用户名: 密码: 验证码:
大掺量矿渣粉—水泥基胶凝材料和混凝土性能及其优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于矿渣粉的水化活性相对较低,因此盲目加大矿渣粉的掺量将直接影响胶凝材料和混凝土的早期力学性能,这使得水泥中矿渣粉的掺量受到限制。另一方面,矿渣较水泥熟料难磨,一起粉磨很难达到理想的细度,进一步影响了其活性的发挥。然而大掺量矿渣粉混凝土因其优异的耐久性及环保上的优势,越来越受到世界各国水泥行业的重视。
     本文研究了矿渣粉高比例取代硅酸盐水泥对胶凝材料力学性能的影响,并针对早期强度低的特点选取了若干种激发剂,从中选出激发效果较优的含硫酸盐工业废渣,配制出了能达到P·S 42.5级水泥强度指标、矿渣粉取代量为70%和能达到P·S 32.5级水泥强度指标、矿渣粉取代量为80%的复合胶凝材料。并测试了它们其它的一些性能,结果表明加大矿渣粉掺量对标准稠度用水量、凝结时间、流动度影响很小,且干缩较小,耐硫酸盐侵蚀性好。
     通过对大掺量矿渣粉混凝土和硅酸盐水泥混凝土力学和耐久性的实验研究表明,大掺量矿渣粉混凝土工作性良好,矿渣粉掺量为50%时其力学性能与硅酸盐水泥相当甚至更优,且后期强度发展空间大。大掺量矿渣粉混凝土具有优异的抗氯离子渗透性,渗透系数只有硅酸盐水泥混凝土的29%~36%。抗冻性能与硅酸盐水泥混凝土相当,但是抗碳化性能比硅酸盐水泥混凝土差。掺高效减水剂降低水胶比是提高大掺量矿渣粉混凝土抗碳化性能的有效途径之一。
     通过对大掺量矿渣粉一水泥复合胶凝材料净浆与硅酸盐水泥净浆的微观测试和分析(MIP、XRD、SEM)发现,由于矿渣粉的二次水化反应,使得不利于微观结构的Ca(OH)_2晶体含量大大减少,C-S-H凝胶数量增多,水泥石更为致密,孔结构得到了改善,孔径分布更为合理,硫酸盐激发剂有效地激发了矿渣粉活性,促进了钙矾石的生成。
As the hydration reactivity of blast furnace slag (BFS) is low compared with cement clinker, blindly increase the amount of blast furnace slag powder (BFSP) will have a negative impact on the early age mechanical properties of cementitious materials and concrete, which limits the content of BFSP constituting Portland cement in concrete. On the other hand, the grindability of BFS is worse than cement clinker, so it's very difficult to get a desired fineness when ground together, which further affects the reactivity of BFSP. But, high volume BFSP concrete has got more and more attention in concrete construction all over the world due to its excellent durability and the environmental advantages.
     The influences of Portland cement substituted by BFSP in a high proportion on the performance of cementitious materials were studied in this paper. For the lower early age strength, we choose several activators and selected the industry waste containing sulfate which has optimum activating effect. Composite cementitious materials which can met the requirement of P·S 42.5 cement when the quantity of BFSP powder replaced Portland cement by 70 % and that of P·S 32.5 cement when the content of BFSP powder is up to 80 % were obtained. Other performance of the composite cementitious materials was also experimentally studied, the results show that increasing BFSP content has little effect on standard consistency water quantity, setting time and fluidity, besides, the composite cementitious mortar have small shrinkage and good resistance to sulfate attack.
     The experimental results studied on mechanical properties and durability of the high volume BFSP concrete and Portland cement concrete show that the high volume BFSP concrete has excellent workability. When the content of BFSP is 50 %, the mechanical properties of BFSP concrete are even better than Portland cement concrete. Furthermore, high volume BFSP concrete has excellent resistance to chloride ion permeability, the permeability coefficient is as low as 29%~36% that of Portland cement concrete. The frost resistance of high volume BFSP concrete is equal to that of Portland cement concrete while the carbonization resistance is poor. Reducing water cement ratio by adding superplasticizer is one of the effective ways to raise the carbonization resistance of the high BFSP concrete.
     The results of MIP, XRD and SEM analysis on the large amount of slag-cement composite cementitious materials paste and Portland cement paste indicated that secondary hydration reaction of BFSP greatly reduced the amount of Ca (OH)_2 crystal which is bad for microstructure, and increased the number of C-S-H gel which made the hardening paste more dense, pore structure be improved and the pore size distribution more reasonable, sulfate activator effectively stimulated the activity of BFSP, accelerated the ettringite formation, and improved the pore structure.
引文
[1] 2006年全国及地方国民经济和社会发展统计公报,http://www.china.com.cn/economic/zhuanti/06tjgb/2007-02/28/content_7880663.htm.
    [2] 施惠生.生态水泥与废弃物资源化利用技术[M].北京:化学工业出版社,2005:52-111.
    [3] 曹德秋,李灿华.我国高炉粒化矿渣资源化利用的研究进展[J].中国废钢铁,2006,(5):26-29.
    [4] 黄成华,王培民,孙家瑛.矿渣超量取代水泥高性能混凝土性能研究[J].混凝土,2004,(2):28-30.
    [5] Fu Xinghua, Hou Wenping, Yang Chunxia, et al. Studies on portland cement with large amount of slag[J]. Cement and Concrete Research, 2000, 30(4): 645-649.
    [6] 刘轶翔,邓德华,元强,等.水胶比矿渣掺量对水泥砂浆强度及流动度的影响研究[J].河南建材,2000,(1):6-8.
    [7] 翁友法,张东.超细矿渣掺量对高强混凝土力学性能的影响[J].港口工程,1998,(6):23-26.
    [8] 张彩霞,秦学政,吴蓉,等.矿渣微粉在高性能混凝土中的应用[J].混凝土,2004,(11):78-79.
    [9] 于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [10] D. M. Roy, G. R. Goudu, A. Bobrowsky. Very high strength cement pastes prepared by hot pressing and other high pressure techniques [J]. Cement and Concrete Research, 1972, 2(3): 349-366.
    [11] 吴中伟.高技术混凝土[J].硅酸盐通报,1994,(1):42-46.
    [12] 唐明述.混凝土耐久性研究领域应成为最活跃的研究领域[J].混凝土与水泥制品,1989,(5):4-8.
    [13] 陈益民,贺行洋,李永鑫,等.矿物掺合料研究进展及存在的问题[J].材料导报,2006,20(8):28-31.
    [14] 欧阳东.超高强混凝土及其第六组分的研究[D].广州:华南理工大学,1997.
    [15] 徐彬,蒲心诚.矿渣玻璃体分相结构与矿渣潜在水硬活性本质关系的探讨[J].硅酸盐学报,1997,25(6):729-733.
    [16] 袁润章,高琼英.矿渣的结构特性对其水硬活性的影响[J].武汉建材学院学报,1982,(1):7-13.
    [17] 高树军,吴其胜,张少明,等.机械力化学方法活化矿渣研究[J].南京工业大学学报,2002,11(6):61-65.
    [18] 朱守东,崔崇,谢永波,等.高性能矿渣的活化研究[J].房材与应用,2000,10(5):17-19.
    [19] 吴达华,吴永革,林蓉.高炉水淬矿渣结构特性及水化机理[J].石油钻探技术,1997,25(1):31-33.
    [20] 崔崇,谢运波,朱守东.少熟料水泥中大掺量矿渣激发条件的研究[J].水泥,2000,(2):13-16.
    [21] D.Higgins. The Effect of GGBS on the durability of concrete[J]. Concrete, 1991, 25(6): 17-20.
    [22] Nakamura N. Effect of slag fineness on the development of concrete strength and microstructure[A]. Malhotra V M. Fly ash, silica fume, slag and natural pozzolans in concrete[C]. Istanbul: Turkey Press, 1992: 1 343-1 366.
    [23] 高怀英,马树军,黄国泓.大掺量磨细矿渣混凝土国内外研究与应用综述[J].海河水利,2006,(3):47-50.
    [24] 徐建荣.用矿渣制备高性能混凝土的研究[J].国外建材科技,2000,21(2):18-25.
    [25] 洪定海,大掺量矿渣微粉高性能混凝土的应用范例[J].建筑材料学报,1998,1(1):82-87.
    [26] 汪澜.水泥混凝组成、性能、应用[M].北京:中国建材工业出版社,2005.
    [27] Jan Bijen. Benefits of slag and fly ash[J]. Construction and Building Materials, 1996, 10(5): 309-314.
    [28] Gerwick Ben C. International experience in the performance of marine concrete[J]. Concrete International Design and Construction, 1990, 12 (5): 47-53.
    [29] 孙家瑛,黄成华.活性掺合料超代技术对混凝土耐久性能影响研究[J].混凝土,2004,(3):19-21.
    [30] 付兴华,张虹,杨春霞,等.425号高掺量矿渣硅酸盐水泥的研究[J].水泥技术,1996,(3):12-16.
    [31] 高长明.采用微细矿渣制备高性能混凝土[J].中国建材,2001,(3):27-28.
    [32] 徐彬,蒲心诚.矿渣玻璃体微观分相研究[J].重庆建筑大学学报,1997,19(4):53-59.
    [33] 严捍东.矿物掺合料早期水化活性的测试和分析[J].材料科学与工程导报,2005,23(3):387-392.
    [34] 路青波,杨全兵.影响矿渣潜在活性激发的主要因素研究[J].混凝土与水泥制品,2005,(6):13-14.
    [35] 潘庆林,孙恒虎,吴绍军.粒化高炉矿渣的微观结构和物相分析[J].水泥,2004,(5):4-7.
    [36] 邹伟斌,杨杰.利用磨细矿渣粉制备复合水泥[J].水泥技术,2005,(2):69-71.
    [37] 冷发光,冯乃谦.矿渣掺量对高强度高性能混凝土强度和耐久性的试验研究[J].中国建材科技,2001,(1):14-17.
    [38] 蒋永惠,汪小东,陈伟,等.用矿渣微粉配制高掺量早强矿渣水泥的研究[J].水泥,2001,(1):1-4.
    [39] 罗金,余本胜,查进.磨细矿渣配制大体积混凝土和高强混凝土的试验研究[J].煤碳工程,2006,(1):78-81.
    [40] 朱雅仙,朱锡昶.钢筋混凝土耐久性海港暴露试验[J].海洋工程,2004,22(4):60-65.
    [41] 俞海勇,徐强,王琼.矿物掺合材料在高性能海工混凝土中的应用[J].粉煤灰,2003,(5):21-25.
    [42] 杨建森.氯盐对混凝土中钢筋的腐蚀机理与防腐技术[J].混凝土,2001,(7):52-56.
    [43] 陈迅捷,王昌义.磨细矿渣高性能混凝土在海工建筑中成功应用[J].混凝土,2000,(9):59-61.
    [44] Puertas F, Femandez-Jimenez A. Mineralogical and micro-structural characterization of alkali-activated fly ash/slag pastes[J]. Cement and Concrete Composites, 2003, 25(3): 287-292.
    [45] Bakharev T, Sanjayan J G, CHENG Y B. Effect of admixtures on properties of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1367-1374.
    [46] Douglas E, Brandstetr J. A preliminary study on the alkali activation of ground granulated blast-furnace Slag[J]. Cement and Concrete Research, 1990, 20(5): 746-756.
    [47] Collins F G., Sanjayan J G.. Workability and mechanical properties of alkali activated slag concrete[J]. Cement and Concrete Research, 1999, 29(3): 455-458.
    [48] Bakharev T J, Sanjayan J G, CHENG Y B. Resistance of alkali-activated slag concrete to carbonation [J]. Cement and Concrete Research, 2001, 31(9): 1 277-1 283.
    [49] 刘涛,谭克锋.Na_2CO_3激发剂对高掺量矿渣水泥性能的影响[J].西南科技大学学报,2006,21(3):19-22.
    [50] 陈友治,蒲心诚,马保国,等.Na_2SO_4—矿渣水泥的水化与硬化特性研究[J].硅酸盐学报,2000,(28),增刊:81-84.
    [51] 付兴华,杨春霞,李东旭,等.Na_2SO_4对水泥石结构与性能的影响[J].水泥技术,1997,(2):42-45.
    [52] 陶珍东,郑少华,杨春霞,等.掺加煅烧石膏和煅烧明矾石改善水泥较低温度下的早期性能[J].硅酸盐通报,1999,(5):28-33.
    [53] 林国富,张明珊,邱榕林.明矾石对改善普通水泥性能的作用[J].福建建材,2002,(3):8-9.
    [54] 沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991:217-221.
    [55] 王海侠.普通强度混凝土高性能化研究[D].南京:河海大学,2005.
    [56] Neveillea, Aitcinpe. High performance concrete-an overview [J]. Materials and Structures, 1998, (31): 19-31.
    [57] 冯乃谦.实用混凝土大全[M].北京:科学出版社,2001.
    [58] 冯乃谦,邢锋.高性能混凝土技术[M].北京:原子能出版社,2001..
    [59] 冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.
    [60] 杨静.混凝土碳化机理及其影响因素[J].混凝土,1995,(6):23-28.
    [61] 胡红梅,马保国.矿物功能材料改善混凝土氯离子渗透性的试验研究[J],混凝土,2004,(2):16-20.
    [62] 刘斯凤.氯离子扩散测试方法演变和理论研究背景[J].混凝土,2002,(10):21-24.
    [63] 袁玲,汪正兰,李燕.矿渣微粉对混凝土抗冻融耐久性的影响[J].安徽建筑工业学院学报,2002,10(2):62-65.
    [64] 高建明,王边,朱亚菲,等.掺矿渣微粉混凝土的抗冻性试验研究[J].混凝土与水泥制品,2002,(5):3-5.
    [65] 施惠生,施韬,陈宝春,等.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报:自然科学版,2006,34(1):93-96.
    [66] 吴瑾,吴胜兴.海洋环境下混凝土中钢筋表面氯离子浓度的随机模型[J].河海大学学报:自然科学版,2004,32(1):38-41.
    [67] 马保国,张平均,谭洪波.矿物掺合料对海洋混凝土抗氯子渗透的研究[J].石家庄铁道学院学报,2004,17(1):6-9.
    [68] 胡红梅.矿物功能材料对混凝土氯离子渗透性影响的研究[D].武汉:武汉理工大学,2002.
    [69] 谢祥民,莫海鸿.磨细矿渣微粉降低混凝土内氯离子渗透性的研究[J].混凝土,2004,(7):50-52.
    [70] 吴中伟,廉慧珍.水泥基复合材料科学研究中的辩证思维[J].混凝土,2000,(4):3-7.
    [71] 黄成毅.关于水泥石孔的分类[J].中国建材科技,1980,(2):62-68.
    [72] 梁松,莫海鸿,陈尤雯,等.掺矿渣微粉砂浆和混凝土的抗硫酸盐侵蚀性能[J].华南理工大学学报:自然科学版,2003,31(5):93-96.
    [73] 蔡安兰,严生,许仲梓,等.关于水泥胶砂干缩试验方法的探讨研究[J].混凝土与水泥制品,2005,(1):8-10.
    [74] 杭美艳,赵根田.矿渣微粉对水泥砂浆泌水性能影响的研究[J].新型建筑材料,2005,(11):31-38.
    [75] 贺行洋,马保国,陈益民.矿物外加剂对混凝土抗硫酸盐侵蚀性能的研究和评价[J].混凝土,2003,(4):8-11.
    [76] 胡曙光,覃立香,丁庆军,等.矿渣对混凝土抗硫酸盐侵蚀性的影响[J].武汉工业大学学报,1998,20(1):1-3.
    [78] 施韬.掺矿渣活性粉末混凝土及其高耐久性的研究[D].杭州:浙江工业大学,2004.
    [79] W.切尔宁.水泥化学与物理性能[M].曾镜鸿,译.北京:中国建筑工业出版社,1991:136-141.
    [80] 朱雅仙,陈迅捷.磨细矿渣高性能凝土研究[J].海洋工程,2000,(8):12-18.
    [81] 李东旭.高掺量矿渣、磷渣生态水泥的研究[D].南京:南京化工大学,1998.
    [82] 沈卫国,周明凯,吴少鹏.胶凝材料的过去现在和将来[J].房材与应用,2001,(1):11-13.
    [83] 孙江安.明矾石的膨胀剂性能与作用机理[J].化学建材,1995,(2):74-75.
    [84] 廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [85] 丁红霞,方永浩,陈烨.大掺量矿渣粉胶凝材料的研究[A].见:蒋林华主编.水泥工程海洋工程新材料新技术[C].南京:河海大学出版社,2006,188-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700