用户名: 密码: 验证码:
高炉矿渣覆盖法修复富营养化水体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化已成为世界范围内水体治理的重大问题。底泥作为水体生态系统的重要组成部分,在水体富营养化的过程中,扮演着“汇”与“源”的角色。在外源污染得到控制的条件下,底泥污染物的释放对水体的改善有着不容忽视的影响。因此,通过控制底泥污染实现对富营养化水体修复的方法得到了越来越多的关注。本文通过密闭振荡试验和覆盖模拟试验对高炉矿渣覆盖法对富营养化水体的修复进行了研究。
     高炉矿渣对磷酸盐具有良好的吸附性能,且随粒径的减小,吸附性能越好。在振荡液初始浓度为2mg/L(以P计)、恒定25℃条件下,60、80、100、200目高炉矿渣对振荡液中磷酸盐的去除率分别为:12.2%、59.3%、96.5%和99.9%,其中200目高炉矿渣对磷酸盐的去除率为60目的近10倍。高炉矿渣对磷的吸附过程可由拟二级反应动力学方程和Langmuir等温方程很好地描述,颗粒内扩散过程是高炉矿渣对磷吸附过程的控制步骤。高炉矿渣对磷的吸附是一个焓驱动的、放热的自发过程。
     高炉矿渣对NH3-N的吸附性能在投加量为10g的条件下,随粒径的减小而变差。在试验条件下,60目组对NH3-N的去除率是200目组的11.1倍。酸浸渍+高温焙烧+盐浸渍的改性方法可以使高炉矿渣对NH3-N的去除率提高3.0倍,但却使其对磷酸盐的去除率锐减了90.3%;高温焙烧+水热反应的改性方法使高炉矿渣对NH3-N的去除率略有提高,约为改性前的1.5倍,但使其对磷酸盐的去除率降低了49.9%。
     高炉矿渣覆盖层在不同温度、不同溶解氧条件下,均可以有效地控制底泥磷酸盐的释放,使上覆水TP浓度保持在0.07mg/L左右,达到Ⅱ类地表水标准。水体曝气与高炉矿渣覆盖相结合,可以有效地降低上覆水中TP、COD和NH3-N的浓度。若采用好氧厌氧交替运行的方式,则可以在不影响覆盖层对底泥磷酸盐释放的控制效果的条件下,以有机物的短期释放为代价,在一定程度上实现对水体中氮污染物的有效去除。
At present, the eutrophication of water has become an important issue of water body remediation. The sediment of water body, as an important component of the water ecosystem, plays the role of "sink" and "source" during the process of water europhication. Although the external pollution sources have been controlled to a great extent, the impact of the pollutant releasing from the sediment is still an issue. Therefore, the method of controlling the sediment pollution to achieve the remediation of eutrophic water has acquired great concern in recent years. The remediation of eutophic water by blast furnace slag (BFS) capping method through sealing oscillation test and capping simulation experiment was investigated. The adsorption performance for phosphorus with BFS was evident, and it became more powerful with smaller grain size. When the initial concentration of phosphorus was 2mg/L and the temperature was 25℃constantly, the phosphorus removal rate with 60,80,100,200 mesh BFS were 12.2%,59.3%,96.5% and 99.9% separately. And the removal rate with 200 mesh BFS was about ten times as that with 60 mesh BFS. The phosphorus adsorption process of BFS was simulated well by pseudo-second-order reaction kinetics equation and Langmuir adsorption isotherm equation, and the process of intra-particle diffusion was the control step.The phosphorus adsorption of BFS was an enthalpy-driven, exothermic spontaneous process.
     The adsorption property of NH3-N became better with increasing the grain size of BFS when the dosage of the absorbent was10g. Under experimental condition, the NH3-N removal rate with 60 mesh BFS was 11.1 times as that with 200 mesh BFS. The modification method, acid dip+high temperature calcination+salt dip, could double the NH3-N removal rate with BFS, but decrease the phosphorus removal rate by 90.3%. The modification method of high temperature calcination+ hydrothermal reaction could increase the NH3-N removal rate to 150%, but decrease the phosphorus removal rate by 49.9%.
     The BFS covering layer prevented the phosphorus releasing from sediment effectively under the variation of temperature and dissolved oxygen of the water, the TP concentration in the overlying water was keep at 0.07mg/L, meeting the surface water quality standards for GradeⅡ. When aeration was combined with BFS capping in the remediation of eutrophica water, the concentration of TP, COD and NH3-N in the overlying water were all decreased obviously. Taking the method of alternating operation of aerobic and anaerobic condition, it could remove nitrogen pollutants to a certain extent at the expense of short-term organic matters releasing, while the effect of the BFS covering layer on the phosphorus releasing was stable.
引文
[1]秦伯强,许海,董百丽.富营养化湖泊治理的理论与实践[M].北京:高等教育出版社,2011.
    [2]王苏明,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
    [3]黄清辉.浅水湖泊内源磷释放及其生物有效性—以太湖、巢湖和龙感湖为例[D].中国科学院生态环境研究中心,2005.
    [4]金相灿.中国湖泊环境[M].北京:海洋出版社,1995.
    [5]中华人名共和国环境保护部.中国环境状况公报[EB/OL]. http://www.zhb.gov.cn/plan /zkgb/,1989-2010.
    [6]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机—原因与对策[J].地球科学发展,2007,22(9):896-906.
    [7]中国新闻网.蓝藻攻城:“水华”与无锡持续的纠缠[EB/OL]. http://www.chinanews. com/gn/news/2007/06-16/958808.shtml,2007.
    [8]Rockwell D C, Warrer G J, Bertram P E, et al. The USEPA Lake Erie indicators monitoring program 1983-2002:trends in phosphorus, silica and chlorophyll a in the centeal basin[J]. Journal of Great Lakes Research,2005,31(Suppl.2):23-34.
    [9]刘兆孝,吴国平,涂建锋编译.日本主要湖泊富营养化状况及治理[J].水利水电快报,2007,6(11):5~11.
    [10]谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制[J].中国科学,2005,35(增刊):11-23.
    [11]Liboriussen L, Jeppesen E. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations [J]. Freshwater Biology,2006,51(1):95-109
    [12]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学,2008,20(1):21-26.
    [13]秦伯强,胡伟平,刘正文,等.太湖梅梁湾水源地通过生态修复净化水质的试验[J].中国水利,2006,(17):23~29.
    [14]James C, Fisher J, Russell V, et al. Nitrate availability and hydrophyte species richness in shallow lakes[J]. Freshwate Biology,2005,50(6):1049-1063.
    [15]冯胜,高光,朱广伟,等.基于16SrDNA-DGGE和FDC技术对富营养化湖泊不同生态修复工程区细菌群落结构的研究[J].应用与环境生物学报,2007,13(4):535-540.
    [16]戴瑾瑾,陈德辉,高云芳,等.蓝藻毒素的研究概况[J].武汉植物学研究,2009,(1):346~349.
    [17]Graneli W. Internal phosphorus loading in Lake Ringsjon[J]. Hydrobiologia,1999,404: 19-26.
    [18]Steinman A D, Havens K E, Aumen N G, et al. Phosphorus in Lake Okeechobee:sources, sinks and strategies[J]. Hydrobiologia,1997,23:34-39.
    [19]Hupfer M, Lewandowski J. Oxygen controls the phosphorus release from lake sediments —a longlasting paradigm in limnology [J]. Intenational of Review of Hydrobiology,2008, 93(4-5):415-432.
    [20]高光,朱广伟,秦伯强,等.太湖水体中碱性磷酸酶活性及磷的矿化速率[J].中国科学,2008,35(增刊2):157~165.
    [21]Ripl W. Biochemical oxidation of polluted lake sediment with nitrate-a new restoration method[J]. Ambio,1976,5(3):132-135.
    [22]Ripl W, Lindmark G. Ecosystem control by nitrogen metabolism in sediment[J]. Vatten, 1978,34(2):135-144.
    [23]Berg U, Neumannb T, Donnerta D, et al. Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus [J]. Applied Geochemistry,2004, 19(11):1759-1771.
    [24]Akhurst D J, Jones G B, McConchie D W. The application of sediment capping agents on phosphorus speciation and mobility in Lake Ainsworth sediments[J]. Journal Marine and Freshwater Research,2004,55(7):715-725.
    [25]Hart B, Roberts R, Taylor J. Use of active barriers to reduce eutrophication problems in urban lakes[J]. Water Sciences and Technology,2003,47(7-8):157-163.
    [26]Palermo M R. Desigh considerations for in-situ capping of contaminated sediments[J]. Water Sciences and Technology,1998,37(6-7):315-321.
    [27]祝凌燕,张子种,周启星.受污染沉积物原位覆盖材料研究进展[J].生态学杂志,2008,27(4):645~651.
    [28]Hyun S, Jafvert CT, Lee LS, et al. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment[J]. Chemosphere,2006,63(10):1621-1631.
    [29]Schaanning M, Breyholtz B, Skei J. Experimental results on effects of capping on fluxes of persistent organic pollutants (POPs) from historically contaminated sediments[J]. Marine Chemistry,2006,102(1-2):46-59.
    [30]Azcue JM, Zeman AJ, Mudroch A, et al. Assessment of sediment and pore water after one year of subaqueous capping of contaminated sediments in Hamilton Harbor, Canada[J]. Water Science and Technology,1998,37(6-7):323-329.
    [31]Mailman M, Stepnuk L, Cicek N, et al. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes:A review[J]. Science of the Total Environment,2006,368(1):224-235.
    [32]Shepherd RG. Correlations of permeability and grain size[J]. Ground Water,1989,27(5): 633-638.
    [33]王晓丽,李鱼,王一喆,等.粘土矿物的掺杂对沉积物吸持Cu、Zn能力的影响[J].吉林大学学报,2010,40(1):183~187.
    [34]刘启明,成路,沈冰心,等.沸石覆盖层控制水库底泥氮磷释放的影响因素[J].集美入学学报(自然科学版),2010,15(5):338~341.
    [35]Bona F, Cecconi G, Maffiotti A. An integrated approach to assess the benthic quality after sediment capping in Venice lagoon[J]. Aquatic Ecosystem Health and Management,2000, (3):379-386.
    [36]Gibbs M, Ozkundakci D. Effects of a modified zeolite on P and N processes and fluxes across the lake sediment-water interface using core incubations[J]. Hydrobiologia,2010, 661(1):21-35.
    [37]林建伟,朱志良,赵建夫.有机改性沸石覆盖抑制底泥氮磷释放效果[J].同济大学学报,2007,35(12):1651~1655.
    [38]Darren A, Graham B J, David M. The application of sediment capping agents on phosphorus speciation and mobility in a subtropical dunal lake[J]. Marine and Freshwater Research,2003,55(7):715-725.
    [39]林建伟.地表水体底泥氮磷污染原位控制技术及相关机理研究[D].上海:同济大学博士学位论文,2006.
    [40]Hull J H. Composite particles and methods for their appficafion and implementation[P]. US Patent 6558081, May 6,2003.
    [41]Hull J H, Jersak J. In situ capping as a facilitator for improving in situ sediment treatment technologies[A].The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds[C]. Monterey:2000.
    [42]Masanobu Ishikawa, Hajime Nishimura. Mathematical model of phosphate release rate from sediments considering the effect of dissolved oxygen in overlying water[J]. Water Research,1989,23(3):351-359.
    [43]白晓慧,钟卫国,陈群燕,等.城市内河水体污染修复中沉积物的影响与控制[J].环境科学,2002,23(增刊):89~92.
    [44]Hawkins P R, Griffiths D J. Artificial destritification of a small tropical reservoir:effects upon the phytoplankton. Hydrobiology,1993,254(3):169-181.
    [45]余光伟,雷恒毅,刘康胜,等.治理感潮河道黑臭的底泥原位修复技术研究[J].中国给水排水,2007,23(9):5~9.
    [46]诸铮.高炉矿渣的处理和利用[J].科技情报开发与经济.2005,15(6):126-128.
    [47]马隆.用粒化高炉矿渣对磷石膏进行改性[J].水泥,2000,(1):52.
    [48]徐美君.用工业废弃物生产建筑卫生陶瓷的技术开发[J].建材发展导向,2008,(2):54~55.
    [49]府坤荣.提高加气混凝土行业综合水平若干问题的思考[J].点击新型墙材,2003, (9):23~25.
    [50]金漫彤,楼敏晓,韩怀芬.掺加矿渣的土壤聚合物对重金属的固化[J].浙江工业大学学报,2006,(6):599-601.
    [51]陈松,李玉香.模拟含碱高放废液“碱-偏高岭土-矿渣”固化性能研究[J].硅酸盐通报,2006,(3):42~47.
    [52]Shilton A N, Elmetri I, Drizo A, et al. Phosphorus removal by an'active'slag filter -a decade of full scale experience [J]. Water Research,2006,40(1):113-118.
    [53]Lena Johansson. Blast furnace slag as phosphorus sorbents-column studies[J]. The Science of the Total Enviroment,1999,229(1):89-97.
    [54]Bruno Kostura, Hana Kulveitova, Juraj Lesko. Blast furnace slags as sorbents of phosphate from water solution[J]. Water Research,2005,39(9):1795-1802.
    [55]Jibing Xiong, Zhenli He, Qaisar Mahmood, et al. Phosphate removal from solution using steel slag through magnetic separation [J]. Journal of Hazardous Materials,2008,152(1): 211-215.
    [56]Sheng-gao LU, Shi-qiang BAI, Hong-dan SHAN. Mechanisms of phosphate removal from aqueous solution by balst furnace slag and steel furnace slag[J]. Journal of Zhejiang University Science,2008,9(1):125-132.
    [57]Dinesh Mohan, Charles U. Pittman Jr. Arsenic removal from water/waste water using adsorbents-A critical review[J]. Journal of Hazardous Materials,2007,142(1-2):1-53.
    [58]Yongjie Xue, Haobo Hou, Shujing Zhu. Competitive adsorption of copper(Ⅱ), cadmium(Ⅱ), lead(Ⅱ) and zinc(Ⅱ) onto basic oxygen furnace slag[J]. Journal of Hazardous Materials.2009(162):391-401.
    [59]V K Gupta, I Ali, Suhas, Dinesh Mohan. Equilibrium uptake and sorption dynamics for the removal of a basic dye(basic red)using low-cost adsorbents[J]. Journal of Colloid and Interface Science,2003,265(2):257-264.
    [60]刘明芳,郝存江,冯青琴.改性矿渣处理焦化废水实验研究[J].河南冶金,2001,46(5):17~18.
    [61]Yongjie Xue, Haobo Hou, Shujing Zhu. Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag:Isotherm and kinetic study [J]. Chemical Engineering Journal,2008,147(2-3):272-279.
    [62]董超,谢葆青,林红.高炉矿渣混凝剂处理有机废水的研究[J].山东环境,2000,96(2):32.
    [63]于衍真,李云兰.高炉矿渣对工业废水处理的实验研究[J].工业水处理,1999,19(2):12~13.
    [64]Satoshi Asaoka, Tamiji Yamanto. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment[J]. Marine Pollution Bulletin,2010,60(4): 573~578.
    [65]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [66]近藤精一著,李国希译.吸附科学[M].化学工业出版社,2005.
    [67]吴奇,段跟定,杨少威.承德斜发沸石吸附处理氨氮废水动力学研究[J].矿产保护与利用,2007,4(2):13~16.
    [68]赵雅萍,金伟,曹达文,等.钙型沸石对生活污水中氨氮去除的研究[J].离子交换与吸附,2004,20(5):458~463.
    [69]冀宏,李坚,王艳磊,等.微波改性粉煤灰制作氮氧化物吸附剂的实验研究[A].第十三届全国大气环境学术会议论文集[C].哈尔滨:2007.
    [70]温东辉.天然沸石吸附-生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究[M].北京:中国环境科学出版社,2003.
    [71]蔡玉曼,姬辰.天然沸石改性应用研究进展[J].地质学刊,2008,32(2):244-248.
    [72]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996.
    [73]顾惕人,朱步瑶,等.表面化学[M].北京:科学出版社,1994.
    [74]陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社,1984.
    [75]佘健.改性钢渣去除废水中磷酸盐的试验研究[D].武汉理工大学,2007.
    [76]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.
    [77]杰尔·沃克曼,洛伊斯·文依编著,褚小立,许育鹏,田高友译.近红外光谱解析实用指南[M].北京:化学工业出版社,2009.
    [78]潘庆林,孙恒虎,吴绍军.粒化高炉矿渣的微观结构和物相分析[J].水泥,2004(5):4~7.
    [79]杨博.吸附等温线和迟滞环分类[EB/OL]. http://blog.sina.com.cn/s/blog_80d22a3f01 00sw76.html,2011.
    [80]小木虫.关于吸附滞后环的几种分类[EB/OL]. http://emuch.net/html/201006/20993 39.html,2010.
    [81]汪家权,孙亚敏,钱家忠.巢湖底泥磷的释放模拟实验研究[J].环境科学学报,2002,22(3):732~738.
    [82]王庭健.城市富营养化湖泊沉积物中磷负荷及其释放对水质的影响[J].环境科学研究,1994,7(4):14~20.
    [83]李哗,王建兵,肖文浚,等.沸石去除水源中低浓度氨氮的实验研究[J].武汉理工大学学报,2003,25(2):4~6.
    [84]朱健,李捍东,王平.环境因子对底泥释放COD、TN、和TP的影响研究[J].水处理技术,2009,35(8):44~49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700