminal homology with CD36 and evidence for cell surface acylation. J Lipid Res,1993,34(10):1783-1792.
    [174]Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JF, Richter EA, Kiens B. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab, 2005,288(1):E133-E142.
    [175]Luiken JJ, Schaap FG, van Nieuwenhoven FA, van der Vusse GJ, Bonen A, Glatz JF. Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins. Lipids,1999,34 Suppl:S169-S175.
    [176]Luiken JJ, Dyck DJ, Han XX, Tandon NN, Arumugam Y, Glatz JF, Bonen A. Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. Am J Physiol Endocrinol Metab,2002,282(2):E491-E495.
    [177]Jeppesen J, Mogensen M, Prats C, Sahlin K, Madsen K, Kiens B. CD36 is localized in sarcolemma and in vesicle-like structures in subsarcolemma regions but not in mitochondria. J Lipid Res,2010,51(6):1504-1512.
    [178]Sebastian D, Guitart M, Garcia-Martinez C, Mauvezin C, Orellana-Gavalda JM, Serra D, Gomez-Foix AM, Hegardt FG, Asin G. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. J Lipid Res,2009,50(9): 1789-1799.
    [179]Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L. AMPK:Lessons from transgenic and knockout animals. Front Biosci,2009,14:19-44.
    [180]Choi CS, Savage DB, Abu-Elheiga L, Liu Z-X, Kim S, Kulkarni A, Distefano A, Hwang Y-J, Reznick RM, Codella R, Zhang D, Cline GW, Wakil SJ, Shulman GI. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc Natl Acad Sci,2007,104(42):16480-16485.
    [181]Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JF, Luiken JJ. Requirement for distinct vesicle-associated membrane proteins in insulin-and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia,2010,53(10):2209-2219.
    [182]Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnbaum MJ, Witters LA, Thorell A, Goodyear LJ. Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun.2000,273(3):1150-1155.
    [183]Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J,2006,20(1):190-192.
    [184]牛燕媚,苑红,刘彦辉,苏照鹏,李慧阁,姜宁,傅力.有氧运动对胰岛素抵抗小鼠骨骼肌球形脂联素及腺苷酸活化蛋白激酶的影响.中国运动医学杂志,2009,28(1):36-40.
    [185]Chabowski A, Momken I, Coort SL, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Bonen A. Prolonged AMPK activation increases the expression of fatty acid transporters in cardiac myocytes and perfusedhearts. Mol Cell Biochem,2006, 288(1-2):201-212.
    [186]Pandke KE, Mullen KL, Snook LA, Bonen A, Dyck DJ. Decreasing intramuscular phosphagen content simultaneously increases plasma membrane FAT/CD36 and GLUT4 transporter abundance. Am J Physiol Regul Integr Comp Physiol,2008,295(3):R606-813.
    [187]Rocha J, Paxman J, Dalton C, Winter E, Broom D. Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive men. Appetite,2013,71:369-378.
    [188]Lessard SJ, Rivas DA, Chen ZP, Bonen A, Febbraio MA, Reeder DW, Kemp BE, Yaspelkis BB, Hawley JA. Tissue specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance. Diabetes,2007,56(7): 1856-1864.
    [189]Ye JM, Dzamko N, Hoy AJ, Iglesias MA, Kemp B, Kraegen E. Rosiglitazone treatment enhances acute AMP-activated protein kinase-mediated muscle and adipose tissue glucose uptake in high-fat-fed rats. Diabetes,2006,55(10): 2797-2804.
    [190]Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J,2009,418(2):261-275.
    [191]Wojtaszewski JF, Richter EA. Effects of acute exercise and training on insulin action and sensitivity:focus on molecular mechanisms in muscle. Essays Biochem, 2006,42:31-46.
    [192]Aschenbach WG, Hirshman MF, Fujii N, Sakamoto K, Howlett KF, Goodyear LJ. Effect of AICAR treatmenton glycogen metabolism in skeletal muscle. Diabetes, 2002,51(3):567-573.
    [193]Raney MA, Yee AJ, Todd MK, Turcotte LP. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction.Am J Physiol Endocrinol Metab,2005,288(3):E592-E598.
    [194]Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, Zhang Z, Zhao G, Liu H, Zhang H. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes. PloS One,2012,7(12):e51709.
    [195]Brandt N, De Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab,2010,299(2): E215-E224.
    [196]Sriwijitkamol A, Ivy JL, Christ-Roberts C, Defronzo RA, Mandarino LJ, Musi N. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training. Am J Physiol Endocrinol Metab,2006,290(5):E925-E932.
    [197]Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL, Goodyear LJ, Tong Q. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1 alpha in skeletal muscle. Aging (Albany NY),2009, 1(9):771-783.
    [198]Canto C, Auwerx J. Calorie restriction:is AMPK a key sensor and effector? Physiology (Bethesda),2011,26(4):214-224.
    [199]Wang P, Zhang RY, Song J, Guan YF, Xu TY, Du H, Viollet B, Miao CY. Loss of AMP-activated protein kinase-a2 impairs the insulin-sensitizing effect of calorie restriction in skeletal muscle. Diabetes,2012,61(5):1051-1061.
    [200]Wang ZQ, Floyd ZE, Qin J, Liu X, Yu Y, Zhang XH, Wagner JD, Cefalu WT. Modulation of skeletal muscle insulin signaling with chronic caloric restriction in cynomolgus monkeys. Diabetes,2009,58(7):1488-1498.
    [201]Bonen A, Benton CR, Luiken P. Plasmalemmal fatty acid transport is regulated in heart and skeletal muscle by contraction, insulin and leptin, and in obesity and diabetes. Acta Physiol Scand,2003,178(4):347-356.
    [202]Green walt DE, Scheck SH, Rhinehart-Jones T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin Investig,1995,96(3):1382-1388.
    [203]Steinberg GR, Dyck DJ, Calles-Escandon J, Tandon NN, Luiken JJ, Glatz JF, Bonen A. Chronic leptin administration decreases fatty acid uptake and fatty acid transporters in rat skeletal muscle. J Biol Chem,2002,277(11):8854-8860.
    [204]Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, Hawley JA, Hargreaves M. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscles. American Journal of Clinical Nutrition,2003,77(2):313-318.
    [205]Jill Smith, Xiong Su, EI-Maghrabi R, Stahl PD, Nada Abumrad. Opposite Regulation of CD36 Ubiquitination by Fatty Acids and Insulin:Effects of fatty acid uptake. J Biol Chem,2008,283(20):13578-13585.
    [206]Roepstorff C, Helge JW, Vistisen B, Kiens B. Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proc Nutr Soc,2004,63(2):239-244.
    [207]Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol, 1996,270(2 Pt1):E299-304.
    [208]Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc,2004,63(2):275-278.
    [209]Suwa M, Nakano H, Kumagai S. Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol, 2003,95(3):960-968.
    [210]Schenk S, Horowitz JF. Coimmunoprecipitation of FAT/CD36 and CPT1 in skeletal muscle increases proportionally with fat oxidation after endurance exercise training. Am J Physiol Endocrinol Metab,2006,291(2):E254-E260.
    [211]Kiens B, Roepstorff C, Glatz JF, Bonen A, Schjerling P, Knudsen J, Nielsen JN. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol,2004,97(4):1209-1218.
    [212]武阳丰,马冠生,胡永华,李艳平,李贤,崔朝辉,陈春明,孔灵芝.中国居民的超重和肥胖流行现状[J].中华预防医学杂志,2005,39(5):316-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700