用户名: 密码: 验证码:
基于动力传动系统一体化的双离合器自动变速器控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于动力传动系统一体化的双离合器自动变速器控制技术研究
     随着电子技术的快速发展,以及驾驶者对汽车的舒适性、安全性、动力性和便捷性等各项性能的要求日益提高,自动变速器由于其具有降低燃油消耗率、改善排放、提高动力传动系统使用寿命以及减轻驾驶者劳动强度等一系列优点,得到了日益广泛的应用。
     伴随着科学技术的进步,自动变速技术也不断发展,自动变速器经历着不断的改良、进化和升级。汽车动力传动系统一体化控制是结合自动变速理论和电子控制技术,通过电子装置控制发动机的输出转矩和通过相关执行机构控制自动变速器的工作状态实现档位变换。基于动力传动系统一体化的双离合器自动变速器(Dual ClutchTransmission,简称DCT)控制是指根据驾驶员的操作意图和当前车辆的运行状态,以及车辆其他电子系统对传动系统输出功率的需求,通过联合控制动力传动系统的相关部件(发动机、自动变速器等),达到精确控制动力传动系统功率输出的目的,实现良好的起步、换档品质。
     双离合器自动变速器是近年来自动变速器领域的研究热点,它由传统平行轴式外啮合齿轮变速箱的基础上发展而来,分别将奇、偶数档位轴系布置在两个离合器上,换档过程通过两个离合器交替来实现。它既保持了传统手动变速器结构简单、机械效率高等优点,又能实现动力无中断换档,提高了车辆的动力性和经济性,改善了换档品质。
     本文基于动力传动系统一体化的思想,进行双离合器自动变速器的动力传动系统开发和研究。针对基于动力传动系统一体化的双离合器自动变速器,在理论分析的基础上,结合仿真和试验,对基于动力传动系统一体化的DCT换档规律制定和换档品质控制技术进行了深入研究。在介绍了双离合器自动变速器的结构特点和应用现状的基础上,分析了传动系统控制的发展历程和动力传动系统一体化控制技术的研究现状,结合国家“863”高技术研究发展资助项目—“6档双离合器自动变速器开发”,进行基于动力传动系统一体化的双离合器自动变速器控制技术研究,具体如下:
     (1)对整车系统进行建模,采用MATLAB作为建模基础建立系统仿真模型,根据基于模型的开发的特点,采用模块化的建模技术,将整个系统模型分为三个部分:驾驶员模型、控制器模型和整车硬件系统模型,利用MATLAB/Simdriveline对装备有双离合器式自动变速器的整车硬件进行建模分析,建立了整个传动系统的模型。通过对仿真结果和试验结果的对比,从动力性特性和燃油经济性特性两个方面表明仿真结果可以有效的反映车辆的运行情况,证明了仿真模型的有效性。为基于动力传动系统一体化的双离合器自动变速器控制策略开发奠定基础。
     (2)对发动机转矩控制系统进行了设计,采用模糊补偿控制进行发动机转矩的精确控制,设计了电子节气门控制的软硬件系统,采用参数模糊自整定PID控制的方法实现了电子节气门的良好控制。进行了电子节气门控制试验,试验结果表明节气门开度跟随良好,证明了控制方法的有效性。
     (3)在分析了传统的换档规律制定方法的基础上,采用动态规划的方法进行了基于动力传动系统一体化的双离合器自动变速器最佳换档规律的制定。分别进行基于传统综合型换档规律和基于动力传动一体化最佳换档规律下的ECE循环工况仿真、EUDC循环工况仿真和全油门加速性能仿真,通过仿真对比可以看出,采用本文制定的基于动力传动系统一体化控制的最佳换档规律,能够在不损失动力性的情况下,有效地改善燃油经济性。
     (4)在分析了换档品质评价指标的基础上,提出了基于动力传动系统一体化的DCT换档品质控制策略,通过联合控制发动机转矩和两个离合器的传递转矩实现换档前后转矩基本保持稳定的目标。采用径向基神经网络(Radial Basis Function NeuralNetwork简称RBFNN)智能控制算法进行离合器压力的补偿控制,实现离合器压力的精确控制,建立基于RBFNN的离合器压力智能控制系统并进行仿真,仿真结果显示,RBFNN离合器压力智能控制系统能够有效地保证实际压力跟随目标压力变化,减小压力控制的误差,实现离合器压力的精确控制。利用本文建立的传动系统模型,进行换档品质控制的仿真分析,仿真结果显示本文提出的换档品质控制策略,有效地提高了换档的平顺性,改善了换档品质。
     (5)设计了基于动力传动系统一体化的双离合器自动变速器的电控系统方案,采用XC164CS单片机进行了PCU硬件系统开发,设计了电控单元软件架构,开发了基于动力传动系统一体化的双离合器自动变速器的电控系统的软硬件,介绍了数据采集和分析系统原理,进行了整车试验,通过试验验证了本文提出的控制策略的有效性。
     本文通过理论分析与试验研究相结合的方法,对基于动力传动系统一体化的双离合器自动变速器控制技术进行了深入研究,试验和仿真结果表明,通过采用动力传动系统一体化控制技术,有效地改善了传动系的各项性能,获得了较好的换档品质,对双离合器自动变速器的开发具有一定的参考价值。
With the development of electronic technology, as well as the driver’s requirements fordriveability, comfort, safety and convenience, the automatic transmission has been anincreasingly wide range of applications, because of it has a series of advantages includingits reduction of fuel consumption, improvement of emissions and the driver’s convenience.
     Along with the development of science and technology, the automatic transmissionproduct experienced continuous improvement, evolution and upgrade. With the Applicationof the theory of automatic transmission and electronic control technology, the vehicle’slaunch and shift base on the integrated powertrain control technology is automaticallycompleted by control the output torque of engine and the clutch’s work state through theactuator. The Integrated powertrain control system provides optimum power through the useof an electronically controlled throttle and adjustment of shift position. The system offers ashockless shift by increasing or decreasing engine torque when shifting and improves fueleconomy.
     As the research focus of domestic and international transmission industry, Dual clutchtransmission is evolved in parallel shaft transmission, which arranged tow clutch parallellyon the odd gears and the even gears. The shift progress of the dual clutch transmission iscompleted by clutch to clutch shifting. It maintained advantages of a traditional manualtransmission including the simple structure and high efficiency, but also achieves powershift without interruption, which has improved the vehicle's driveability and economy.
     Research on dual clutch transmission based on the integrated powertrain control theoryis developed in this paper. The key technical issues of dual clutch transmission based onintegrated powertrain control is studied through depth theoretical analysis and experimentalresearch. On the basis of analysis on the structural characteristics of the dual clutchtransmission and its application status, as the following study of‘863’ high-tech programproject(No.2006AA110109)‘the development of six-speed dual clutch transmission’, Thedual clutch transmission control technology based on the integrated powertrain is studied,.The main content of research is as follows:
     1. Vehicle system model is built used in DCT’s simulation using modular modelingtechnology according to the characteristics of model based design. The entire system modelis divided into three parts: the driver model, controller model and the vehicle hardwaresystem model using the MATLAB/Simdriveline. The model of the entire powertrainequipped with dual clutch transmission is established by analyzing vehicle hardware. It canbe seen from the comparison of simulation and experimental results that the simulationresults from the two aspects of the dynamic characteristics and fuel economy characteristicscan effectively reflect the operation of the vehicle, which proves the validity of thesimulation model. The simulation model could be the foundation to develop the controlstrategies of the dual clutch transmission based on integrated powertrain.
     2. Engine torque control system is designed, using fuzzy compensation control toachieve precise control of engine torque. The hardware and software of the electronicthrottle control system is designed, using fuzzy parameter self-tuning PID control method toachieve a good electronic throttle control. The electronic throttle control system is tested.The experimental results show that the throttle follows well, which proves the effectivenessof the control method.
     3. The dual clutch transmission shift schedule based on integrated powertrain isdeveloped using dynamic programming method on the basis of analyzing traditional shiftschedule. The simulation comparison is obtained, which including the traditional shiftschedule and integrated powertrain shift schedule under the ECE driving cycle simulation,EUDC driving cycle simulation and full-throttle acceleration performance. It can be seenfrom the comparison that the integrated powertrain shift schedule can improve fueleconomy without losing driveability.
     4. The DCT’s shift quality control strategy based on integrated powertrain is proposedon the basis of analyzing the shift quality evaluation. The output torque keeps stable beforeand after shift through the integrated control of the engine torque and the torque of the dualclutch. Precise control of the clutch pressure is achieved by using Radial Basis FunctionNeural Network to build the intelligent pressure control system, which is simulated. Thesimulation results show that the intelligent clutch pressure control system achieved theprecise control of the clutch pressure which can effectively guarantee the actual pressure tofollow the target pressure and reduce the pressure control error. The gearshift qualitysimulation is analyzed, which shows that the shift quality control strategy proposed in this paper can improve the shift quality.
     5. The electric control system of the integrated powertrain is designed. ThePCU(Powertrain control units) hardware system is designed by using XC164CSmicrocontroller. The software architecture is proposed based on the integrated powertraincontrol. The hardware and software of the DCT based on integrated powertrain is developed.The data acquisition systems theory and analysis equipment is introduced. The real vehicletest is carried out, which verifies the validity of the control strategy proposed in this paper.
     In this paper, the key technologies of dual clutch transmission based on integratedpowertrain is studied by combining the theoretical analysis and experiment. The test andsimulation results show that the performance of the driveline is effectively improved by theuse of integrated powertrain control technology, which has some reference value for thedevelopment of the dual clutch transmission.
引文
[1]百川.我国自动变速器发展现状及未来趋势[J].现代零部件,2010年第10期:67-72.
    [2]李向聪,李戎.自动变速器技术发展与市场分析[J].汽车与配件,2011-36(No.10):23-25.
    [3]黄英,赵长禄,张付军,孙业保.车辆动力传动一体化对换挡过程影响的试验研究[J].汽车工程,2004,26(6):711-713.
    [4]冯巍.湿式双离合器自动变速器起步与换档控制技术研究[D].长春:吉林大学汽车工程学院,2010.
    [5] Bernd Matthes. Dual Clutch Transmissions-Lessons Learned and FuturePotential[C].SAE Paper2005-01-1021,2005.
    [6]刘玺.湿式双离合器自动变速器换档关键技术研究[D].长春:吉林大学汽车工程学院,2011.
    [7]黄宗益.现代轿车自动变速器原理和设计[M].上海:同济大学出版社,2006.
    [8]甘海云.汽车动力传动一体化控制系统的开发研究[D].北京:北京理工大学,2003.
    [9]杨波,滕培智.汽车动力传动系统一体化智能控制技术研究[J].上海汽车,2006.06:33-38.
    [10]孙肇花.基于凌志LS400型轿车动力传动一体化控制技术的研究[D].呼和浩特:内蒙古工业大学,2007.
    [11]廖承林.车辆动力传动一体化控制系统的研究与开发[D].北京:北京理工大学,2001.
    [12]廖承林,陈慧岩,孙业保,丁华荣.车辆动力传动控制系统的研究与开发[J].汽车工程,200年(第24卷)第二期:130-133.
    [13]褚志龙.汽车动力-传动系统一体化智能控制技术研究[D].合肥:安徽农业大学,2004.
    [14]王云成.重型商用车不分离离合器AMT关键技术研究[D].长春:吉林大学汽车工程学院,2010.
    [15]杨伟斌,吴光强,秦大同.双离合器式自动变速器传动系统建模及换档特性[J].机械工程学报,2007,43(7):188-194.
    [16]吴光强,杨伟斌,秦大同.双离合器式自动变速器控制系统的关键技术[J].机械工程学报,2007,43(2):13-20.
    [17]Masayuki Yasuoka, Masaaki Uchida, Shusaku Katakura and Takahiro Yoshino. AnIntegrated Control Algorithm for an SI Engine and a CVT. SAE Paper1999-01-0752,1999.
    [18]Shinichi Sakaguchi, Eisuke Kimura and Kazuhisa Yamamoto. Development of anEngine-CVT Integrated Control System. SAE Paper1999-01-0754,1999
    [19]Seiji Kuwahara, Hideki Kubonoya, Hiroshi Mizuno. Toyota’s New Integrated DrivePower Control System. SAE Paper2007-01-1306,2007.
    [20]Takaaki Tokura, Tomohiro Asami, Yoshio Hasegawa. Development of Smooth Up-ShiftControl Technology for Automatic Transmissions with Integrated Control of Engineand Automatic Transmission. SAE Paper2007-01-1310,2007.
    [21]Masami Kondo, Yoshio Hasegawa, Yoji Takanami, Kenji Arai. Toyota AA80E8-SpeedAutomatic Transmission with Novel Powertrain Control System. SAE Paper2007-01-1311,2007.
    [22]Shushan Bai, Daniel Brennan, Don Dusenberry, Tim Tao and Zhen Zhang.Integrated Powertrain Control. SAE Paper2010-01-0368,2010.
    [23]Goetz M,Levesley M,Crolla D.Integrated Powertrain Control of Gearshifts on TwinClutch Transmissions.SAE Paper2004-01-1637,2004.
    [24]Goetz M,Levesley M,Crolla D.Dynamics and Control of Gearshift on Twin-ClutchTransmissions[J].Journal of Automobile Engineering,2005,219(8):951-963.
    [25]金伦.双离合器自动变速器建模与控制策略的研究[D].长春:吉林大学汽车工程学院,2006.
    [26]Harold Klee,Randal Allen.Simulation of Dynamic Systems with MATLAB andSimulink[M].Florida:CRC Press,2007.
    [27]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [28]张建国,双离合器式自动变速器控制品质评价与优化[D].长春:吉林大学汽车工程学院,2011.
    [29]范大鹏,吴光强.基于Simdriveline的汽车无级变速传动系统的建模与仿真[J].传动技术,2007,21(4):15-17
    [30]周云波,常思勤,魏巍.基于MATLAB/Simdriveline的某型军用车辆起步过程仿真研究[J].南京理工大学学报,2011,35(4):507-512
    [31]王印束.双离合器式混合动力传动系统模式切换品质仿真研究[D].长春:吉林大学,2009
    [32]刘永刚.轿车双离合器自动变速系统综合匹配控制研究[D].重庆:重庆大学,2010.
    [33]吕济明.双离合器自动变速器坡道起步控制仿真研究[D].长春:吉林大学,2008.
    [34]胡宏伟.湿式自动离合器接合过程特性的研究[D].杭州:浙江大学机械与能源工程学院,2008.
    [35] Timothy M.Cameron,Samuel H.Tersigni,Tracy McCombs,et al.ATF effects onfriction stability in slip-controlled torque converter clutches[C]. SAE Paper2003-01-3255,2003.
    [36]Hu Jibin,Peng Zengxiong,Yuan Shihua.Drag Torque Prediction Model for the WetClutches[J].Chinese Journal of Mechanical Engineering (English Edition),2009,22(2):238-243.
    [37]郑磊.自动变速器的建模与仿真技术研究[D].长春:吉林大学汽车工程学院,2011.
    [38]牛铭奎.干式DCT离合器温度模型及其灰色预测控制研究[D].长春:吉林大学汽车工程学院,2008.
    [39]余志生.汽车理论[M].北京:机械工业出版社,2004.
    [40]Genta, G., Motor Vehicle Dynamics: Modeling and Simulation[M], Singapore, WorldScientific,1997
    [41]Manfred Mitschke,陈荫三,余强.汽车动力学[M].北京:清华大学出版社,2009.
    [42]刘志茹.混合动力汽车动态过程主动控制研究[D].长春:吉林大学,2006.
    [43]张金乐,马彪,张英锋,等.双离合器自动变速器换档特性与控制仿真[J].农业机械学报,2010,41(5):6-11.
    [44]J.T.B.A. Kessels, D.L. Foster. Integrated Powertrain Control for Hybrid ElectricVehicles with Electric Variable Transmission[C].2009IEEE.
    [45]Jinwu Gao, Zhiyuan Liu. Integrated Powertrain Control of Gearshift for AutomaticTransmission.[C]2010First International Conference on Pervasive Computing, SignalProcessing and Applications,2010IEEE
    [46]刘振军,郝宏伟,董小洪,等.湿式双离合器自动变速器换档控制与仿真分析[J].重庆大学学报,2011,34(1):7-14.
    [47]陈清洪. AMT_DCT自动变速器通用开发平台关键技术研究[D].重庆:重庆大学,2010.
    [48]郭彦颖.重型卡车AMT系统关键技术的研究[D].长春:吉林大学,2010.
    [49]许力.智能控制与智能系统[M].北京:机械工业出版社,2007.
    [50]刘振军.基于人_车_路环境下的汽车电控机械自动变速智能控制研究[D].重庆:重庆大学,2010.
    [51]谢克明.现代控制理论[M].北京:清华大学出版社,2007.
    [52]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,2000.
    [53]诸静.模糊控制原理与应用[M].北京:机械工业出版社,2005.
    [54]秦贵和,葛安林,王春蕾.模糊逻辑在汽车电子控制中的应用[J],汽车工程,1999,21(5):276-279
    [55]苏玉刚.汽车AMT的系统设计和智能控制技术研究[D].重庆:重庆大学,2004.
    [56]Michael Livshiz, Minghui Kao and Anthony Will. Validation and Calibration Process ofPowertrainModel for Engine Torque Control Development. SAE Paper2004-01-0902,2004.
    [57]陈剑.汽油机电子节气门控制系统设计与控制方法研究[D].西安:长安大学,2011
    [58]刘奇.汽车发动机电子节气门控制系统研究[D].威海:哈尔滨工业大学,2011.
    [59]马乐,王绍銧.电子节气门控制系统的构建[J].内燃机工程,2005,26(4):20-23.
    [60]冯能莲,董春波,宾洋,陈树星,李克强.电子节气门控制系统研究[J].汽车技术,2004(1):1-4.
    [61]朱红萍,张振东.汽车电子节气门模糊控制仿真研究[J].汽车科技,2010(01):23-61.
    [62]曾志伟,钟勇,钟志华.电子油门的模糊控制研究[J].机械与电子,2005(4):35-37.
    [63]杨世春,李君,于秀敏,于航飞,郭孔辉.混合动力汽车汽油机电子节气门模糊智能PID控制[J].汽车技术,2007(6):1-4.
    [64]苏海峰,冯国胜.基于DSP的电子节气门PID控制[J].汽车技术,2007(6):25-27.
    [65]韩玉敏.基于Infenion C164CI单片机的汽车电子节气门控制系统设计[J].交通科技与经济,2007年第9卷:37-39.
    [66]Mark Costin, Robert Schaller, Mario Maiorana, James Purcell, Robert Simon. AnArchitecture for Electronic Throttle Control Systems. SAE Paper2003-01-0098,2003.
    [67]冯巍,程秀生,祁鹏华,李雪松.基于智能PID控制的电子节气门控制系统研究[J].汽车技术,2009年第3期:14-17.
    [68]于洪洋,吕英军,杨世春.基于位置反馈控制的电子节气门控制系统研究[J].汽车技术,2007(8):9-12.
    [69]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993.
    [70]王伟华.并联混合动力汽车的控制[D].长春:吉林大学,2006
    [71]吕显瑞,陈黄庆道.最优控制理论基础[M].北京:科学出版社,2008.
    [72]董景新,吴秋平.现代控制理论与方法概论[M].北京:清华大学出版社,2007.
    [73]Ilya Kolmanovskyt, Irina Siverguina Bob Lygoe. Optimization of Powertrain OperatingPolicy for Feasibility Assessment and Calibration: Stochastic Dynamic ProgrammingApproach. Proceedings of the American Control Conference.2002AACC
    [74]何宁,赵治国,李瑜婷.双离合器自动变速器换档规律及其仿真评价[J].中国机械工程,2011,22(3):367-373.
    [75]胡丰宾,湿式双离合器传动系统匹配控制与热平衡分析[D].重庆:重庆大学,2010.
    [76]Kim, Daekyun. Math-model based gear-shift control strategy for advanced vehiclepowertrain systems[D]. University of Michigan.2006
    [77]Daekyun Kim, Huei Peng, Shushan Bai, and Joel M. Maguire. Control of IntegratedPowertrain With Electronic Throttle and Automatic Transmission[C]. IEEETransactions on Control System Technology Systems15(3), MAY2007
    [78]陈宁.工程车辆节能换挡规律智能控制方法研究[D].长春:吉林大学,2005.
    [79]Samanuhut, Patinya. Modeling and control of automatic transmission with planetarygears for shift quality[D]. The University of Texas at Arlington.bMechanicalEngineering.2011
    [80]Lino Guzzella, Antonio Sciarretta. Vehicle Propulsion Systems Introduction toModeling and Optimization[M]. Springer,2007.
    [81]周丹.机械式自动变速器换挡规律研究[D].武汉:武汉理工大学,2011.
    [82]王健.换档质量综合评价系统的研究[D].长春:吉林大学,2007.
    [83]郭晓林,胡纪滨,苑士华,等.DCT系统换档品质的控制方法[J].机械科学与技术,2006,25(6):698-701.
    [84]朱海涛,张俊智,廖承林,胡昭琳.混合动力电动汽车动力总成换挡过程协调控制仿真[J].公路交通科技,2005,22(8):132-134
    [85]Lino Guzzella,Antonio Sciarretta. Vehicle Propulsion Systems[M]. Springer,2007
    [86]吴光强,张德明.基于最优控制理论的DCT离合器升档作动方式研究[J].汽车工程,2009,31(3):258-261.
    [87]杨志刚,汽车自动变速系统智能控制方法研究[D].重庆:重庆大学,2003.
    [88]廖承林,张俊智,卢青春.混合动力轿车机械式自动变速器换挡过程中的动力系统协调控制方法[J].汽车工程学报,2005,41(12):38-41.
    [89]孙文涛,陈慧岩.电控自动变速器换挡过程自适应控制策略[J].农业机械学报,2008,39(12):24-81.
    [90]E.博特,U.欣里希森.负载控制变速器的换挡控制方法:02821813.2,2005.
    [91]W.武科维奇, M.凯尼格, A.维尔希.控制双离合器变速装置的方法:200410005883.1,2004.
    [92]T.M.Cameron,T.McCombs,M.Devlin,et al.ATF Friction Properties and ShiftQuality[C].SAE Paper2004-01-3027,2004.
    [93]王娟,陈慧岩,陶刚,龚鹏.液力机械自动变速器换挡品质控制方法[J].农业机械学报,2008,39(2):39-42.
    [94]吴麒,王诗宓等.自动控制原理[M].北京:清华大学出版社,2005.
    [95]高金源,夏洁.计算机控制系统[M].北京:清华大学出版社,2006.
    [96]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008.
    [97]陆中华.基于纯电动轿车的两档双离合器式自动变速器控制技术研究[D].长春:吉林大学汽车工程学院,2010.
    [98]周哲.基于RBF神经网络的自适应控制研究[D].武汉:武汉理工大学,2011.
    [99]李广军.基于RBF神经网络的PID整定[D].西南交通大学,2005.
    [100]李天军. RBF神经网络及其在锅炉过热汽温控制中的应用[D].哈尔滨:哈尔滨工业大学,2007.
    [101]翁晓明.湿式双离合器变速器换档品质的研究[J].汽车工程,2009,31(10):927-931.
    [102] Koji Oshima, Hiromichi Kimura, Hideki Miyata and Syogo Matsumoto. ControlSystem Development with Large Flow Small Linear Solenoid for the New Toyota FWD6-Speed Transaxle. SAE Paper2006-01-1487,2006.
    [103] N D Vanghan,J B Gamble.The modeling and simulation of a proportional solenoidvalve [J].ASME Journal of dynamic system Measurement and Control,1996,118(2):120-125.
    [104]甘海云,张俊智,卢青春.汽车动力传动系统的换挡品质控制[J],汽车工程,2003,25(5):488-489
    [105] E.博特,U.欣里希森,A.沙姆沙.自动双离合器变速箱的换挡控制方法:2003380109880.6,2006.
    [106]邱绪云,顾晖,吴光强.汽车自动变速器电子控制单元的设计开发[J].传动技术,2005,19(4):27-29.
    [107] friction stability in slip-controlled torque converter clutches[C]. SAE Paper2003-01-3255,2003.
    [108] H.Flegl,R.Wüest,N.Stelter,I.Szodfridt.Das Porsche-Doppelkupplungs(PDK-)Getriebe[J].ATZ Automobiltechnische Zeitschrift,1987,89(9):439-452.
    [109] Josko Deur,Josko Petric,Jahan Asgari,et al.Modeling of Wet Clutch EngagementIncluding a Thorough Experimental Validation[C].SAE Paper2005-01-0877,2005.
    [110]邓涛.基于_人_车_路_闭环的无级自动变速系统硬件在环仿真研究[D].重庆:重庆大学,2010.
    [111]路甬祥,胡大纥.电液比例控制技术[M].北京:机械工业出版社,1988.
    [112] Mikael Holgerson.Optimizing the smoothness and temperatures of a wet clutchengagement through control of the normal force and drive torque[J].Journal ofTribology,2000,122(1):119-123.
    [113]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1979.
    [114] E.J.Berger,F.Sadeghi,C.M.Krousgrill.Analytical and numerical modeling ofengagement of rough,permeable,grooved wet clutches[J].Journal of Tribology,1997,119(1):143-148
    [115]毕乾坤,张东波,程秀生.CVT电液系统中电磁阀特性的仿真与试验研究[J].汽车技术,2007(6):29-32.
    [116] Baek-Hyun Cho,Gyu-Hong Jung,Jae-Woong Hur,et al.Modeling of Proportionalcontrol solenoid valve for automatic transmission using system identificationtheory[C].SAE Paper1999-01-1061,1999.
    [117]张志刚,周晓军,沈路,等.湿式离合器动态接合特性的仿真与试验[J].中国公路学报,2010,23(3):115-120.
    [118]张志刚.关于湿式离合器几个工作特性研究[D].杭州:浙江大学机械与能源工程学院,2010.
    [119] H.Gao,G.C.Barber,M.Shillor..Numerical Simulation of Engagement of a WetClutch With Skewed Surface Roughness[J].Journal of Tribology,2002,124(2):305-312.
    [120] K. Dasgupta,J. Watton.Dynamic analysis of proportional solenoid controlledpiloted relief valve by bondgraph[J].Simulation Modelling Practice and Theory,2005,13(1):21-38.
    [121]邱绪云,顾晖,吴光强.汽车自动变速器电子控制单元的设计开发[J].传动技术,2005,19(4):27-29.
    [122]史俊武.基于人_车_路系统的自动变速车辆智能换挡策略研究[D].上海:上海交通大学,2011.
    [123]陈然.汽车DCT智能控制及电控单元虚拟试验系统研究[D].重庆:重庆大学,2010.
    [124]杨伟斌.双离合器式自动变速器电子控制系统关键技术的研究[D].上海:同济大学汽车学院,2007.
    [125]杭勇.柴油发动机控制模型及控制算法的设计与仿真研究[D].镇江:江苏大学能源与动力工程学院,2002.
    [126]杨伟斌.双离合器式自动变速器电子控制系统关键技术的研究[D].上海:同济大学汽车学院,2007.
    [127]陆中华,程秀生,冯巍.湿式双离合器自动变速器的升档控制[J].农业工程学报,2010,26(5):132-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700