用户名: 密码: 验证码:
基于GIS的景观湖体水质管理系统(SLMGIS)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国大力推进节能减排,建设资源节约型、环境友好型社会的战略决策大背景下,为应对城市建设,特别是绿色建筑、绿色住区推广带来的景观湖体数量的快速增长,和再生水回用对景观湖体水质管理提出更高要求,以及景观湖体受污染严重的现状之间的矛盾,开展了基于地理信息系统(GIS:geographic information system)的景观湖体水质管理系统(SLMGIS:GIS-based Scenic Lake Water Quality Management System)研究。首先针对景观湖体的水质特征和管理需求,构建了独立的水质模型,模型与水动力学模型EFDC相耦合,实现三维水力+水质模拟,并采用民主湖实测数据对模型进行了参数率定和验证;在此基础上,引入时态GIS构建了SLMGIS,系统可以进行水力、水质数据时空四维存储、动态可视化与分析,对景观湖体进行流域范围内的污染源和水质管理;最后,开发了基于GIS的龙景湖景观湖体水质管理系统,利用该系统对龙景湖进行水质管理的动态化和可视化,包括流域分析、污染源管理、水质预测以及水质保障措施的设计和效果预测等功能。
     在现有湖库水质模型研究的基础上,结合景观湖体水质特征和管理要求,构建了景观湖体水质模型。模型包括9个状态变量、5个子系统,以水质边界的方式引入植物浮床、喷泉和跌水三种水质保障措施以及底泥的作用效果;采用显格式有限差分法对模型控制方程进行离散;以水力文件为链接进行水质模型与水动力学模型EFDC的耦合,运用面向对象的C++语言,在microsoft visual C++平台编写水质模型软件,实现三维水动力学+水质模拟。水力、水质独立建模、联合应用的方式建立的景观湖体耦合模型,可根据需要灵活选择是否进行水力模拟,提高了决策效率。该模型包含了部分原位人工水质保障措施的效果模拟,为景观湖设计、水质预测提供技术支持。
     以民主湖为例进行模型的验证。根据高温多雨期的水质监测数据进行模型参数的率定,低温枯雨期的水质监测数据进行模型验证,证实该模型可以成功实现景观湖体的水质模拟和预测,并利用模型进行数值试验,模拟了对民主湖进行“控源”、“水力循环”以及“控源+水力循环”三种措施后的水质变化,结果证明控源能降低民主湖的污染物浓度,水力循环能改善水体的水力条件,改变污染物浓度分布,二者联合使用能有效控制湖水水质。
     将水质模型与时态GIS集成,建立了SLMGIS。水质模型与GIS之间完全集成,采用共同的空间数据库实现双向的数据交换,二者与水动力学模块EFDC之间紧密集成,通过空间数据转换和水力链接文件实现联合;利用COM (ComponentObject Model-based)组件技术和Visual C++平台编制水质管理软件,软件集成了EFDC水动力学模型和景观湖体水质模型的计算功能和网格划分,速度场、浓度场的显示查询、GIS空间分析等功能;在数据存储策略上,采用通用的netCDF文件格式存储模拟结果,实现了水力、水质数据时空四维存储、动态可视化与分析,将景观湖体水质管理范围扩展到整个流域的污染源控制,为景观湖体水质与其污染源的统一控制、管理提供技术支持。
     开发了基于GIS的龙景湖SLMGIS。建立了园区的三维数字模型,利用GIS对龙景湖进行流域分析、园区内污染源分析、计算网格的划分和模拟结果的动态可视化,利用水力/水质耦合模型进行水质预测。系统预测了建成后龙景湖水质,选择“控源”作为水质保障措施,并对比了措施前后的水质变化,引入综合营养状态指数法进行湖体的富营养化评价,为水质管理提供验证性应用和示范。
In the context of the China’s strategic decision of vigorously promoting energy-saving and emission-reduction, building a resource-saving and environment- friendly society, urban construction, especially the promotion of green building and green settlement, gets the quick increase of the quantity of scenic lake. Reuse of reclaimed water challenges water quality management. In addition, most of scenic lakes are polluted seriously. In response to the above problem, a GIS-based scenic lake water quality management system (SLMGIS) was developed. First of all, the water quality model was built according to the characteristics of scenic lakes and management demands, coupled with hydrodynamic model EFDC in order to get three-dimensional simulation of hydrodynamic and water quality. Then the coupled model was calibrated and validated with water quality data of Minzhu Lake. Based on the coupled model, SLMGIS was constructed on the temporal GIS, storing, dynamic visualizing and analyzing of four-dimensional space-time data of hydrodynamic and water quality, and watershed-scale of pollution sources and water quality management could be achieved. At last, LJH-SLMGIS was developed. The system can be used to dynamic visualize, watershed analyze, pollution sources manage, water quality forecast, and design and effect predict of water quality guarantee measures.
     Based on the published model researches of lake and reservoir water quality, a scenic lake water quality model was constructed, which adapt to scenic lake characteristics and management requirements. The model included nine state variables and five subsystems. The operating results of three kinds of artificial water quality protection measures, plant floating bed, fountain and water-falling and affect of sediment were simulated by making them the water quality boundary. Control equations of the model were discretized by finite difference method. The model was linked with hydrodynamic model EFDC by hydraulic file. Then, the quality model software programmed in object-orented language C++ on Microsoft Visual C++ platform to get three-dimensional simulation of hydrodynamic and quality. The water quality model was constructed separating with hydraulic model and combined applied with it. In this way, hydraulic simulation can be done or not according to the situation and the decision-making efficiency can be improved. From the above mentioned, the coupled model provides technical support for scenic lake design and water quality prediction.
     The model was verified based on water quality monitoring data of Minzhu Lake. Model parameters values were calibrated by water quality monitoring data of high-temperature and rainy season. Model results were verified by the data of low-temperature and dry season, which confirmed the coupled model can successfully simulate and predict water quality of scenic lake. Then, a numerical experiment was experimentized by the model to discuss the implementation effect of three security measures of“source controlling”,“hydraulic cycle”and“source controlling and hydraulic cycle”. The results showed that source controlling reduced the concentration of pollutants, the hydraulic cycle improved the hydraulic conditions of water bodies, and combined of the two measures could effectively control the water quality of lake.
     A scenic lake water quality management system was established through the coupled model integrated with temporal GIS. The water quality model and GIS fully integrated, sharing one spatial database for two-way data exchange. Both of them tightly integrated with EFDC through spatial data conversion and hydraulic file. The software was developed on vc++ platform and used COM (Component Object Model-based) technologies, which got the function of simulation and meshing of the EFDC and water quality model, the function of display and query of velocity field and concentration field, and spatial analysis of GIS. For the data storage strategy of the system, netCDF file was used to store results of simulation to achieve the storing, dynamic visualizing and analyzing four-dimensional space-time data of hydrodynamic and water quality, and watershed-scale of pollution sources and water quality management. Therefore, technical support to control and management of scenic lake water quality and sources was then provided.
     LJH-SLMGIS (Longjing Hu SLMGIS) was developed. A three - dimensional digital model of the park was established. Watershed analysis, pollution analysis, division of calculation grid of the lake and dynamic visualization of simulation results were achieved by GIS. Then water quality after the park completed was predicted by the coupled model. Effect of water quality ensurance measure of“source controlling”was predicted and analyzed. At last, the evaluation of eutrophication was made by assessment method of comprehensive nutrition state index. In short, the application of the scenic lake water quality management system was validated and demonstrated.
引文
[1] Helen Bennion, John Hilton, Mike Hughes, et al. The use of a GIS-based inventory to provide a national assessment of standing waters at risk from eutrophication in Great Britain [J]. Science of the Total Environment, 2005, 344: 259-273.
    [2] U.S. Environmental Protection Agency. National lakes assessment: A collaborative survey of the nation’s lake [EB/OL]. http://water.epa.gov/type/lakes/ , 2011-1/2011-1.
    [3]国家环境保护总局. 2004年中国环境状况公报[EB/OL]. http://www.zhb.gov.cn/plan/zkgb/, 2009-11/2010-03.
    [4]国家环境保护总局. 2005年中国环境状况公报[EB/OL]. http://www.zhb.gov.cn/plan/zkgb/, 2009-11/2010-03.
    [5]国家环境保护总局. 2006年中国环境状况公报[EB/OL]. http://www.zhb.gov.cn/plan/zkgb/, 2009-11/2010-03.
    [6]国家环境保护总局. 2007年中国环境状况公报[EB/OL]. http://www.zhb.gov.cn/plan/zkgb/, 2009-11/2010-03.
    [7]国家环境保护总局. 2008年中国环境状况公报[EB/OL]. http://www.zhb.gov.cn/plan/zkgb/, 2009-11/2010-03.
    [8]吴秋丽,全昌明,许晓波.北京市城市中心区景观水体水质状况调查及改善策略[J].安徽农业科学, 2010,38(5): 2556-2557, 2573.
    [9]程婧蕾,王丽卿,季高华等.上海市10个城市公园景观水体富营养化评价[J].上海海洋大学学报, 2009, 18(4): 435-442.
    [10]王琳,李敬伟,宫朝举等.高校景观水体水质调查与富营养化状态评价[J].安徽农学通报, 2010, 16(9): 154-157.
    [11]王云中,杨成建,陈兴都.西岸市景观水体营养状态调查及浮游藻类多样性研究[J].环境监测管理与技术. 2010, 22(3): 22-26.
    [12] USGBC (United States Green Building Council). LEED– Leadership in energy and environmental design: green building rating system, version 1.0[C]. US Green building council: 1999.
    [13] Baldwin R, Yates A, Howard N, et. al. BREEAM (Building Research Establishment Environmental Assessment Method) 98 for offices [Z]. Watford, UK: 1998.
    [14]陈立.绿色建筑水循环安全保障[M].北京:中国建筑工业出版社. 2007.
    [15] Eriksson A. Z., Auffarth K, Eilersen A. M., et al. Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater[J]. Water S A, 2003,29: 135-146.
    [16] Eva Eriksson, Karina Auffarth, Mogens Henze, et al. Characteristics of grey wastewater [J]. Urban water 4, 2002, 85-104.
    [17] Palmquist H, Hanaeus J. Hazardous substances in separately collected grey– and blackwater from ordinary swedish households[J]. Science of the Total Environment, 2005, 348: 151-163.
    [18]蒋以元. O3-BAF城市污水再生利用安全保障技术研究[D].重庆:重庆大学. 2004, 4.
    [19]仇付国.城市污水再生利用健康风险评价[D].西安:西安建筑科技大学. 2004, 5.
    [20]中国国家质量监督检验检疫总局. GB/T18921-2002.城市污水再生利用景观环境用水水质[S].北京:中国标准出版社, 2003.
    [21]国家环境保护总局,国家质量监督检验检疫总局. GB 18918-2002.城镇污水处理厂污染物排放标准[S].北京:中国环境出版社, 2003.
    [22]国家环境保护总局,国家质量监督检验检疫总局. GB3838-2002地表水环境质量标准[S].北京:中国标准出版社, 2002.
    [23]周律,邢丽贞,段艳萍等.再生水回用于景观水体的水质要求探讨[J].给水排水, 2007,33(4): 38~42.
    [24] OECD. Eutrophication of water. Monitoring, assessment and control [R]. Organisation for Economic Co-operation and development, Paris, 1982.
    [25] Dillon P.J. Rigler F.H.. A simple method for predicting the capacity of a lake for development based on lake trophic status[J]. Can. J. Fish. Res., 1975, 32: 1519-1531.
    [26] Canfield Jr., D.E. Bachmann R.W.. Prediction of total phosphorus concentrations, chlorophyll a and Secchi depths in natural and artificial lake[J]. Can J. Fish. Aquat. Sci., 1981, 38: 414-423.
    [27]顾丁锡,舒金华.湖水总磷浓度的数学模拟[J].海洋与湖沼, 1988, 19(5): 447-456.
    [28] Imboden D M, Gachter R. A dynamic lake model for trophic state prediction[J]. Ecological Modeling, 1978, 4: 77-98.
    [29] O’Melia C R. Phosphorus cycling in lake[R]. North Carolina Water Resources Reseatch Institute, Raleigh Report, 1974.
    [30] Welch E. B., Spyridakis D. E., Shuster J. I.. Declining lake sediments phosphorus release and oxygen diversion[J]. Journal of Water Pollution Control Federation. 1986, 58(1): 92-96.
    [31] Steven C. C.. Long-term phenomenological model of phosphorus and oxygen for stratified lakes[J]. Water Research, 1991, 25(6): 707-715.
    [32] Jφrgensen S. E.. Application of ecological modeling in Environmental management, part A[M]. New York: Elsevier Scientific Publishing Company. 1983, 227-279.
    [33] Nyholm N.. A simulation model for phytoplankton growth and nutrient cycling in eutrophic, shallow lakes[J]. Ecological Modeling, 1978, 4: 278-310.
    [34] Matsuoka, Y., Goga T., Naito M.. An eutrophication model of Lake Kasumigaura[J]. Ecological Modeling, 1986, 31: 201-219.
    [35]刘元波,陈为民.湖泊藻类动态模拟[J].湖泊科学, 2000, 12(2): 171-176.
    [36] Robert P, Kees K., Lambertus L.. Primary production estimation from continuous oxygen measurements in relation to external nutrient input[J]. Water Research, 1996, 30(3): 625-643.
    [37] Jφrgensen SE. An eutrophication model for a lake[J]. Ecological Modeling, 1976, 2: 32-41.
    [38] Scavia D., Park R.A.. Documentation of selected constructs and parameter values in the aquatic model CLEANER[J]. Ecological Modeling, 1976, 2: 33-51.
    [39] Nyholm N.. A simulation model for phytoplankton growth and nutrient cycling in eutrophic, shallow lakes[J]. Ecological Modelling, 1978, 4: 279-310.
    [40] Virtanen M., Koponen J., Dahlbo K., et al. Mathematical models of Lake Bailkal ecosystem [J]. Ecological Modelling. 1995, 82(1): 27-39.
    [41]刘玉生,唐宗武,韩梅等.滇池富营养化生态动力学模型及其应用[J].环境科学研究, 1991, 4(6): 1-7.
    [42]郑丙辉,张永泽,梁占彬等.滇池生态动力学模型的改进[J].环境科学研究, 1994, 7(4): 1-6.
    [43] Pang Yong, Pu Peimin. A three-dimensional boundary-layer model in the Taihu Lake area[J]. Scientia atmospherica sinica, 1995, 19(21): 243-251.
    [44]朱永春,蔡启铭.太湖梅梁湾三维水动力学研究Ⅰ:模型的建立及结果分析[J].海洋与湖沼, 1998, 29(1): 79-85.
    [45]朱永春,蔡启铭.太湖梅梁湾三维水动力学研究Ⅱ:营养盐随三维湖流的扩散规律[J].海洋与湖沼, 1998, 29(2): 169-174.
    [46] Hu Weiping, Jorgen Salomonsen, Xu Fuliu, et al. A model for the effects of water hyacinths on water quality in an experiment of physic-biological engineering in Lake Taihu, China[J]. Ecological Modelling, 1998, 107:171-188.
    [47] Xu F.L., Jφrgensen S.E., Tao S., et al. Modeling the effects of macrophyte restoration on water quality and ecosystem of Lake Chao[J]. Ecological Modelling, 1999, 117: 239-260.
    [48]阮景荣,蔡庆华,刘建康.武汉东湖的磷-浮游植物动态模型[J].水生生物学报, 1988, 12(4): 289-307.
    [49]王建平,苏宝林,贾海峰等.密云水库及其流域营养物集成模拟的模型体系研究[J].环境科学, 2006, 27(7): 1286-1291.
    [50] Jφrgensen S.E.. Structural dynamic model[J]. Ecological Modelling, 1986, 31: 1-9.
    [51] Jφrgensen S.E., Nielsen S.N.. Models of the structural dynamics in lakes and reservoirs[J]. Ecological Modelling, 1994, 74: 39-46.
    [52] Johanna Mieleitner, Peter Reichert.. Modelling functional groups of phytoplankton in three lakes of different trophic state[J]. Ecological modeling. 2008, 211(3-4):279-291.
    [53] Richard D. Bartleson, W. Michael Kemp, J. Court Stevenson. Use of a simulation model to examine effects of nutrient loading and grazing on Potamogeton perfoliatus L. communities in microcosms[J]. Ecological Modelling. 2005, 185(2-4): 483-512.
    [54] Zhang J., Jφrgensen S.E., Tan C.O., et al. A structurally dynamic modeling– Lake Mogan, Turkey as a case study[J]. Ecological Modelling, 2003, 164: 103-120.
    [55] Zhang J., Jφrgensen S.E., Tan C.O., et al. Hysteresis in vegetation shift– Lake Mogan Prognoses[J]. Ecological Modelling, 2003, 164: 227-238.
    [56] Weiping Hu, Sven E. Jφrgensen, Fabing Zhang. A vertical– compreesed three– dimensional ecological model in Lake Taihu, China[J]. Ecological Modelling, 2006, 190: 367-398.
    [57] Gurkan Z., Zhang J., Jφrgensen S.E.. Development of a structurally dynamic model for forecasting the effects of restoration of lakes [J]. Ecological Modelling, 2006, 197: 89-103.
    [58] Jφrgensen S.E.. Integration of ecosystem theories: a pattern (third edition) [M]. Kluwer, Dordrecht, 2002.
    [59] Jingyang Zhao, Maryam Ramin, Vincent Cheng, et al. Plankton community patterns across a trophic gradient: the role of zooplankton functional groups[J]. Ecological Modelling. 2008, volume 213, issue 3: 417-436.
    [60] Inga Hense, Aike Beckmann. Towards a model of cyanobacteria life cycle– effects of growing and resting stages on bloom formation of N2-fixing species[J]. Ecological Modelling. 2006, 195(3-4):205-218.
    [61] Gabi Mulderij, Egbert H. Van Nes, Ellen Van Donk. Macrophyte– phytoplankton interactions: The relative importance of allelopathy versus other factors[J]. Ecological Modelling. 2007, 204(1-2): 85-92.
    [62] Hongyan Zhang, David A. Culver, Leon Boegman. A two-dimensional ecological model of Lake Erie: application to estimate dreissenid impacts on large lake plankton populations[J]. Ecological Modelling, 2008, 214(2-4): 219-241.
    [63] Louise C. Bruce, David Hamilton, J(o|¨)rg Imberger, et al. A numerical simulation of the role of zooplankton in C, N, and P cycling in Lake Kinneret, Israel[J]. Ecological Modelling, 2006, 193(3-4): 412-436.
    [64] Brian M. Roth, Isaac C. Kaplan, Greg G. Sass, et al. Linking terrestrial and aquatic ecosystems: The role of woody habitat in lake food webs[J]. Ecological Modelling, 2007, 203(3-4): 439-452.
    [65] B. Mukherjee, D. Mukherjee, M. Nivedita. Modelling carbon and nutrient cycling in asimulated pond system at Ranchi[J]. Ecological Modelling, 2008, 213(3-4): 437-448.
    [66] Tim Reid, Neil Crout. A thermodynamic model of freshwater Antarctic lake ice[J]. Ecological Modelling, 2008, 210(3): 231-241.
    [67] Andreas C. Bryhn, Thorsten Blencker. Can nitrogen gas be deficient for nitrogen fixation in lakes? [J] Ecological Modelling, 2007, 202(3-4): 362-372.
    [68] Rivera E.C., de Queiroz J.F., Ferraz J.M., et al. System models to evaluate eutrophication in the Broa Reservoir, Sao Carlos, Brazil[J]. Ecological Modelling, 2006, 202: 518-526.
    [69] J.M. Malmaeus, T. Belnckner, H. Markensten, et al. Lake phosphorus dynamics and climate warming: A mechanistic model approach[J]. Ecological Modelling, 2006, 190(1-2): 1-14.
    [70] Elliott J. A., Perrson I., Thackeray S.J., et al. Phytoplankton modeling of Lake Erken Sweden by linking the models PORBE and PROTECH[J]. Ecological Modelling, 2007, 202: 421-426.
    [71] Fragoso C.R.. Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow subtropical lake in South Brazil[J]. Ecological Modelling, 2008, 219: 125-137.
    [72] Zhang J., Jφrgensen S.E.. Modelling of point and non-point nutrient loadings from a watershed[J]. Environmental Modelling and Software, 2005, 20: 561-574.
    [73] C. Lindim, J.L. Pinho, J.M.P.. Vieira. analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling[J]. Ecological Modelling, in press。
    [74] Mieleitner J., Reichert P.. Analysis of the transferability of a biogeochemical lake model to lakes of different trophic state[J]. Ecological Modelling, 2006, 194: 49-61.
    [75] Jun Wu, Jian Lu, Jiaquan Wang. Application of chaos and fractal models to water quality time series prediction[J]. Environmental Modelling & Software, 2009, 24: 632-636.
    [76] Vladusic D., Kompare B., Bratko I.. Modelling Lake Glumso with A2 learning[J]. Ecological Modelling, 2006, 191: 33-46.
    [77] Nadia Bergamino, Steven A. Loiselle, Andres Cozar, et al. Examining the dynamics of phytoplankton biomass in Lake Tanganyika using Empirical Orthogonal Functions[J]. Ecological Modelling, 2007, 204(1-2): 156-162.
    [78] Thanitha Thapanand, Jacques Moreau, Tuantong Jutagate, et al. Toward possible fishery management strategies in a newly impounded man-made lake in Thailand[J]. Ecological Modelling, 2007, 204(1-2): 143-155.
    [79] Maria Concepcion S. Villanueva, Mwapu Isumbisho, Boniface Kaningini, et al. Modelling trophic interactions in Lake Kivn: What roles do exotics play? [J] Ecological Modelling, 2008, 212(3-4): 422-438.
    [80] Tadesse Fetahi, Seyoum Mengistou. Trophic analysis of Lake Awassa (Ethiopia) using massbalance Ecopath mode[J]. Ecological Modelling, 2007, 201(3-4): 398-408.
    [81]彭森,谭春晓,刘星.景观水体的循环模式研究与流场分析[J].中国给水排水, 2009, 25(11): 95-97.
    [82]卢峰.封闭景观水体水动力研究[J].给水排水, 2010, 36(增刊): 445-447.
    [83] K Nakamura, Y Shimatani. Water purification and environmental enhancement by the floating wetland[C]. Proc. Of 6th IAWQ Asia-Pacific Regicnal Conference in Korea, 1997.
    [84] Reeta D, Sooknah A, Wilkie C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater[J]. Ecological Engineering.2004, 22:27-42.
    [85]马立珊,骆永明,吴龙华等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000, 2: 99-101.
    [86]刘士哲,林东教,唐淑军等.利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J].应用生态学报,2004,15 (7):1261-1265.
    [87] Y lnamori, M Mizuochi, K Xu. Countermeasures for lake Eutrophication in Japan-Manual of lake Eutrophication Control [J]. National Institute for Environmental Studies, Japan, 2002: 374-376.
    [88]屠清瑛,章永泰.北京什刹海生态修复试验工程[J].湖泊科学, 2004, 16(1):61-67.
    [89]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社, 2000,178-192.
    [90] Kevin D. Nielsen. Spillway plunging jets and aeration: state-of-the-art assessment [D]. Ann Arbor, MI, Bell & Howell Information and Learning Company, 2001.
    [91]李发站,蒋蒙宾,吕平光.跌水曝气充氧效果模型及结果分析[J].水处理技术, 2010, 39(9): 43-44.
    [92]李杰,钟成华,邓春光.跌水曝气高度、流量与复氧量关系研究[J].环境保护科学, 2008, 34(5): 39-41.
    [93]薛罡,刘亚男,汪永辉.曝气充氧条件下受污染河道的水质模型建立及应用[J].环境科学, 2010, 31(3): 653-659.
    [94] Fu-Liu Xu, Shu Tao, R. W. Dawson, et al. A GIS-based method of lake eutrophication assessment [J]. Ecological Modelling, 2001, 144: 231-244.
    [95] I. K. Tsanis, S. Boyle. A 2D hydrodynamic / pollutant transport GIS model. Advancing in Engineering Software, 2001, 32: 353-361.
    [96] M. Hartnett, S. Nash. Modelling nutrient and chlorophyll a dynamics in an Irish brackish waterbody. Environmental Modelling & Software, 2004, 9: 47-56.
    [97] S. Naouma, I.K. Tsanisb, M. Fullarton. A GIS pre-processor for pollutant transport modeling [J]. Environmental Modelling & Software, 2005, 20: 55-68.
    [98]贾海峰,程声通,杜文涛. GIS与地表水水质模型WASP5的集成[J].清华大学学报, 2001, 41(8): 125-128.
    [99]姚焕玫.基于GIS技术的湖泊水质污染综合评价的研究[D].武汉:武汉大学, 2005.
    [100]国家水体污染控制与治理科技重大专项.“城市水污染控制与水环境综合整治技术体系研究与示范”主题阶段性成果汇编[Z]. 2010,11.
    [101]同济大学.水体污染控制与治理重大专项:巢湖流域治理项目项目展示[EB/OL]. http://www.chinacitywater.org/zhuanxiang/xmzhsh/sanxia/67436-7.shtml, 2008-12/2011-1.
    [102]魏波,汤军,胡正舟. 3S在数字地球时代的新发展[J].地理空间信息, 2007, 5(5): 80-82.
    [103]袁国斌,李三玉,张洁.时态GIS模型研究[J].计算机工程与科学, 2004, 26(12): 105-107.
    [104]王贺封.时空数据模型及TGIS研究[J].测绘与空间地理信息, 2006, 29(4): 11-13.
    [105]曹伟,花向红,许跃民.时态GIS及其应用[J].地理空间信息, 2005, 3(6): 31-32, 38.
    [106] Russ Rew, Ed Hartnett, John Caron. Netcdf-4: Software implementing an enhanced data model for the geosciences. Unidata Program Center, Boulder, Colorado [EB/OL]. http://www.unidata.ucar.edu/software/netcdf/papers/2006-ams.pdf. 2010-10/2011-01.
    [107] Edward Hartnett, R. K. Rew. Experience with an enhanced netcdf data model and interface for scientific data access. UCAR, Boulder, CO [EB/OL]. http://www.unidata.ucar.edu/ software/netcdf/papers/AMS_2008.pdf. 2007-08/2011-01.
    [108] Jφrgensen S.E., Bendoricchio G.著,何文珊,陆健健,张修峰译.生态模型基础(第三版) [M].北京,高等教育出版社, 2008, 1.
    [109] Tim A. Wool, Robert B. Ambrose, James L. Martin, et al. Water quality analysis simulation program (WASP) version 6.0 draft: User’s manual[Z]. Atlanta,GA: Tetra Tech, Inc.
    [110] Bosserman R. W.. Complexity measures for assessment of environmental impact in ecosystem networks[C]. Proc. Pittsbrtgh Conf. Modelling and Simulation. Pittsburgh, Pennsylvania, 1980, 4.
    [111] Halfon E.. Is there a best model structure?Ⅱ. Comparing the model structures of different fate models[J]. Ecological Modelling, 1983, 20:153-163.
    [112] Zhang J., Jφrgensen S.E., Mahler H.. Examination of structurally dynamic eutrophication model. Ecological Modelling, , 2004, 173: 313-333.
    [113]孙大明,田慧峰,张欢等.长江上游水温监测及水温和气温关系研究[J].建筑节能, 2010, 38(10): 74-77.
    [114]张朝能.水体中饱和溶解氧的求算方法探讨[J].环境科学研究, 1999, 12(2): 54-55.
    [115] Mulderij G., Mooij W.M., Van Donk E.. Allelopathic growth inhibition and colony formationof the green alga Scenedesmus obliquus by the aquatic macrophytes Stratiotes aloides. Quatic Ecology, 2005, 39: 11-21.
    [116] Tetra Tech, Inc. The environmental fluid dynamics code theory and computation[Z]. 10306 Eaton Place Suite 340 Fairfax, VA 22030, 2007, 6.
    [117]王翠,孙英兰,张学庆.基于EFDC模型的胶州湾三维潮流数值模拟[J].中国海洋大学学报, 2008, 38(5): 833-840.
    [118]王建平.复杂环境模型参数识别的软计算技术及其应用研究[D].北京:清华大学, 2005.
    [119]中华人民共和国建设部. GB 50014-2006.室外排水设计规范[S].北京,中国计划出版社, 2006,1.
    [120]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测, 2002, 18(5): 47-49.
    [121]汪万芬,武艳,刘昌利等.安徽万佛湖富营养化评价与营养盐变化趋势预测[J].水土保持研究, 2009, 16(3): 79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700