用户名: 密码: 验证码:
槲皮素纳米脂质体的脑靶向性及其抗C6脑胶质瘤作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以槐米为原药材,通过水解法提取并精制槲皮素,采用乳化蒸发-低温固化法制备槲皮素纳米脂质体(QUE-NL),考察其在大鼠体内口服吸收特性、小鼠脑靶向性及药动学参数;考察QUE-NL在大鼠血浆中存在的物质形式及大鼠脑靶向性。
     方法:采用乳化蒸发-低温固化法,山嵛酸甘油酯、大豆卵磷脂和胆固醇为油相,泊洛沙姆、聚乙二醇-二硬脂酰磷脂酰乙醇胺和吐温-80作为水相,以正交试验法优化的处方与制备工艺制备槲皮素纳米脂质体(QUE-NL);透射电镜观察其微观形态,并测定其粒径分布、包封率和载药量;建立高效液相色谱法测定QUE-NL在大鼠胃肠道内容物及粪样混合物中的槲皮素含量的方法,计算其在大鼠胃肠道口服吸收百分率;采用高效液相色谱法测定小鼠血浆及脑组织中槲皮素浓度,计算药物靶向指数(DTI);采用高效液相色谱法测定口服QUE-NL在大鼠体内不同时间点的血药浓度,用3p97药动学软件处理数据,计算相关药动学参数;采用高效液相色谱法检测大鼠血浆中槲皮素存在形式及脑组织中槲皮素浓度,计算药物靶向指数(DTI)。
     结果:以乳化蒸发-低温固化法和优选的制备工艺制得的QUE-NL呈球状或类球状,平均粒径为172.63nm,包封率为85.90%,载药量为7.25%;QUE-NL在大鼠体内吸收优于槲皮素原料药和槲皮素普通脂质体;QUE-NL在大鼠体内的血药浓度显著高于槲皮素原料,其药时曲线下面积较槲皮素原料大,表观分布容积较槲皮素原料小,血浆清除率较槲皮素慢;QUE-NL在小鼠脑内吸收分布优于槲皮素原料药和槲皮素普通脂质体,QUE-NL药物靶向指数(DTI)均大于1;QUE-NL在大鼠血浆中主要是以槲皮素苷元和异鼠李素存在,且其在大鼠脑内吸收分布优于槲皮素原料药和普通脂质体,QUE-NL药物靶向指数(DTI)均大于1。
     结论:乳化蒸发-低温固化法适于制备槲皮素纳米脂质体,以正交法优化法制备的槲皮素纳米脂质体,能显著提高大鼠对槲皮素的口服吸收量,延长槲皮素在血浆中的循环时间,代谢半衰期更长,AUC更大,表明其具有长循环特征;槲皮素纳米脂质体能显著促进槲皮素在小鼠、大鼠脑内的吸收,具有良好的脑靶向性;吸收进入血浆中的槲皮素主要是以结合形式而非单体形式存在,为进一步应用于脑胶质瘤的治疗提供了实验依据。
     目的:研究槲皮素纳米脂质体(QUE-NL)对体外培养的大鼠C6胶质瘤细胞增殖与凋亡的调控作用,探讨其诱导C6胶质瘤细胞凋亡作用的线粒体途径与JAK2/STAT3信号通路机制。
     方法:采用体外培养大鼠C6胶质瘤细胞,采用MTT比色法检测不同药物(QUE、QUE-NL、QUE-L、替莫唑胺等)作用于大鼠C6胶质瘤细胞12,24,48和72h后的增殖抑制情况,流式细胞术(FCM)检测不同药物作用24h后大鼠C6胶质瘤细胞凋亡及死亡情况;LDH活性法检测对C6脑胶质瘤细胞的毒性作用。检测C6脑胶质瘤细胞活性氧(reactive oxygen species, ROS)、 SOD和MDA水平,比色法测定C6胶质瘤细胞内caspase-8、 caspase-9及caspase-3的活性;线粒体膜电位试剂盒(JC-1)检测线粒体膜电位变化;流式细胞分析技术检测C6脑胶质瘤细胞ROS水平;Western-blot法检测C6胶质瘤细胞caspase-8、 caspase-9及caspase-3的蛋白表达;检测C6脑胶质瘤细胞ATP和LDH释放水平,探讨其诱导凋亡及促坏死的可能线粒体信号传导途径机制。进一步,采用AG490(STAT3信号抑制剂)干预,从检测细胞毒,细胞凋亡,细胞因子IL-6、TNF-α的分泌,及STAT3信号通路JAK2、STAT3蛋白、p53与抗凋亡蛋白Bcl-2的表达等方面,探讨其通过JAK2/STAT3信号传导途径诱导C6胶质瘤细胞凋亡的可能机制。
     结果:与空白对照组比较,QUE-NL处理组随药物浓度增加和作用时间的延长,对C6细胞的增殖抑制作用增强,具有剂量依赖性;与QUE比较,QUE-NL给药组凋亡细胞及坏死细胞所占比例显著增多,尤以坏死细胞比例明显增多,QUE-NL能显著诱导C6胶质瘤凋亡和促进坏死;QUE-NL组的LDH释放量、ROS水平较空白对照组显著增加。QUE-NL显著提高C6胶质瘤凋亡细胞的caspase-3、 caspase-9的活性,促进C6胶质瘤细胞LDH释放、诱导C6胶质瘤细胞坏死,同时显著降低线粒体膜电位。QUE-NL能使C6胶质瘤细胞cytochromeC蛋白表达加强,对坏死caspase-9与caspase-3的蛋白表达无明显影响,显著升高C6脑胶质瘤细胞ATP和LDH的释放水平。QUE-NL使前凋亡蛋白Bax表达明显升高,抗凋亡蛋白Bcl-2表达降低,促进P53蛋白表达和抑制Bcl-2蛋白表达。与空白对照组比较,QUE-NL高、中剂量组JAK2和STAT3蛋白表达显著增加,AG490则显著抑制QUE-NL的促C6胶质瘤细胞坏死作用,显著抑制STAT3和p-STAT3的蛋白表达,但AG490对QUE-NL上调C6胶质瘤细胞p53蛋白表达的作用无显著影响。
     结论:QUE-NL能诱导大鼠C6胶质瘤细胞的凋亡,并促进肿瘤细胞的坏死,具有细胞毒性作用,表现出浓度、时间依赖性。其诱导细胞凋亡和促进细胞坏死作用机制与调节C6脑胶质瘤细胞活性氧(reactive oxygen species, ROS)、 SOD和MDA水平有关;QUE-NL增加凋亡的C6脑胶质瘤细胞中caspase-3和caspase-9的相对活性,对caspase-8活性影响不显著,提示槲皮素通过激活caspase活性诱导肿瘤细胞凋亡。QUE-NL促坏死的机制可能通过线粒体途径调节C6脑胶质瘤细胞ROS水平、降低线粒体膜电位与调节CytochromeC活性两种方式,促进大鼠C6胶质瘤细胞坏死;其通过活化线粒体信号传导途径caspase-9与caspase-3的活性诱导C6胶质瘤细胞凋亡,达到抗大鼠C6胶质瘤作用。不同浓度的QUE-NL可能从ROS/线粒体途径促进C6脑胶质瘤细胞凋亡或坏死,还可能经JAK2/STAT3信号转导途径调控C6脑胶质瘤细胞凋亡或坏死,主要调节JAK2/STAT3信号转导途径的关键信号分子(TNF-α、IL-6)和关键基因蛋白(JAK2、 STAT3、 Bax等)。两种途径交汇作用于线粒体,可能是其抗C6胶质瘤细胞的主要信号机制。
     目的:研究槲皮素纳米脂质体(QUE-NL)体内对C6胶质瘤的抑制作用,比较槲皮素原料药与QUE-NL的抗胶质瘤作用,评价QUE-NL在脑肿瘤组织的脑靶向性及其毒副作用。
     方法:利用大鼠脑立体定位仪进行C6胶质瘤细胞近皮层原位接种建立体内模型,分别给予槲皮素原料药、槲皮素纳米脂质体及替莫唑胺等药。给药治疗三周后,测定其肿瘤直径、计算抑瘤率,观察大鼠的一般生长情况。末次给药2小时后断头取血测定肝功能。按照高效液相色谱法测定血浆与肿瘤组织槲皮素浓度,测定脑组织中槲皮素含量,并计算药物靶向指数(DTI);另取肿瘤组织固定后,常规石蜡包埋标本,石蜡切片,HE染色。免疫组织化学染色法检测大鼠脑肿瘤组织JAK2、STAT3、p53和survivin蛋白表达情况,并取大鼠心、肝、肾做常规病理切片。
     结果:QUE-NL高、低剂量组(50mg.kg-1、25mg.kg-1)能明显减小肿瘤体积。免疫组织化学染色结果显示,空白对照组肿瘤组织JAK2和survivin蛋白表达呈强阳性,核外STAT3蛋白表达呈强阳性,肿瘤细胞核内p-STAT3蛋白表达明显;QUE-NL治疗组肿瘤组织JAK2、STAT3和survivin蛋白表达相对较弱、p-STAT3蛋白表达减少,p53蛋白表达呈强阳性。与槲皮素原料药相比,QUE-NL能显著增加C6胶质瘤大鼠血浆和脑组织的槲皮素浓度,表明聚山梨酯-80包衣的QUE-NL显著促进槲皮素进入血脑屏障。QUE-NL高、低剂量组的脑肿瘤组织DTI均大于1,显示出较好的肿瘤靶向性。槲皮素原料与QUE-NL对C6胶质瘤大鼠血清ALT, AST, γ-GT均无显著影响,仅替莫唑胺组荷瘤大鼠的ALT指标明显升高,替莫唑胺组显示有轻度肝肾损害,其余各组肝肾功能均无明显变化。
     结论:本研究制备的QUE-NL具有提高槲皮素抗脑胶质瘤生长的效果,具有肿瘤靶向性,并能降低药物的毒性作用。
Objective:To prepare quercetin nanoliposomes (QUE-NL) and investigate its properties and the oral absorption character in rat. To investigate the absorption character of QUE-NL in brain tissue and plasma in mice and rat, and measure the pharmacokinetic parameters in rats and the existence form of QUE-NL in plasma and absorption character in rat brain tissue.
     Methods:Preparation of QUE-NL by the emulsification-evaporation and low temperature curing method and the optimum formulation with the optimal conditions which oil phase were mainly made of Glyceryl behenate (ATO), soy lecithin and cholesterol, and aqueous phase was made of poloxamer, PEG2000-DPSE and Tween80. The morphology of QUE-NL was examined by transmission electron microscope (TEM) and the particle diameter distribution was determined by laser particle size analyzer, and the drug loading and encapsulation efficiency of QUE-NL was determined by HPLC. The determination methods of quercetin in the nanoliposomes and in the mixture of gastrointestinal contents and feces were established by HPLC. Determination of oral absorption rate of QUE-NL in gastrointestinal in rat by HPLC. The serial blood samples were collected at designed time points and determination of quercetin in plasma and drug targeting index (DTI) of brain tissue in mice by HPLC. The pharmacokinetic parameters were calculated with the software3P97a. The determination of quercetin existence form in plasm and drug targeting index (DTI) of brain tissue in rat by HPLC.
     Result:The mean diametre of QUE-NL was172.63nm, and the nanoparticles morphology of QUE-NL was sphere or spherical.The entrapment efficiency was85.90%and the drug loading rate was7.25%. The oral absorption of QUE-NL in rat was better than that of quercetin suspension and common liposomes. The absorption of quercetin and common liposomes all increased with concentration of quercetin and showed linear correlation. Meanwhile, the absorption of QUE-NL with the increase concentration of quercetin and showed no linear correlation. The distribution of QUE-NL in mice brain tissue was better than that of quercetin suspension and common liposomes, and drug targeting index (DTI) of QUE-NL values were more than1in brain tumor tissue. The plasma concentration and area under the curve (AUC) of QUE-NL in rat was obviously higher than that of quercetin suspension. Volume of distribution (Vd) and plasma clearances of QUE-NL were lower than that of free quercetin. Quercetin mainly was in faglycone and isorhamnetin state, and the distribution of QUE-NL in rat brain tissue was better than that of quercetin suspension and common liposomes and drug targeting index (DTI) of QUE-NL values were more than1in brain tumor tissue.
     Conclusion:QUE-NL can improve the oral absorption of quercetin in mice and rat with optimal preparation of QUE-NL in this experiment. QUE-NL can prolong the circle time of quercetin in plasma for longer half-life and larger AUC and the results show that QUE-NL has long circulating effects. Quercetin was obsorbde in plasma in a combinative form but not in free state, QUE-NL can improve the absorption of quercetin in mice and rat brain tissue, which showed good brain targeting in mice and rat, so as to provide experimental foundation for further application for treatment of glioma.
     Objective:To study on the effects of quercetin nanoliposomes (QUE-NL) on proliferation and apoptosis on C6glioma cells in vitro. To study the role of mitochondrial pathway in the apoptosis or necrosis in C6glioma cell lines induced by QUE-NL. To investigate the effects and mechanism of QUE-NL induced apoptosis on C6glioma cells through of JAK2/STAT3signaling pathway. Furthermore, provided the evidence for further development and supplement of quercetin using for anti-glioma.
     Methods:Using emulsification-evaporation and low temperature curing method to prepare quercetin nanoliposomes.The cultured cells were divided into QUE and QUE-NL treatment groups according to the concentrations of QUE, blank control and DMSO as control groups. MTT assay was used to observe the proliferation on the cells treated for12,24,48and72h.
     Given the concentration of QUE-NL50、100、200、400umol/L,taking quercetin and temozolomide as control. The apoptosis and necrosis of C6glioma cells was observed by flow cytometry (FCM) after the cells were respectively treated with QUE and QUE-NL for24h. Detected the activity of LDH to study the cytotoxicity effect of quercetin on rat C6glioma cell. Detected the level of ROS,SOD and MDA and the activity of Caspase-3、8、9on glioma C6cell to explore the possible mechanism of rat C6glioma cell apoptosis and necrosis.
     To detect the effect of quercetin nanoparticles promoting on rat C6glioma cell apoptosis and necrosis by flow cytometry analysis technical. Detected the activity of LDH to study the cytotoxicity effect of quercetin on rat C6glioma cell. Detected the change of mitochondrial membrane potential by flow cytometry, and the proteins express of Caspase-3,8,9by western-blot methods to explore the possible mechanism of apoptosis and necrosis on rat glioma C6cell induced by QUE-NL through mitochondrial pathway.
     Given the concentration of quercetin nanoliposomes (the final concentrations were50,100,200and400μmol.L-1respectively), taking quercetin and temozolomide as control. The supernatant was collected to measure the secretion of cytokine TNF-a, IL-6and IL-8by ELISA, and measure expression of JAK2. The changes of the protein p53and Bcl-2were detected respectively after C6glioma cells were treated with QUE and QUE-NL for24h200μmol.L-1were detected by Western-blot methods, and to explore the possible mechanism of rat glioma C6cell apoptosis and necrosis induced by QUE-NL through JAK2/STAT3pathway.
     Results:With the augmentation of quercetin nanoliposomes and the extension of the treated time, the C6cell growth was inhibited, the OD values decreased (P<0.05) and the cell numbers were cut down. Quercetin nanoliposomes test groups have higher proportion of apoptotic cells and dead cells than blank control group and the proportion of dead cell increased significantly. QUE-NL groups have higher proportion of apoptotic and necrosIs cells than blank test groups and the proportion of necrosis cell increased significantly. The quantities of LDH released by rat C6glioma cells are significantly increased. The level of ROS, SOD and MDA all changed significantly. The proportion of apoptotic cells with Caspase-3、9activity increased, indicating that QUE-NL induced the apoptotic cells via mitochondrial pathway. QUE-NL induced cell death(necrosis) in C6glioma cells in a dose-and time-dependent manner, high concentrations of quercetin nanoliposome (QUE-NL) can induce necrotic cell death of which was distinct from apoptosis and autophagy. QUE-NL-induced mitochondrial membrane potential loss, cytochrome C released and had no effects on caspase activations, however, reductions in ATP levels and increases in LDH activity indicated that QUE-NL stimulated necrotic cell death.
     The proapoptotic protein of Bax and p53protein increased evidently, at the same time Bcl-2protein expression decreased after cultivated with QUE-NL by western blotting. The decreased expression of Bcl-2protein and the increased expression of p53protein were also observed after treatment with QUE. We also detected the activation of (JAK2/STAT3) and the inhabitation of JAK2regulator STAT3inhibited QUE-NL-induced C6glioma necrotic cell death upstream of the mitochondria. In addition, application of STAT3-specific inhibitors for defined periods showed that inhabited p53protein and activation of JAK2between24and36h. Furthermore, STAT3inhibitors failed to significantly inhibit QUE-NL-induced down-regulating of STAT3and p-STAT3protein on C6glioma cell death.
     Conclusion:Quercetin nanoliposomes have obviously cytotoxic on glioma C6cell and higher proportion of apoptotic cells and the proportion of necrosis cells increased significantly with different concertration of QUE-NL than blank control groups. Inhibitory effect of QUE-NL on C6cells was proved to be dependent on the treated time and the dose of QUE-NL. The possible mechanism of QUE-NL induced apoptosis and necrosis of C6glioma cells may regulate the level of ROS,SOD and MDA, and the induced apoptosis effect of C6glioma cells was implemented by activating mitochondrial pathway. C6glioma cells which treated with QUE-NL exhibited a cellular pattern related with necrosis and were not apoptosis and was characterized by caspase independence.
     Quercetin nanoliposomes can induce rat glioma C6cell apoptosis and promote cell necrosis, mitochondrial and JAK2/STAT3pathway are essential for QUE-NL-induced C6glioma necrosis and the JAK2/STAT3cascade has a crucial role in QUE-NL-induced C6glioma cell death. Quercetin nanoliposomes regulated JAK2/STAT3pathway resulted in down regulation of JAK2, STAT3, p-STAT3and Bcl-2protein expression, up-regulation of p53protein expression and ROS throug mitochondrial pathway may be the mained mechanisms for anti-glioma.
     Objective:To investigate anti-tumor effects of quercetin nanoliposomes on the growth of C6glioma in vivo. To compare the anti-glioma and toxic effect between QUE-NL and quercetin suspension, and evaluate the character of brain targeting.
     Methods:Utility of stereodirected instrument to establish the in situ in vivo C6glioma model by inoculate C6glioma cells into the cerebral cortex of SD rat, and investigate the effect of quercetin nanoliposomes on the rat C6glioma model. The C6glioma rats were divided into different groups by random selection,which were treated with different doses of QUE-NL or quercetin suspension (at dose of25mg/kg, and50mg/kg, every day for3weeks), temozolomide, blank nanoliposomes respectivyly after established the rat C6glioma model for1week. The size of tumor was measured and the living state and weight of C6glioma rats were observed. The concentration of quercetin in plasma and DTI of brain tumor tissues was determined by HPLC. The protein expression of JAK2、STAT3、p53and survivin was detected by immunohistochemistry methods. The parameters concerning heart, liver and kidney function were measured and the morphology of organ tissues was observed pathologically.
     Results:Compared with the control groups, the tumor volume was reduced obviously (P<0.05) in groups of QUE-NL and quercetin suspension at dose of25and50mg/kg can inhibit the growth of glioma in rat, and temozolomide also can inhibit the growth of glioma. There are significant different inhibit growth of tumor between quercetin nanoliposomes and quercetin suspension at dose of25,50mg/kg (P<0.05), and QUE-NL can inhibit the growth of glioma in rat more effective than quercetin suspension.There are stronger growth inhibition against C6glioma and no significant difference (P>0.05) in the groups of QUE-NL and temozolomide at dose of25and50mg/kg.
     The result of immunohistochemistry showed that the protein expression of JAK2STAT3and survivin was strongly positive in rat C6glioma model group, and the protein expression of p-STAT3increased significantly. The protein expression of STAT3and p-STAT3decreased significantly and protein expression of p53increased significantly in QUE-NL group.
     QUE-NL can increase significantly quercetin content and drug targeting index (DTI) values were more than1in brain tumor tissue, there are significant difference compared with quercetin suspension (P<0.05), which indicated that QUE-NL modified by polysorbate80can enhance quercetin pass the blood-brain barrier.
     QUE-NL and quercetin suspension have no obviouly effect on the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase (y-GT) in C6glioma rats, there were no changes in liver and kidneys function. While the activity of serum ALT increased significantly and liver damage were observed in temozolomide adminwastrated group. QUE-NL also showed made no morphologic changes to heart, liver, kidneys and spleen in C6glioma rats.
     Conclusion:It was demonstrated that QUE-NL can enhance effect of anti-glioma with lower dosage. The side-effect of QUE-NL was less than the same dosage of quercetin. QUE-NL had good targeting efficiency and DTI in C6glioma rats.
引文
[1]Hwang IK, Lee CH, Yoo KY, et al. Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. J Med Food.2009; 12(5): 990-995.
    [2]Akira Murakami. Mutitargeted cancer prevention by quercetin [J]. Cancer Lett.2008; 3:46-56.
    [3]ChiuWT, ShenSC, ChowJM, LinCW, ShiaLT, Chen YC.Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE(2) activation. Neurobiol Dis.2010; 37(1):118-129.
    [4]周立祥,罗教男,付双林,等.槲皮素对大鼠脑胶质瘤C6细胞增殖调控的作用[J].吉林大学学报(医学版),2006,32(2):251-253.
    [5]Lan K, Zhang Y, Yang J, et al. Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform. J ChromatogrA.2010; 1217(8):1414-1418.
    [6]舒晓宏,冯梅,陈华,等.槐花米中芦丁提取最佳pH值的实验研究[J].大连医科大学学报,2005,27(2):91-92.
    [7]Uppugundla N, Engelberth A, Vandhana Ravindranath S, et al. Switchgrass water extracts: extraction, separation and biological activity of rutin and quercitrin. J Agric Food Chem. 2009; 57(17):7763-7770.
    [8]Lu RX, Lu WB. Study on extraction of quercetin in guava leaf by microemulsion. Zhong Yao Cai.2009; 32(4):608-610.
    [9]ShenH, GuoQ, FangH, WangY, Jin M. Determination of quercetin, luteolin, apigenin and acacetin in Flos Chrysanthemi Indici by RP-HPLC. Zhongguo Zhong Yao Za Zhi.2010; 35(2):191-193
    [10]张洪.大黄素SLN的制备及理化性质研究[J].中国药师,2010,13(3):326-328.
    [11]张洪.柚皮苷SLN包封率及体外释放度测定[J].中国药师,2010,13(3):318-320.
    [12]常明泉,陈芳,王刚,等.槲皮素固体脂质纳米粒的包封率与载药量测定[J].中国药房,2011,22(6):2525-2526
    [13]王刚,常明泉,杨光义,等.正交试验优选槲皮素长循环脂质体制备工艺[J].中国药师,2011,14(3):314-317
    [14]蔡华,王刚,常明泉,等.槲皮素长循环纳米脂质体的制备与质量评价[J].安徽医药,2011,15(4):426-428
    [15]袁志平.脂质体槲皮素的抗肿瘤实验研究.四川大学博士论文,2006-16.
    [16]Effects of Quercetin and Rutin on Serum and Hepatic Lipid Concentrations, Fecal Steroid Excretion and Serum Antioxidant Properties. Journal of Health Science.2000; 46(4):229-240.
    [17]LiHL, ZhaoXB, MaYQ, ZhaiGX, LiLB, Lou H X. Enhancem ent of gastro intestinal absorp tion of quercet in by solid lipid nanoparticles. J Contr Re.2008; 133:238-244.
    [18]唐晓荞,杨祥良.灯盏花素磷脂复合物改善大鼠小肠吸收的研究[J].中国中药杂志, 2005,30(3):222-225.
    [19]袁泉,李馨儒,王会娟,等.水飞蓟素微乳大鼠在体小肠吸收的动力学[J].药学学报,2004,39(8):631-634
    [20]姚静,卢韵,周建平,等.川陈皮素自微乳的制备及其大鼠在体肠吸收动力学[J].中国药科大学学报,2007,38(1):35-38.
    [21]许良,毕开顺.大鼠血浆中芦丁和槲皮素的RP-HPLC同时分析方法[J].内蒙古民族大学学报(自然科学版),2006,21(1):10-13.
    [22]吴东方,张蕾,张四平.槲皮素在大鼠血浆及组织中的分布[J].中国医院药学杂志,2008,28(21):1822-1824.
    [23]张阳德,张洋,潘一峰,等.槲皮素脂质体纳米粒在大鼠体内的分布研究[J].中国医学工程,2007,15(4):305-308.
    [24]路通,宋珏,谢林,等HPLC法同时测定灌胃黄芩水煎剂后大鼠血浆中黄芩苷和汉黄芩苷的质量浓度及药动学研究[J].中草药,2005,36(6):870-873.
    [25]肖学凤,乔晓莉,高岚,等.黄连解毒汤中三种成分在大鼠体内的药代动力学研究[J].中国医药导报,2008,5(3):13.
    [26]CHENG GH, LUO JB. Syudy on distribution in mouse of tetrandrine polylactic acid microsphere in vivo. China Pharmacy.2005,16(6):418-420.
    [27]Kanr IP, Bhandari R, Bhandavi S, et al. Potential of solid lipid nanoparticles in brain targeting. J Controlled Release.2008; 127(2):97-109.
    [28]黄乐松,王春霞,陈志良,等.吉西他滨聚氰基丙烯酸正丁酯纳米粒在小鼠脑内的靶向分布[J].中国医院药学杂志,2008,28(16):1332-1336.
    [29]杨勇,奉建芳,祝林,等.蟾蜍固体脂质纳米粒冻干针剂小鼠体内分布的研究[J].中国医药工业杂志,2007,38(5):354-356.
    [30]MORAND C, CRESPY V, MANACH C, et al. Plasma metabolites of quercetin and their antioxidant properties. AmJPhysiol,1998,275(1-2):212-219.
    [31]陈峰,符乃光,任守忠,等.液相色谱-质谱联用法测定大鼠血浆中的槲皮素代谢物.中国医院药学杂志,2008,43(3);225-227.
    [32]Lan K, Zhang Y, Yang J, et al. Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform. J Chromatogr A. 2010; 1217(8):1414-1418.
    [33]Rupasinghe HP, Ronalds CM, Rathgeber B, Robinson RA. Absorption and tissue distribution of dietary quercetin and quercetin glycosides of apple skin in broiler chickens. J Sci Food Agric,2010; 90(7):1172-1178.
    [34]孟德胜,汪士良.槲皮素及其苷类研究进展[J].中国药房,2000,11(5):232-233.
    [35]Olivier J C Drug transport to brain with targeted nanopartietes. Neure Rx,2005,2(1): 108-119.
    [36]Yokoyama A, SakakibaraH, CrozierA, Kawai Y, MatsuiA, TeraoJ, KumazawaS, Shimoi K. Quercetin metabolites and protection against peroxynitrite-induced oxidative hepatic injury in rats.Free Radic Res.2009:43(10):913-921.
    [37]蔡华,王刚,常明泉,等.槲皮素长循环纳米脂质体的制备与质量评价[J].安徽医药,2011,15(4):426-428
    [38]Xu F, Yuan Y, Shan X, et al. Long-circulation of hemoglobin-loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. Int J Pharm.2009; 377(1-2):199-206.
    [39]Wang JP, Wang W, Zhao LN. Paclitaxel carried by long circulating microemulsions used for metronomic chemotherapy of cancer. Yao Xue Xue Bao.2009; 44(8):911-914.
    [40]Wang C, Wei Y, Yu L, et al.The effect of stealth liposomes on pharmacokinetics, tissue distribution and anti-tumor activity of oridonin. PDA J Pharm Sci Technol.2009; 63(5): 409-416.
    [41]Vetvicka D, Hruby M, Hovorka O, et al. Biological evaluation of polymeric micelles with covalently bound doxorubicin.Bioconjug Chem.2009; 20 (11):2090-2097.
    [42]Esmaeili F, Dinarvand R, Ghahremani MH, et al.Docetaxel-albumin conjugates:preparation, in vitro evaluation and biodistribution studies.2009; 98(8):2718-30.
    [43]Gao K P, Jiang X G. Influence of particle size on transport of methotrexate blood brain barrier by pelysorbate 80-coated pelybutyl-eyanoacrylate nanopartieles. J Pharm.2006; 310(1-2):213-219.
    [44]Schroeder U, Somm erfeld P, UlrichS, et al. Nanoparticle technology for delivery of drugs across the blood brain barrier. J Pharm Sci.2001; 87(11):1305-1307.
    [45]Torchilin V P. Nanoparticles drug carriers[M]. London:Imperial CoHege Press.2006: 542-547.
    [46]王刚,杨光义,张秀华,等.乳化蒸发-低温固化法制备QUE-NL及其在大鼠血浆存在 形式与脑靶向性的研究[J].中国医院药学杂志2011,31(18):1489-1493.
    [47]HOLLMANPCH, VANTRIJPjMP. BUYSMANMN, etal. Relative bioavailability of the antioxidant flavonoid quercetin fromvarious foods in man. FEBS Leu.1997; 418(1): 152-156.
    [48]CLAUDINE M, GARY W, CHRISTINE M, et al. Bioavailability and bioefficaey of polyphends in humam, L Review of 97 bipavail ability studies. Am J Clin Nutr.2005; 81(1): 230-242.
    [49]JIN D, HAKAMATA H, TAKAHASH1 K, et al.Determination of quercetin in human plasma after ingestion af commercial canned green tea by semi-micro HPLC with electrochemical detection. Biomed Chromatogr.2004; 18(9):662-666.
    [1]王刚,杜士明,常明泉,等.正交试验优选槲皮素提取精制工艺[J].中国药师,2010,13(10):1413-1415.
    [2]蔡华,王刚,常明泉,等.槲皮素长循环纳米脂质体的制备与质量评价[J].安徽医药,2011,15(4):426-428.
    [3]袁志平.脂质体槲皮素的抗肿瘤实验研究.四川大学临床医学博士专业学位论文.2006
    [4]赵斌,葛金芳,朱娟娟,等.小议在MTT法测细胞增殖抑制率中IC50的计算方法[J].安徽医药,2007,11(9):834-835.
    [5]王维威.分子靶向药物及其与化疗药物联合对人非小细胞肺癌细胞系生长抑制作用研究.中国人民解放军军事医学科学院硕士专业学位论文.2007
    [6]ArbabAS, JanicB, Jafari-Khouzani K, IskanderAS, Kumar S, VarmaNR, Knight RA, Soltanian-Zadeh H, Brown SL, Frank JA. Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS One.2010; 5(2): e9365.
    [7]Jiang H, ShangX, WuH, Gautam SC, Al-HolouS, Li C, KuoJ, Zhang L, Chopp M. Resveratrol downregulates P13K/Akt/mTOR signaling pathways in human U251 glioma cells. JExpTherOncol.2009; 8(1):25-33.
    [8]Khaitan D, Chandna S, AryaMB, Dwarakanath BS. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy. J Transl Med.2006; 4:12.
    [9]Pasi F, Facoetti A, Nano R. IL-8 and IL-6 bystander signalling in human glioblastoma cells exposed to gamma radiation. Anticancer Res.2010; 30(7):2769-2772.
    [10]Sharma V, Joseph C,Ghosh S.Agarwal A.MishraMK, Sen E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther.2007; 6(9):2544-2553.
    [11]Yilmaz N, Dulger H, Kiymaz N,Yilmaz C, Bayram I, Ragip B, Oger M. Lipid peroxidation in patients with brain tumor. Int J Neurosci.2006; 116(8):937-943.
    [12]Eom KS, Kim HJ, So HS, Park R, Kim TY. Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol Pharm Bull.2010; 33(10):1644-1649.
    [13]Das A, Banik NL, Ray SK. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes.Cancer.2010; 116(1):164-176.
    [14]Choi K, RyuSW, SongS, ChoiH, KangSW, Choi C. Caspase-dependent generation of reactive oxygen species in human astrocytoma cells contributes to resistance to TRAIL-mediated apoptosis. Cell Death Differ.2010; 17(5):833-845,
    [15]Shu M, Zhou Y, Zhu W, Wu S, Zheng X, Yan G. Activation of a pro-survival pathway IL-6/JAK2/STAT3 contributes to glial fibrillary acidic protein induction during the cholera toxin-induced differentiation of C6 malignant glioma cells. Mol Oncol.2011; 5(3):265-272.
    [16]DrukalaJ, UrbanskaK, WilkA, GrabackaM, Wybieralska E, DelValleL, MadejaZ, Reiss K. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARalpha-mediated inhibition of glioma cell motility in vitro. Mol Cancer.2010; 9:159.
    [17]Bhattacharjee M, Acharya S, Ghosh A, SarkarP, Chatterjee S, Kumar P, Chaudhuri S. Bax and Bid act in synergy to bring about T11TS-mediated glioma apoptosis via the release of mitochondrial cytochrome c and subsequent caspase activation. Int Immunol.2008; 20(12): 1489-1505.
    [18]GaoZ, SarsourEH, KalenAL, Li L, Kumar MG, Goswami PC. Late ROS accumulation and radiosensitivity in SOD1-overexpressing human glioma cells. Free Radic Biol Med. 2008; 45(11):1501-1509.
    [19]Stockmann-Juvala H, MikkolaJ, NaaralaJ, LoikkanenJ, ElovaaraE, Savolainen K. Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radic Res.2004; 38(9); 933-942.
    [20]Higuchi Y, Tanii H, KoriyamaY, MizukamiY, Yoshimoto T. Arachidonic acid promotes glutamate-induced cell death associated with necrosis by 12-lipoxygenase activation in glioma cells. Life Sci.2007; 80(20):1856-1864.
    [21]Lemire J, Mailloux RJ, Appanna VD. Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS One.2008; 3(2):e1550.
    [22]Qiao S, Murakami K, ZhaoQ, WangB, SeoH, YamashitaH, LiX, Iwamoto T, Ichihara M, Yoshino M. Mimosine-Induced Apoptosis in C6 Glioma Cells Requires the Release of Mitochondria-Derived Reactive Oxygen Species and p38, JNK Activation. Neurochem Res. 2012; 37(2):417-427.
    [23]Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O. Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells. J Neuro-inflammation.2010; 7:16.
    [24]Weissenberger J, Priester M, Bernreuther C, Rakel S, Glatzel M, Seifert V, Kogel D. Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1, 2/STAT3 signaling pathway. Clin Cancer Res.2010; 16(23):5781-5795.
    [25]SuY, LiG, Zhang X, Gu J, Zhang C, Tian Z, Zhang J. JSI-124 inhibits glioblastoma multiforme cell proliferation through G(2)/M cell cycle arrest and apoptosis augment. Cancer BiolTher.2008; 7(8):1243-1249.
    [26]Wang AL, Liu ZX, Li G, Zhang LW. Expression and significance of p53 protein and MDM-2 protein in human gliomas. Chin Med J (Engl).2011; 124(16):2530-2533.
    [27]Bonini P, Cicconi S, Cardinale A, Vitale C, Serafino AL, Ciotti MT, Marlier LN. Oxidative stress induces p53-mediated apoptosis in glia:p53 transcription-independent way to die. J Neurosci Res.2004; 75(1):83-95.
    [28]Ahmed KA, Sawa T, Ihara H, Kasamatsu S, Yoshitake J, Rahaman MM, Okamoto T, Fujii S, Akaike T.Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP:potential implications for ROS signalling. Biochem J.2012; 441(2): 719-730.
    [29]Liu J, Xu X, Feng X, Zhang B, Wang J. Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251. J Exp Clin Cancer Res.2011; 30:80.
    [30]Akira Murakami. Mutitargeted cancer prevention by quercetin Cancer Lett.2008; 03: 46-56.
    [31]孟德胜,汪士良.槲皮素及其苷类研究进展[J].中国药房,2000,11(5):232-233.
    [32]Yuan ZP, Chen LJ, Fan LY, et al. Liposomal quereefin efficiently suppresses growth of solid luminmufine models. Clin Cancer Res.2006; 12(10):3193-3199.
    [33]王刚,杨光义,张秀华,等.乳化蒸发-低温固化法制备QUE-NL及其在大鼠血浆存在形式与脑靶向性的研究[J].中国医院药学杂志,2011,31(17):1425-1428.
    [34]Yang KB, Zhao SG, Liu YH, Hu EX, Liu BX. Tetraethylammonium inhibits glioma cells via increasing production of intracellular reactive oxygen species. Chemotherapy.2009; 55(5):372-380.
    [35]王刚,杨光义,曾南,等.槲皮素抗肿瘤的分子机制研究进展[J].中国医院药学杂志,2011,31(4):322-323
    [36]Nakayama M, Aihara M, Chen YN, Araie M, Tomita-Yokotani K, Iwashina T. Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress-induced retinal ganglion cell death. Mol Vis.2011; 17:1784-1793.
    [37]De Juan BS, VonBriesenH, GelperinaSE, Kreuter J. Cytotoxicity of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles in rat glioma cell lines using different assays. J Drug Target.2006:14(9):614-622.
    [38]Juszczak M, MatysiakJ, Niewiadomy A, Rzeski W. The activity of anew 2-amino-1,3, 4-thiadiazole derivative 4C1ABT in cancer and normal cells. Folia Histochem Cytobiol. 2011:49(3):436-444.
    [39]Wang W, Han S, Jin W. Determination of lactate dehydrogenase isoenzymes in single rat glioma cells by capillary electrophoresis with electrochemical detection.J Chromatogr B Analyt Technol. Biomed Life Sci.2006; 831(1-2):57-62.
    [40]Hippe D, Lytovchenko O, Schmitzl, Luder CG. Fas/CD95-mediated apoptosis of type Ⅱ cells is blocked by Toxoplasma gondii primarily via interference with the mitochondrial amplification loop. Infect Immun.2008; 76(7):2905-2912.
    [41]Cai CF, Feng L, WangL, KongQZ, Zhao YF. Tetrazolium violet induces apoptosis via caspases-8,-9 activation and Fas/FasL up-regulation in rat C6 glioma cells.Arch Phann Res. 2009; 32(4):575-581.
    [42]LeeHJ, LeeHJ, LeeEO, Ko SG, BaeH S, KimCH, et al. Mitochondria cytochromec caspase-9 cascade mediates isorhamnetin induced apoptosis. Can cer Lett,2008; 270(2): 342-353.
    [43]Barczyk K, KreuterM, PryjmaJ, BooyEP, MaddikaS, Ghavam I S, e t al. Serum cytochromec indicates in vivo apoptos is and can serve as a prognostic marker during cancer therapy. Int J Cancer,2005; 116(2):167-173.
    [44]JeongJC, ShinWY, KimTH, KwonCH, KimJH, KimYK, Kim KH. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death. J Exp Clin Cancer Res.2011; 30:44.
    [45]QiL, Bellail.AC, Rossi MR, Zhang Z, PangH, Hunter S, Cohen C, Moreno CS, Olson JJ, Li S, Hao C. Heterogeneity of primary glioblastoma cells in the expression of caspase-8 and the response to TRAIL-induced apoptosis.Apoptosis.2011; 16(11):1150-1164.
    [46]Fleury C, Mignotte B. Mitochondrial reactive oxygen species in cell death signaling. Biochimie.2002; 84(2-3):131-141.
    [47]Schumacker PT. Reactive oxygen species in cancer cells:Live by the sword, die by the sword, cancer cell.2006; 10(3):175-176.
    [48]Choi K, RyuSW, SongS, ChoiH, KangSW, Choi C. Caspase-dependent generation of reactive oxygen species in human astrocytoma cells contributes to resistance to TRA1L-mediated apoptosis. Cell Death Differ.2010; 17(5):833-845.
    [49]LiJH, YueW, Huang Z, ChenZQ, ZhanQ, RenFB, LiuJY, Fu SB. Calcium overload induces C6 rat glioma cell apoptosis in sonodynamic therapy. Int J Radiat Biol.2011; 87(10):1061-1066.
    [50]LauAT, WangY, ChiuJF. Reactive oxygen species:current knowledge and applications in cancer research and therapeutic. J Cell Biochem.2008; 104(2):657-667.
    [51]Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A.2012; 100(3):738-745.
    [52]JeongJC, ShinWY, KimTH, KwonCH, KimJH, KimYK, Kim KH. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death. J Exp Clin Cancer Res.2011; 30:44.
    [53]Kim KM, Song JJ, An JY, Kwon YT, Lee YJ. Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression.J Biol Chem.2005; 280(49):41047-41056.
    [54]Akasaki Y, Liu G, Matundan HH, Ng H, Yuan X, Zeng Z, Black KL, Yu JS. A peroxisome proliferator-activated receptor-gamma agonist, troglitazone, facilitates caspase-8 and-9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells. J Biol Chem.2006; 281(10):6165-6174.
    [55]MorroneFB, HornAP, Stella J, Spiller F, SarkisJJ, SalbegoCG, LenzG, Battastini AM. Increased resistance of glioma cell lines to extracellular ATP cytotoxicity.J Neurooncol. 2005; 71(2):135-140
    [56]Bromberg J, Darnell JE Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene.2000; 19(21):2468-2473.
    [57]Lo HW, Cao X, Zhu H, Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res.2008; 14(19):6042-6054.
    [58]Levy DE, Darnell JE Jr. Stats:transcriptional control and biological impact. Nat Rev Mol Cell Biol.2002; 3(9):651-662.
    [59]Piperi C, Samaras V, LevidouG, KavantzasN, BoviatsisE, PetrakiK, GrivasA, Barbatis C, Varsos V, Patsouris E, Korkolopoulou P. Prognostic significance of IL-8-STAT-3 pathway in astrocytomas:correlation with IL-6, VEGF and microvessel morphometry. Cytokine.2011; 55(3):387-395.
    [60]JeeSH, ChuCY, ChiuHC, Huang YL, Tsai WL, LiaoYH, Kuo ML. Interleukin-6 induced basic fibro-blast growth actor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and P13-kinase/Akt pathways. J Invest Dermatol.2004; 123 (6): 1169-1175.
    [61]Senft C, Priester M, Polacin M, Schroder K, Seifert V, Kogel D, Weissenberger J. Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. J Neurooncol.2011; 101(3):393-403.
    [62]Guthmann F, Wissel H, Schachtrup C, Tolle A, Rudiger M, Spener F, Rustow B. Inhibition of TNF alpha in vivo prevents hyperoxia-mediated activation of caspase 3 in type Ⅱ cells. Respir Res.2005; 6:10.
    [63]Akasaki Y, Liu G, Matundan HH, Ng H, Yuan X, Zeng Z, Black KL, Yu JS. A peroxisome proliferator-activated receptor-gamma agonist, troglitazone, facilitates caspase-8 and-9 activities by increasing the enzymatic activity of protein-tyrosine phosphatase-1B on human glioma cells.J Biol Chem.2006; 281(10):6165-6174.
    [64]Jane EP, Premkumar DR, Pollack IF. AG490 influences UCN-01-induced cytotoxicity in glioma cells in a p53-dependent fashion, correlating with effects on BAX cleavage and BAD phosphorylation. Cancer Lett.2007; 257(1):36-46.
    [65]GaoL, Li F, DongB, ZhangJ, RaoY, CongY, MaoB, Chen X. Inhibition of STAT3 and ErbB2 suppresses tumor growth, enhances radiosensitivity, and induces mitochondria-dependent apoptosis in glioma cells. Int J Radiat Oncol Biol Phys.2010; 77(4):1223-1231.
    [1]姬西团,章翔,费舟,等.大鼠C-6胶质瘤模型的建立及MRI影像学特征[J].中华神经外科疾病研究杂志,2004,3(1):5-8.
    [2]黄宽明,涂汉军,李新建,等.大鼠皮层C6脑胶质瘤动物模型的建立[J].肿瘤防治杂志,2003,10(5):449-451.
    [3]Gale K, Kerasidislt, Wrathall JR. Spinal cord contusion in the rat:Behavioral analysis of functional neurologic impairment. ExpNeorol.1985; 88(1):123~134.
    [4]石键,赵洪洋,谭正.大鼠脑胶质瘤模型建立与生长评估[J].中国临床神经外科杂志,2006,11(2):98-100.
    [5]崔尧元,周逸鸣,张煜,等.脑胶质瘤的凋亡和相关基因survivin的表达[J].中华神经外科杂志,2003,19:448-451.
    [6]杨勇,奉建芳,祝林,等.蟾蜍固体脂质纳米粒冻干针剂小鼠体内分布的研究[J].中国医 药工业杂志,2007,38(5):354-356.
    [7]段国升.脑胶质瘤临床治疗的进展[J].中华神经外科杂志,2004,20:85-87.
    [8]张俊平,陈建文,牟永告,等.VM-26和DDP联合化疗恶性胶质瘤:20例分析[J].中国神经肿瘤杂志,2005,3(1):17-20.
    [9]GwakHS, YounSM, KwonAH, LeeSH, KimJH, Rhee CH.ACNU-cisplatin continuous infusion chemotherapy salvage therapy for recurrent glioblastomas:phase II study. J Neurooned.2005; 75(2):173-180.
    [10]Sriram K, Benkovic SA, Hebert MA, Miller DB, O'Callaghan JP.Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration:key signaling pathway for astrogliosis in vivo? J Biol Chem.2004; 279(19):19936-19947.
    [11]HuaYu, Richard Jove-The STATS of cancer-new molecular targets come of age. Nature Reviews Cancer.2004; 4:97-105.
    [12]Jeon SB, Ji KA, You HJ, Kim JH, Jou I, Joe EH. Nordihydroguaiaretic acid inhibits IFN-gamma-induced STAT tyrosine phosphorylation in rat brain astrocytes. Biochem Biophys Res Commun.2005; 328(2):595-600.
    [13]Zhang LY, YeJ, Zhang F, LiFF, LiH, GuY, LiuF, ChenGS, Li Q. Axin induces cell death and reduces cell proliferation in astrocytoma by activating the p53 pathway. Int J Oncol. 2009; 35(1):25-32.
    [14]MerkelCA, da Silva Soares R, de Carvalho AC, ZanattaDB, BajgelmanMC, Fratini P, Costanzi-Strauss E, Strauss BE. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6. BMC Cancer.2010; 10:316.
    [15]Miyake JA, Benadiba M, Colquhoun A. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Fltl, ERK1/2, MMP2, cyclinD1, pRb, p53 and p27 protein expression. Lipids Health Dis.2009; 8:8.
    [16]Karmakar S, Olive MF, Banik NL, Ray SK. Intracranial stereotaxic cannulation for development of orthotopic glioblastoma allograft in Sprague-Dawley rats and histoimmunopathological characterization of the brain tumor. Neurochem Res.2007; 32(12): 2235-2242.
    [17]Wang P, Zhen H, Zhang J, Zhang W, Zhang R, Cheng X, Guo G, Mao X, Zhang X. Survivin promotes glioma angiogenesis through vascular endothelial growth factor and basic fibroblast growth factor in vitro and in vivo. Mol Carcinog.2011; doi:10.1002/mc.
    [18]Zhou L, Liu JH, Ma F, Wei SH, Feng YY, Zhou JH, Yu BY, Shen J. Mitochondria-targeting photosensitizer-encapsulated amorphous nanocage as a bimodal reagent for drug delivery and biodiagnose in vitro. Biomed Microdevices.2010; 12(4):655-663.
    [19]Xiong FL, Chen HB, Chang XL, Yang YJ, Xu H, Yang XL. Research progress of triptolide-loaded nanoparticles delivery systems. Conf Proc IEEE Eng Med Biol Soc.2005; 5:4966-4969.
    [20]Tsai YM, ChienCF, LinLC, Tsai TH. Curcumin and its nano-formulation:the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm.2011; 416(1):331-338.
    [21]Kowalczuk A, Stoyanova E, Mitova V, Shestakova P, Momekov G, Momekova D, Koseva N. Star-shaped nano-conjugates of cisplatin with high drug payload. Int J Pharm.2011; 404 (1-2):220-230.
    [22]Szebeni J. Nanomedicine:application of nanotechnology in medicine. Opportunities in neuropsychiatry. Neuropsychopharmacol Hung.2011; 13(1):15-24.
    [23]Panagiotou T, Fisher RJ. Enhanced Transport Capabilities via Nanotechnologies:Impacting Bioefficacy, Controlled Release Strategies, and Novel Chaperones. J Drug Deliv.2011; 2011:902-903.
    [24]Gilert A, Machluf M. Nano to micro delivery systems:targeting angiogenesis in brain tumors.J Angiogenes Res.2010; 2(1):20.
    [25]van Genugten JA, Leffers P, Baumert BG, Tjon-A-Fat H, Twijnstra A. Effectiveness of temozolomide for primary glioblastoma multiforme in routine clinical practice. J Neurooncol. 2010; 96(2):249-257.
    [26]Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Friedman AH, Sampson JH, McLendonRE, HerndonJE, Friedman HS. Phase Ⅱ trial of temozolomide (TMZ) plus irinotecan (CPT-11) in adults with newly diagnosed glioblastoma multiforme before radiotherapy. J Neurooncol.2009; 95(3):393-400.
    [27]Fan G, ZangP, JingF, Wu Z, Guo Q. Usefulness of diffusion/perfusion-weighted MRI in rat gliomas:correlation with histopathology. Acad Radiol.2005; 12(5):640-651.
    [28]Ling X, Arlinghans RB. Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res.2005; 65:2532-2536.
    [29]Zhou Y, Bian XW, Le Y, et al. Formylpeptide receptor FPR and the rapid growth of malignant human glioblastoma. J Natl Cancer Inst,2005; 97:823-835.
    [30]Bromberg J, Darnell JE Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene.2000; 19(21):2468-2473.
    [31]Lo HW, Cao X, Zhu H, Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res.2008; 14(19):6042-6054.
    [32]Levy DE, Darnell JE Jr. Stats:transcriptional control and biological impact. Nat Rev Mol Cell Biol.2002; 3(9):651-662.
    [33]Huang Y, Chen X, Chen N, Nie L, Xu M, Zhou Q. Expression and prognostic significance of survivin splice variants in diffusely infiltrating astrocytoma. J Clin Pathol.2011; 64 (11):953-959.
    [34]Villunger A, Michalak EM, Coultas L, MullauerF, BockG, Ausserlechner MJ, Adams JM, Strasser A. p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science.2003; 302(5647):1036-1038.
    [35]Chipuk JE, KuwanaT, Bouchier-Hayes L, DroinNM, NewmeyerDD, SchulerM, Green DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science.2004; 303(5660):1010-1014.
    [36]Bonini P, Cicconi S, Cardinale A, Vitale C, Serafino AL, Ciotti MT, Marlier LN. Oxidative stress induces p53-mediated apoptosis in glia:p53 transcription-independent way to die. J Neurosci Res.2004; 75(1):83-95.
    [37]Jane EP, Premkumar DR, Pollack IF. AG490 influences UCN-01-induced cytotoxicity in glioma cells in a p53-dependent fashion, correlating with effects on BAX cleavage and BAD phosphorylation. Cancer Lett.2007; 257(1):36-46.
    [38]Alonso M, Tamasdan C, Miller DC, Newcomb EW. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway.Mol Cancer Ther.2003; 2(2):139-150.
    [39]SunLK, Yoshii Y, HyodoA, TsurushimaH, SaitoA, Harakuni T, Li YP, KariyaK, Nozaki M, Morine N. Apoptotic effect in the glioma cells induced by specific protein extracted from Okinawa Habu (Trimeresurus flavoviridis) venom in relation to oxidative stress. Toxicol In Vitro.2003; 17(2):169-177.
    [1]Akira Murakami. Mutitargeted cancer prevention by quercetin. Cancer Lett,2008,03:46-56.
    [2]Min K, Ebeler SE. Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells. Food Chem Toxicol.2009;47(11):2716-2722.
    [3]LinCW, HouWC, Shen SC, JuanSH, et al. Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis.2008; 29(9):1807-1815.
    [4]Nothlings U, Murphy SP, Wilkens LR, et al. A food pattern that is predictive of flavonol intake and risk of pancreatic cancer. Am J Clin Nutr.2008; 88 (6):1653-1662.
    [5]Chen TJ, JengJY, Lin CW, et al. Quercetin inhibition of ROS-dependent and independent apoptosis in rat gliomaC6 cells. Toxicology.2006; 223(1-2):113-126.
    [6]Tan J, Wang B, Zhu L. Regulation of survivin and Bcl-2 in HepG2 cell apoptosis induced by quercetin. Chem Biodivers.2009; 6(7):1101-1110.
    [7]Chang YF, HsuYC, HungHF, etal. Quercetin induces oxidative stress and potentiates the apoptotic action of 2-methoxyestradiol in human hepatoma cells. Nutr Cancer.2009; 61(5): 735-745.
    [8]Hashimoto Y, Murakami Y, UemuraK, etal. K-RAS and P53 mutations in association with COX-2 and hTERT expression and clinico-pathological status of NSCLC patients. Dis Markers.2008; 25(2):97-106.
    [9]Lee SJ, Jung YS, Lee SH, et al. Isolation of a chemical inhibitor against K-Ras-induced p53 suppression through natural compound screening. Int J Oncol.2009; 34(6):1637-1643.
    [10]Tao I, Kramer PM, Wang W, el al. Altered expression of c-myc, P16 and p27 in rat colon tumors and its reversal by short term treatment with chemopreventive agents. Carcinogenesis. 2002; 23(9):1447-1454.
    [11]Yoshizumi M, Tsuchiya K, Kirima K, et al. Quercetin inhibits Sherlinositol and phosphatid; 3-kinase mediated c Jun N-terminal kinase activation by angiotensin II in cultured rat aortic smooth muscle cells. M ol Pharmacol,2001,60(4):656-665.
    [12]Lee KW, Kang NJ, Heo YS, et al. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res.2008; 68(3):946-955.
    [13]KimYH, LeeDH, JeongJH, etal. Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol.2008; 75(10): 1946-1958.
    [14]Jia J, Chen J. Histone hyperacetylation is involved in the quereetin-induced human leukemia cell death.Pharmazie,2008,63(5):379-383.
    [15]GaoSP, Mark KG, Leslie K, etal. Mutations in the EGFR kinase domain mediate STAT3 activationvia IL-6 production in human lung adenocarcinomas. J Clin Invest,2007, 117(12):3846-3856.
    [16]Inghirami G, Chiarle R, Simmons WJ, etal. Newandold functions of stat3:a pivotal target for individualized treatment of cancer. Cell Cycle.2005; 4(9):1131-1133.
    [17]Liu Y, Xie KM, Yang GQ, et al. GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line. Cancer Chemother Pharmacol.2010; 66 (3):433-439.
    [18]Shen J, Zhang W, Wu J, Zhu Y. The synergistic reversal effect of multidrug resistance by quercetin and hyperthermia in doxorubicin-resistant human myelogenous leukemia cells. Int J Hyperthermia.2008; 24(2):151-159.
    [19]Nakashima A, Murakami Y, Uemura K, et al. Usefulness of human telomerase reverse transcriptase in pancreatic juice as a biomarker of pancreatic malignancy. Pancreas.2009; 38(5):527-533.
    [20]Park C, JungJH, KimND, etal. Inhibition of cyclooxygenase-2 and telomerase activities in human leukemia cells by dideoxyp etrosynol A, a polyacetylene from the marine sponge Petrosiasp. Int J Oncol,2007; 30(1):291-298.
    [21]HeH, XiaHH, WangJD, ct al. Inhibition of human telomerase reverse transcriptase by nonsteroidal antiinflammatory drugs incolon carcinoma. Cancer,2006; 106(6):1243-1249.
    [22]StrazisarM, MlakarV, GlavacD. The expression of COX-2, hTERT, MDM2, LATS2 and S100A2 in different types of non-small cell lung cancer (NSCLC). Cell Mol Biol Lett. 2009; 14(3):442-456.
    [23]WANG Jian, ZHANG Peng-hui, TU Zhi-guan. Efects of quercetin on proliferation of lung cancer cell line A549 by down-regulating hTERT gene expression. ACTA Academiae MedicneMilitarisTertiae.2007,29(19):1852-1854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700