用户名: 密码: 验证码:
基于有序Au纳米线阵列的葡萄糖电化学生物传感器的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以高度有序Au纳米线阵列为平台,采用不同的制备技术将葡萄糖氧化酶负载于Au纳米线阵列表面构筑高灵敏度的葡萄糖电化学生物传感器。一方面,选取合适的AAO模板和电解液,以AAO模板结合电沉积技术制备高度有序Au纳米线阵列;结果表明,相对于由H3B03和HAuCl4组成酸液电解液而言,以EDTA,Na2SO3,K2HPO4和]HAuCl4所组成的碱性电解液所制备的Au纳米线具有规则的形貌和粗糙的表面,更加有利于葡萄糖氧化酶的负载和所制备的葡萄糖电化学生物传感器的稳定性。另一方面,研究了不同制备技术对所制备的葡萄糖电化学生物传感器性能的影响,对不同制备技术条件下影响生物传感器性能的参数进行优化与分析,从而提高生物传感器对葡萄糖检测的性能,并结合FIA技术进一步提高传感器的检测效率,其具体研究内容如下:
     首先,利用Au纳米线阵列大比表面积的特性,采用物理吸附法将葡萄糖氧化酶(GOx)吸附于Au纳米线阵列表面,并以全氟磺酸树脂(Nafion)覆盖于GOx修饰后的Au纳米线阵列表面以提高葡萄糖电化学生物传感器的稳定性。分别通过SEM、TEM、XRD以及CV对Au纳米线阵列的形貌、微观结构和电活性表面积进行表征,利用FITR对以Nafion包覆的GOx进行表征。对浸渍时间、GOx浓度、Nafion浓度以及电沉积时间等制备参数以及其测试参数进行优化,改善所制备的生物传感器对葡萄糖的电流响应。实验结果表明,高度有序Au纳米线阵列具有很高的电活性表面积,能够有效地加速反应过程中的电子传递。基于Nafion-GOx-AuNWAs的葡萄糖生物传感器对葡萄糖的检测具有高灵敏度(258.8μA·cm-2·mM-1),线性范围宽(10-3270μmol/L),低检测极限(0.2μmol/L),高的稳定性及抗干扰能力好等性能;同时采用物理吸附法制备的葡萄糖生物传感器具有较好的酶动力学响应,其Michaelis-Menten常数Kmapp为5.8mM。
     其次,以电聚合吡咯的方式将GOx包埋于Au纳米线阵列表面的聚吡咯膜中制备葡萄糖电化学生物传感器。采用SEM以及TEM对Au纳米线的形貌进行观察,通过电聚合吡咯过程中的电势-时间曲线以及电化学交流阻抗谱(EIS)对GOx在聚吡咯膜中的负载情况进行分析,以吡咯单体为电解液和吡咯单体/GOx混合液为电解液进行电聚合生长曲线可以判断GOx被成功包埋于聚吡咯膜中,同时,不同电极的电化学交流阻抗谱对此进一步确认了GOx可以通过电聚合的方式而被负载于Au纳米线阵列表面。在对其制备参数优化的基础之上,在一定程度改善了生物传感器的性能,基于电聚合法制备的葡萄电化学生物传感器的灵敏度可达183.3pA·cm-2·mM-1,线性范围较宽为10-6140μmol/L,检测极限为0.5μmol/L.
     再者,利用GLA和BSA共交联法将GOx固定于Au纳米线阵列表面构筑葡萄糖电化学生物传感器。分别利用SEM和TEM对Au纳米线阵列进行表征,并通过CV和EIS对基于交联法制备的葡萄糖电化学生物传感器的传质特性和界面结构进行研究。以计时电流法对不同的GLA浓度、BSA浓度、GOx浓度等参数条件下制备的葡萄糖电化学生物传感器的性能进行优化,电流响应结果显示,GLA-BSA-GOx-AuNWAs葡萄糖生物传感器对葡萄糖检测显示了较高的检测性能,其灵敏度高达379.0μA·cm-2·mM-1,线性范围为5-5000μmol/L,检测极限达0.05μmol/L。传感器稳定性研究结果显示,经过一个月的保存之后,该葡萄糖生物传感器仍保留90%的原始电流响应,显示传感器具有较好的稳定性。为了克服葡萄糖电化学生物传感器对测试溶液中溶氧的依赖,改善葡萄糖电化学生物传感器的电流响应以及稳定性,以交联法制备葡萄糖生物传感器过程中引入电子介体,将GOx与K3Fe(CN)6共同固定子Au纳米线阵列表面与纳米线之间。通过在常规测试环境和无氧测试环境中对不同条件下制备的葡萄糖电化学生物传感器的电流响应对K3Fe(CN)6的引入对生物传感器性能的作用进行分析,葡萄糖电化学生物传感器的构筑过程中引入铁氰化钾。一方面K3Fe(CN)6与O2共同作为葡萄糖催化反应过程中的电子受体,提高生物传感器的电流响应,另一方面,当测试溶液中的溶氧浓度不足或受到外界干扰时,K3Fe(CN)6将代替溶氧作为葡萄糖氧化酶催化葡萄糖反应过程中的电子受体,保证对葡萄糖检测的稳定性。由于K3Fe(CN)6的引入改变了GOx在Au纳米线阵列中存在的微环境,从而使制备参数对传感器性能的影响发生了较大的改变,在参数重新优化的基础之上,相对于无电子介体的葡萄糖生物传感器而言,基于电子介体的葡萄糖电化学生物传感的性能获得极大改善,所制备传感器的灵敏度高达548.1μA·cm-2·mM-1,线性范围为2.5-5400μmol/L,其理论检测极限为0.04umol/L。与此同时,传感器具有良好的酶动力学响应,其Michaelis-Menten常数Kmapp为5.6mM。
     最后将基于Au纳米线阵列的葡萄糖生物传感器与流动注射分析(FIA)技术相结合,一方面基于Au纳米线阵列的葡萄糖生物传感器自身具有良好的综合性能,另一方面,FIA技术是一种非平衡态、快速测量的技术;将二者的优势结合之后,实现了对不同浓度葡萄糖的批量测试,大大提高了对葡萄糖浓度检测的效率。基于Au纳米线阵列的生物传感器对葡萄糖实际样品分析具有较高的回收率和较低的相对标准偏差,说明所制备的葡萄糖电化学生物传感器对葡萄糖的检测具有较高的可靠性。
In this dissertation, glucose oxidase is immobilized onto the surface of gold nanowire arrays by different methods to construct highly sensitive electrochemical biosensors for glucose detection. On the one hand, well aligned gold nanowire arrays have been synthesized by direct electrodeposition in conjunction with AAO template based on appropriate AAO templates and electrolytes. The results indicate that the gold nanowire arrays fabricated in alkaline solution containing EDTA, Na2SO3, K2HPO4and HAuCl4are prone to obtain uniform morphology and rough surface compared with acidic solution composing of H3BO3and HAuCl4, which is in favour of immobilization of glucose oxidase and the stability of glucose electrochemical biosensors. On the other hand, the influences of different techniques for immobilization of glucose oxidase on the performance of glucose electrochemical biosensors are also investigated and the parameters for constructing glucose electrochemical biosensors with different techniques are optimized to improve the performance of as-prepared biosensors. In addition, FIA is employed to determine glucose concentration in combination with the as-prepared glucose nanobiosensors to improve the efficiency for glucose detection. Glucose bisensors based on different techniques are elucidated in detail as follows.
     Firstly, a great amount of glucose oxidase is adsorbed onto the surface of gold nanowire arrays due to their large specific surface area, a thin Nafion film is then cast onto the surface of GOx-modified gold nanowire arrays to improve the stability of as-prepard glucose biosensors in case of glucose oxidase loss during storage and measurements. SEM, TEM, XRD and CV are employed to characterize the morphology, microstructure and electroactive surface area of gold nanowire arrays, respectively. Furthermore, FTIR is also used to confirm whether GOx can be effectively immobilized or not by physical adsorption. Based on the optimum parameters such as immersing time, GOx solution concentration, Nafion solution concentration and electrodeposition time, as-prepared glucose biosensors achieve good performance with a high sensitivity of258.8μA·cm-2·mM-1for amperometric detection of glucose, while also achieving a low detection limit of0.2μM, and a wide linear range of10-3270μM, resulting from the accelaration of electron relay between active sites of GOx and gold nanowire arrays. Meanwhile, the presence of the two common interferants, uric acid (UA) and ascorbic acid (AA), has no effect on the performance of the glucose biosensor owing to selectivity of Nafion film. The apparent Michaelis-Menten constant Kmapp is calculated to be5.8mM, indicating an excellent affinity between immobilized GOx in the Nafion-GOx-AuNWA biosensor and the glucose in solution.
     Secondly, glucose oxidase is entrapped into polypyrrole (PPy) film formed on the surface of gold nanowire arrays in the process of electropolymerization to fabricate glucose electrochemical biosensors. SEM and TEM are employed to observe the morphology of gold nanowire arrays, potential-time curves of polymerization and EIS are utilized to analyze glucose oxidase loading in the polypyrrole film. It is apparent that the potential-time curves for pyrrole only and pyrrole/GOx mixture solution are completely different, implying that GOx is successfully entrapped into polypyrrole film in the process of electropolymerization, and this is further confirmed by EIS for different electrodes. PPy-GOx-AuNWA-based glucose biosensors also obtain good performance towards glucose detection with optimized parameters. The sensitivity of as-prepared glucose biosensor is183.3μA·cm-2·mM-1, linear range and detection limit achieve10-6140μM and0.5μM, respectively.
     Thirdly, cross-linking method is one of the most popular techniques to construct biosensors. In this thesis, two different kinds of glucose biosensors, the GLA-BSA-GOx-AuNWAs glucose biosensor and GLA-BSA-GOx-Med-AuNWAs glucose biosensor based on cross-linking method are introduced. As for GLA-BSA-GOx-AuNWAs glucose biosensor, the morphology of gold nanowire arrays is characterized by SEM and TEM, respectively. The mass transport through the biofilm made of GLA and BSA and interface features of GLA-BSA-GOx-AuNWAs glucose biosensor are also investigated by CV and EIS, respectively. Effect of parameters, such as GLA concentration, BSA concentration, GOx concentration etc. on the performance of GLA-BSA-GOx-AuNWAs glucose biosensors are studied and these parameters are optimized. GLA-BSA-GOx-AuNWAs glucose biosensors are sensitive to glucose, the sensitivity is as high as379.0μA·cm-2·mM-1. Linear range and limit of detection of GLA-BSA-GOx-AuNWAs glucose biosensors are5-5000μM and0.05μM, respectively. Furthermore,90%of the original amperometric response of the GLA-BSA-GOx-AuNWAs glucose biosensors can be maintained for over1month, indicating an excellent stability, due mainly to the3D nanostructure and the rough surface of the AuNWs.
     In order to overcome the disadvantage of O2-dependence for aforementioned glucose biosensors, and to improve the amperometric responses and enhance stability of glucose biosensors, mediator K3Fe(CN)6is incorporated into GLA-BSA-GOx-AuNWAs glucose biosensors. Functions of K3Fe(CN)6are investigated by amperometric measurement under O2and N2atomsphere. The results indicate that both K3Fe(CN)6and O2accept electrons from FADH2due to the synergisitic effect so that amperometric responses of GLA-BSA-GOx-Med-AuNWAs glucose biosensors increase drastically. In addition, K3Fe(CN)6also accepts electrons from FADH2instead of O2once the dissolved O2is insufficient. Parameters for constructing GLA-BSA-GOx-Med-AuNWAs glucose biosensors change greatly due to the change of microenvironment for GOx on the surface of AuNWAs after incorporation of K3Fe(CN)6. Compared with GLA-BSA-GOx-AuNWAs glucose biosensors, the performance of the GLA-BSA-GOx-Med-AuNWAs glucose biosensors is much improved because of the incorporation of K3Fe(CN)6after parameter re-optimization. GLA-BSA-GOx-Med-AuNWAs glucose biosensors achieve a high sensitivity as much as548.1"1, a wider linear range between2.5and5400μM and a lower detection limit of0.04 μM. The apparent Michaelis-Menten constant Kmapp is calculated to be5.6mM, indicating an excellent affinity between immobilized GOx in the GLA-BSA-GOx-Med-AuNWAs biosensors and the glucose in solution and good enzymatic dynamic response.
     Finally, glucose nanobiosensors in combination with FIA technique are employed to determine glucose concentration. On the one hand, glucose nanobiosensors have excellent performance with high sensitivity, wide linear range and low detection limit. On the other hand, FIA technique can analyze the concentration of analyte quickly and continuously. By combining the advantages of glucose nanobiosensors and FIA technique, efficiency for glucose detection is improved significantly. Experimental results indicate that Au-based glucose biosensors show high recovery rate and low relative stardard deviation (RSD), suggesting good reliability of as-prepard glucose biosensors towards glucose detection.
引文
[1]Ralph A. Defomzo, Nir Barzilai and Donald C. Simonson. Mechanism of Metformin Action in Obese and Lean Noninsulin-Dependent Diabetic Subjects [J]. J. Clin. Endocrinol. Metab.73 (1991) 1294-1301.
    [2]Ram Weiss, Sylvie Dufour, Sara E Taksali, William V Tambortlane, Kitt F Petersen, Riccardo C Bonadonna, Linda Boselli, Gina Barbetta, Karin Alle, Francis Rife, Mary Savoye, James Dziura, Robert Sherwin, Gerald I Shulman and Sonia Caprio. Prediabetes in Obese Youth:A Syndrome of Impaired Glucose Tolerance, Severe Insulin Resistance, and Altered Myocellular and Abdominal Fat Partitioning [J]. Lancet 362 (2003) 951-957.
    [3]Muhammad A. Abdul-Ghani and Ralph A. DeFronzo. Plasma Glucose Concentration and Prediction of Future Risk of Type 2 Diabetes [J]. Diabetes Care 32 (2009) 5194-5198.
    [4]Moritoki Egi, Rinaldo Bellomo, Edward Stachowski, Craig J. French, Graeme K. Hart, Colin Hegarty and Michael Bailey. Blood Glucose Concentration and Outcome of Critical Illness:The Impact of Diabetes [J]. Crit. Care Med.36 (2008) 2249-2255.
    [5]Rury R. Holman, Sanjoy K. Paul, M. Angelyn Bethel, David R. Matthews and H. Andrew W. Neil.10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes [J]. N. Engl. J. Med.359 (2008)1577-1589.
    [6]Shlomo Melmed, Kenneth S. Polonsky, P. Reed Larsen and Henry M. Kronenberg. Williams Textbook of Endocrinology 12th Edition [M]. Elsevier 2011.
    [7]Wild S, Roglic G, Green A, Sicree R and King H. Global Prevalence of Diabetes: Estimates for the Year 2000 and Projections for 2030 [J]. Diabetes Care 27 (2004) 1047-1053.
    [8]Dieren Susan van, Joline W. J. Beulens, Schouw Yvonne T. van der, Diederick E. Grobbee and Bruce Neal. The Global Burden of Diabetes and Its Complications:an Emerging Pandemic [J]. Eur. J. Prev. Cardiol.17 (2010) s3-s8.
    [9]Rui Li, Wei Lu, Qingwu Jiang, Yan yun Li, Genming Zhao, Liang Shi, Qundi Yang, Yeruan, Junyi Jiang, Shengnian Zhang, Wanghong Xu and Weijian Zhong. Increasing Prevalence of Type 2 Diabetes in Chinese Adults in Shanghai [J]. Diabetes Care 35 (2012) 1028-1030.
    [10]Wenying Yang, Juming Lu, Jianping Weng, Weiping Jia, Linong Ji, Jianzhong Xiao, Zhongyan Shan, Jie Liu, Haoming Tian, Qiuhe Ji, Dalong Zhu, Jiapu Ge, Lixiang Lin, Li Chen, Xiaohui Guo, Zhigang Zhao, Qiang Li, Zhiguang Zhou, Guangliang Shan and Jiang He. Prevalence of Diabetes among Men and Women in China [J].N. Engl. J. Med. 362(2010)1090-1101.
    [11]Michael. P. Stern and Steven M. Haffiner. Type 2 Diabetes and Its Complications in Mexican Americans [J]. Diabetes/Metab. Rev.6 (1990) 29-45.
    [12]William Duckworth, Carlos Abraira, Thomas Moritz, Domenic Reda, Nicholas Emanuele, Peter D. Reaven, Franklin J. Zieve, Jennifer Marks, Stephen N. Davis, Rodney Hayward, Stuart R. Warren, Pharm.D., Steven Goldman, Madeline McCarren, Mary Ellen Vitek, William G. Henderson and Grant D. Huang. Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes [J]. N. Engl. J. Med.360 (2009) 129-139.
    [13]Anjali D Deshpande, Marcie Harris-Hayes and Mario Schootman. Epidemiology of Diabetes and Diabetes-Related Complications [J]. Phys. Ther.88 (2008) 1254-1264.
    [14]Lois A. Marquardt and Mark A. Arnold. Near-Infrared Spectroscopic Measurement of Glucose in a Protein Matrix [J]. Anal. Chem.65 (1993) 3271-3278.
    [15]Gerald L. Cote, Martin D. Fox and Robert B. Northrop. Noninvasive Optical Polarimetric Glucose Sensing Using a True Phase Measurement Technique [J]. IEEE Transactions on Biomed. Eng.39 (1992) 752-756.
    [16]Qiujie Wan, Gerard L. Cote and J. Brandon Dixon. Dual-wavelength Polarimetry for Monitoring Glucose in the Presence of Varying Birefringence [J]. J. Biomed. Opt.10 (2005)024029-1-8.
    [17]W. W. Wells, T. Chin and B. Weber. Quantitative Analysis of Serum and Urine Sugars by Gas Chromatography [J]. Clin. Chim. Acta.10 (1964) 352-359.
    [18]J. H. Knox, J. N. Done, A. F. Fell, M. T. Gilbert, A. Pryde and R. A. Wall. High-performance liquid chromatography [M]. Edinburgh University Press 1978.
    [19]A. M. Willson, T. M. Work, A. A. Bushway and R. J. Bushway. HPLC Determination of Fructose, Glucose, and Sucrose in Potatoes [J]. J. Food Sci.46 (1981) 300-301.
    [20]E. Schleicher and O. H. Wieland. Specific Quantitation by HPLC of Protein (Lysine) Bound Glucose in Human Serum Albumin and Other Glycosylated Proteins [J]. Clin. Chem. Lab. Med.19 (2009) 81-88.
    [21]Jane A. Ferguson, T. Christian Boles, Christopher P. Adams and David R. Walt. A fiber-optic DNA Biosensor Microarray for the Analysis of Gene Expression [J]. Nature Biotechnol.14(1996) 1681-1684.
    [22]Myoyong Lee and David R. Walt. A Fiber-Optic Microarray Biosensor Using Aptamers as Receptors [J]. Anal. Biochem.282 (2000) 142-146.
    [23]Xudong Wang, Tingyao Zhou, Xi Chen, Kwokyin Wong and Xiaoru Wang. An Optical Biosensor for the Rapid Determination of Glucose in Human Serum [J]. Sens. Actuat. B 129 (2008) 866-873.
    [24]Gang Chang, Yoshiro Tatsu, Tatsushi Goto, Hiromasa Imaishi and Kenichi Morigaki. Glucose Concentration Determination Based on Silica Sol-gel Encapsulated Glucose Oxidase Optical Biosensor Arrays [J]. Talanta 83 (2010) 61-65.
    [25]Brian A. Gregg and Adam Heller. Cross-linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications [J]. Anal. Chem.62 (1990) 258-263.
    [26]Juan Li, Swee Ngin Tan and Hailin Ge. Silica Sol-gel Immobilized Amperometric Biosensor for Hydrogen Peroxide [J]. Anal. Chim. Acta.335 (1996) 137-145.
    [27]Julia M.C.S Magalhaes and Adelio A.S.C Machado. Urea Potentiometric Biosensor Based on Urease Immobilized on Chitosan Membranes [J]. Talanta 47 (1998) 183-191.
    [28]M.J. Schoning, R. Krause, K. Block, M. Musahmeh, A. Mulchandani and J. Wang. A Dual Amperometric/potentiometric FIA-based Biosensor for the Distinctive Detection of Organophosphorus Pesticides [J]. Sens. Actuat. B 95 (2003) 291-296.
    [29]Zarini Muhammad-Tahir and Evangelyn C. Alocilja. A conductometric biosensor for biosecurity [J]. Biosens. Bioelectron.18 (2003) 813-819.
    [30]Celine Chouteau, Sergei Dzyadevych, Jean-Marc Chovelon and Claude Durrieu. Development of Novel Conductometric Biosensors Based on Immobilised Whole Cell Chlorella Vulgaris Microalgae [J]. Biosens. Bioelectron.19 (2004) 1089-1096.
    [31]Kumaran Ramanathan and Bengt Danielsson. Principles and Applications of Thermal Biosensors [J]. Biosens. Bioelectron.16 (2001) 417-423.
    [32]Kumaran Ramanathan, Birgitta Rees Jonsson and Bengt Danielsson. Sol-gel Based Thermal Biosensor for Glucose [J]. Anal. Chim. Acta 427 (2001) 1-10.
    [33]Yiachung Chang, Chihming Wang, Mohammed N. Abbas, Minghsiung Shih and Dinping Tsai. T-shaped plasmonic array as a narrow-band thermal emitter or biosensor [J]. Opt. Express 17(2009) 13526-13531.
    [34]Daniel R. Thevenota, Klara Tothb, Richard A. Durstc and George S. Wilson. Electrochemical Biosensors:Recommended Definitions and Classification [J]. Biosens. Bioelectron.16 (2001) 121-131.
    [35]Serge Cosnier, Christophe Innocent and Yves Jouanneau. Amperometric Detection of Nitrate via a Nitrate Reductase Immobilized and Electrically Wired at the Electrode Surface [J]. Anal. Chem.66 (1994) 3198-3201.
    [36]Samuel B. Adeloju and Manzar Sohail. Polypyrrole-based Bilayer Nitrate Amperometric Biosensor with an Integrated Permselective Poly-ortho-phenylenediamine Layer for Exclusion of Inorganic Interferences [J]. Biosens. Bioelectron.26 (2011) 4270-4275.
    [37]Abdulazeez T. Lawal and Samuel B. Adeloju. Comparison of Enzyme Immobilisation Methods for Potentiometric Phosphate Biosensors [J]. Biosens. Bioelectron.25 (2009) 406-410.
    [38]Samuel B. Adeloju and Abdulazeez T. Lawal. Fabrication of a Bilayer Potentiometric Phosphate Biosensor by Cross-link Immobilization with Bovine Serum Albumin and Glutaraldehyde [J]. Anal. Chim. Acta 691 (2011) 89-94.
    [39]Palraj Kalimuthu, Jan Tkac, Ulrike Kappler, Jason J. Davis and Paul V. Bernhardt. Highly Sensitive and Stable Electrochemical Sulfite Biosensor Incorporating a Bacterial Sulfite Dehydrogenase [J]. Anal. Chem.82(2010) 7374-7379.
    [40]Poyen Chen, R. Vittal, Pochin Nien, Gueysheng Liou and Kuochuan Ho. A Novel Molecularly Imprinted Polymer Thin Film as Biosensor for Uric Acid [J]. Talanta 80 (2010)1145-1151.
    [41]Kajal Jindal, Monika Tomar and Vinay Gupta. CuO Thin Film Based Uric Acid Biosensor with Enhanced Response Characteristics [J]. Biosens. Bioelectron.38 (2012) 11-18.
    [42]Anees A. Ansari, A. Kaushik, P.R. Solanki and B.D. Malhotra. Sol-gel Derived Nanoporous Cerium Oxide Film for Application to Cholesterol Biosensor [J]. Electrochem. Commun.10 (2008) 1246-1249.
    [43]Adel A. Abdelwahab, Mi-Sook Won and Yoon-Bo Shim. Direct Electrochemistry of Cholesterol Oxidase Immobilized on a Conducting Polymer:Application for a Cholesterol Biosensor [J]. Electroanalysis 22 (2010) 21-25.
    [44]Ozlem Turkarslan, Senem Kiralp Kayahan and Levent Toppare. A New Amperometric Cholesterol Biosensor Based on Poly (3,4-ethylenedioxypyrrole) [J]. Sens. Actuat B 136 (2009) 484-488.
    [45]J. Justin Gooding. Electrochemical DNA Hybridization Biosensors [J]. Electroanalysis 14 (2002)1149-1156.
    [46]F.R.R. Teles and L.P. Fonseca.Trends in DNA Biosensors [J]. Talanta,77 (2008) 606-623.
    [47]Samuel B. Adeloju and Alexander N. Moline. Fabrication of Ultra-thin Polypyrrole-glucose Oxidase Film from Supporting Electrolyte-free Monomer Solution for Potentiometric Biosensing of Glucose [J]. Biosens. Bioelectron.16 (2001) 133-139.
    [48]K. Khun, Z.H. Ibupoto, J. Lu, M.S. AlSalhi, M. Atif, Anees A. Ansari and M. Willander. Potentiometric Glucose Sensor Based on the Glucose Oxidase Immobilized Iron Ferrite Magnetic Particle/chitosan Composite Modified Gold Coated Glass Electrode [J]. Sens. Actuat. B 173 (2012) 698-703.
    [49]R Garjonyte and A Malinauskas. Amperometric Glucose Biosensors Based on Prussian Blue-and polyaniline-glucose Oxidase Modified Electrodes [J]. Biosens. Bioelectron.15 (2000)445-451.
    [50]Alexander Kros, Stephan W. F. M. van Hovell, Nico A. J. M. Sommerdijk and Roeland J. M. Nolte. Poly (3,4-ethylenedioxythiophene)-Based Glucose Biosensors [J]. Adv. Mater. 13 (2001) 1555-1557.
    [51]Leland C. Clark and Champ Lyons. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery [J]. Ann. NY Acad. Sci.102 (1962) 29-45.
    [52]Joseph Wang. Electrochemical Glucose Biosensors [J]. Chem. Rev.108 (2008) 814-825.
    [53]Christopher M. Horvat and Richard V. Wolfenden. A Persistent Pesticide Residue and the Unusual Catalytic Proficiency of a Dehalogenating Enzyme [J]. PNAS 102 (2005) 16199-16202.
    [54]Richard Wolfenden. Degrees of Difficulty of Water-Consuming Reactions in the Absence of Enzymes [J]. Chem. Rev.106 (2006) 3379-3396.
    [55]Farhana S. Saleh, Lanqun Mao and Takeo Ohsak. A Promising Dehydrogenase-based Bioanode for a Glucose Biosensor and Glucose/O2 Biofuel Cell [J]. Analyst 137 (2012) 2233-2238.
    [56]Tatsuya Hoshino, Shin-ichiro Sekiguchi and Hitoshi Muguruma. Amperometric Biosensor Based on Multilayer Containing Carbon Nanotube, Plasma-polymerized Film, Electron Transfer Mediator Phenothiazine, and Glucose Dehydrogenase [J]. Bioelectrochem.84 (2012) 1-5.
    [57]Jiuhong Yu, Songqin Liu and Huangxian Ju. Glucose Sensor for Flow Injection Analysis of Serum Glucose Based on Immobilization of Glucose Oxidase in Titania Sol-gel Membrane [J]. Biosens. Bioelectron.19 (2003) 401-409.
    [58]Joseph Wang. In vivo Glucose Monitoring:Towards'Sense and Act' Feedback-loop Individualized Medical Systems [J]. Talanta 75 (2008) 636-641.
    [59]Briza P6rez-Lopez and Arben Merkoci. Nanomaterials Based Biosensors for Food Analysis Applications [J]. Trends Food Sci. Technol.22 (2011) 625-639.
    [60]Mayra Granda Valdes, Aristides Camilo Valdes Gonzalez, Josefa Angela Garcia Calzon and Marta Elena Diaz-Garcia. Analytical Nanotechnology for Food Analysis [J]. Microchim. Acta 166 (2009) 1-19.
    [61]Tatiana B. Goriushkina, Alexey P. Soldatkin and Sergei V. Dzyadevych. Application of Amperometric Biosensors for Analysis of Ethanol, Glucose, and Lactate in Wine [J]. J. Agric. Food Chem.57 (2009) 6528-6535.
    [62]N. H. Alvi, P. E. D. Soto Rodriguez, V. J. Gomez, Praveen Kumar, G. Amin, O. Nur, M. Willander and R. Notzel. Highly Efficient Potentiometric Glucose Biosensor Based on Functionalized InN Quantum Dots [J]. Appl. Phys. Lett.101 (2012) 153110-1-4.
    [63]Chengwei Liao, Jungchuan Chou, Taiping Sun, Shenkan Hsiung and Juihsiang Hsieh. Preliminary Investigations on a Glucose Biosensor Based on the Potentiometric Principle [J]. Sens. Actuat. B 123 (2007) 720-726.
    [64]Guangqing Xu, Samuel B. Adeloju, Yucheng Wu and Xinyi Zhang. Modification of Polypyrrole Nanowires Array with Platinum Nanoparticles and Glucose Oxidase for Fabrication of a Novel Glucose Biosensor [J]. Anal. Chim. Acta 755 (2012) 100-107.
    [65]S.K. Shukla, Swapneel R. Deshpande, Sudheesh K. Shukla and Ashutosh Tiwari. Fabrication of a Tunable Glucose Biosensor Based on Zinc Oxide/chitosan-graft-poly (vinyl alcohol) Core-shell Nanocomposite [J]. Talanta 99 (2012) 283-287.
    [66]Suresha K. Mahadeva and Jaehwan Kim. Conductometric Glucose Biosensor Made With Cellulose and Tin Oxide Hybrid Nanocomposite [J]. Sens. Actuat. B 157 (2011) 177-182.
    [67]张立德,牟季美.纳米材料与纳米结构[M].科学出版社,2001.
    [68]R. A. Andrievski and A. M. Glezer. Size Effect in Properties of Nanomaterials [J]. Scripta Mater.44 (2001) 1621-1624.
    [69]Xavier Batlle and Amilcar Labarta. Finite-size Effects in Fine Particles:Magnetic and Transport Properties [J]. J. Phys. D:Appl. Phys.35 (2002) R15-R42.
    [70]Emil Roduner. Size matters:Why Nanomaterials Are Different [J]. Chem. Soc. Rev.35 (2006) 583-592.
    [71]Norifusa Satoh, Toshio Nakashima, Kenta Kamikura and Kimihisa Yamamoto. Quantum Size Effect in TiO2 Nanoparticles Prepared by Finely Controlled Metal Assembly on Dendrimer Templates [J]. Nature Nanotechnol.3 (2008) 106-111.
    [72]S.K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.D. Song, H.G. Park and C.M. Lieber. Tuning Light Absorption in Core/shell Silicon Nanowire Photovoltaic Devices through Morphological Design [J]. Nano Lett.12 (2012) 4971-4976.
    [73]T.J. Kempa, J.F. Cahoon, S.K. Kim, R.W. Day, D.C. Bell, H.G. Park and C.M. Lieber. Coaxial Multishell Nanowires with High-quality Electronic Interfaces and Tunable Optical Cavities for Ultrathin Photovoltaics [J]. PNAS 109 (2012) 1409-1412.
    [74]Zhonglin Wang and Jinhui Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J]. Science,312 (2006) 242-246.
    [75]Yan Zhang, Ying Liu and Zhonglin Wang. Fundamental Theory of Piezotronics [J]. Adv. Mater.23 (2011) 3004-3013.
    [76]Na Tian, Zhiyou Zhou, Shigang Sun, Yong Ding and Zhonglin Wang. Synthesis of Tetrahexahedral Platinum Nanocrystal with High-Index Facets and High Electro-Oxidation Activity [J]. Science 316 (2007) 732-735.
    [77]Xinyi Zhang, Wei Lu, Jiyan Da, Huangting Wang, Dongyuan Zhao and Pual A Webley. Porous Platinum Nanowire Arrays for Direct Ethanol Fuel Cell Applications [J]. Chem. Commun. (2009) 195-197.
    [78]Xingliang He, Yunyu Cai, Hemin Zhang, Changhao Liang. Photocatalytic Degradation of Organic Pollutants with Ag Decorated Free-standing TiO2 Nanotube Arrays and Interface Electrochemical Response [J]. J. Mater. Chem.21 (2011) 475-480.
    [79]Yang Hou, Xinyong Li, Qidong Zhao, Xie Quan and Guohua Chen. Electrochemically Assisted Photocatalytic Degradation of 4-Chlorophenol by ZnFe2O4-Modified TiO2 Nanotube Array Electrode under Visible Light Irradiation [J]. Environ. Sci. Technol.,44 (2010)5098-5103.
    [80]Zhulin Huang, Guowen Meng, Qing Huang, Yajun Yang, Chuhong Zhu and Chaolong Tang. Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering [J]. Adv. Mater.22 (2010) 4136-4139.
    [81]Chuhong Zhu, Guowen Meng, Qing Huang and Zhulin Huang. Vertically Aligned Ag Nanoplate-assembled Film as a Sensitive and Reproducible SERS Substrate for the Detection of PCB-77 [J]. J. Hazrd. Mater.211-212 (2012) 389-395.
    [82]Zhulin Huang, Guowen Meng, Qing Huang, Bin Chen, Chuhong Zhu and Zhuo Zhang. Large-Area Ag Nanorod Array Substrates for SERS:AAO Template-assisted Fabrication, Functionalization, and Application in Detection PCBs [J]. J. Raman Spectrosc.2012.
    [83]M. Chen, J. Q. Xu, S. N. Ding, D. Shan, H. G. Xue, S. Cosnier and M. Holzinger. Poly (brilliant cresyl blue) Electrogenerated on Single-walled Carbon Nanotubes Modified Electrode and Its Application in Mediated Biosensing System [J]. Sens. Actuat. B 152 (2011) 14-20.
    [84]S. N. Ding, B. H. Gao, D. Shan, Y. M. Sun, S. Cosnier. TiO2 Nanocrystals Electrochemiluminescence Quenching by Biological Enlarged Nanogold Particles and Its Application for Biosensing [J]. Biosens. Bioelectron.39 (2013) 342-345.
    [85]Yuezhong Xian, Yi Hu, Fang Liu, Yan Xian, Haiting Wang and Litong Jin. Glucose Biosensor Based on Au Nanoparticles-conductive Polyaniline Nanocomposite [J]. Biosens. Bioelectron.21 (2006) 1996-2000.
    [86]Natalija German, Arunas Ramanavicius, Jaroslav Voronovic and Almira Ramanaviciene. Glucose Biosensor Based on Glucose Oxidase and Gold Nanopaticles of Different Sizes Covered by Polypyrrole Layer [J]. Colloid. Surface. A 413 (2012) 224-230.
    [87]Sumio Iijima. Helical Microtubules of Graphitic Carbon [J]. Nature 354 (1991) 56-58.
    [88]Yuchen Tsai, Shihci Li and Shangwei Liao. Electrodeposition of Polypyrrole-multiwalled Carbon Nanotube-glucose Oxidase Nanobiocomposite Film for the Detection of Glucose [J]. Biosens. Bioelectron.22 (2006) 495-500.
    [89]Huaan Zhong, Ruo Yuan,Yaqin Chai, Wenjuan Li, Xia Zhong and Yu Zhang. In Situ Chemo-synthesized Multi-wall Carbon Nanotube-conductive Polyaniline Nanocomposites: Characterization and Application for a Glucose Amperometric Biosensor [J]. Talanta 85 (2011) 104-111.
    [90]Yashuang Lu, Minghui Yang, Fengli Qu, Guoli Shen and Ruqin Yu. Amperometric Biosensors Based on Platinum Nanowires [J]. Anal. Lett.40 (2007) 875-886.
    [91]Yashuang Lu, Minghui Yang, Fengli Qu, Guoli Shen and Ruqin Yu. Enzyme-functionalized Gold Nanowires for the Fabrication of Biosensors [J]. Bioelectrochem.71 (2007)211-216.
    [92]Sanhua Lim, Ji Wei, Jianyi Lin, Qiutian Li and JinkuaYou. A Glucose Biosensor Based on Electrodeposition of Palladium Nanoparticles and Glucose Oxidase onto Nafion-solubilized Carbon Nanotube Electrode [J]. Biosens. Bioelectron.20 (2005) 2341-2346.
    [93]Yinyin Wei, Ying Li, Xiaoqian Liu, Yuezhong Xian, Guoyue Shi and Litong Jin. ZnO Nanorods/Au Hybrid Nanocomposites for Glucose Biosensor [J]. Biosens. Bioelectron.26 (2010)275-278.
    [94]A. Wei, X. W. Sun, J. X. Wang, Y Lei, X. P. Cai, C. M. Li, Z. L. Dong and W. Huang. Enzymatic Glucose Biosensor Based on ZnO Nanorod Array Grown by Hydrothermal Decomposition [J]. Appl. Phys. Lett.89 (2006) 123902-1-3.
    [95]Xiaowang Liu, Qiyan Hu, QiongWu, Wei Zhang, Zhen Fang and Qiubo Xie. Aligned ZnO Nanorods:A Useful Film to Fabricate Amperometric Glucose Biosensor [J]. Colloid Surface B 74 (2009) 154-158.
    [96]Kun Yang, Guangwei She, Hui Wang, Xuemei Ou, Xiaohong Zhang, Chunsing Lee and Shuittong Lee. ZnO Nanotube Arrays as Biosensors for Glucose [J]. J. Phys. Chem. C 113 (2009)20169-20172.
    [97]Tao Kong, Yang Chen, Yiping Ye, Kun Zhang, Zhenxing Wang and Xiaoping Wang. An Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the ZnO Nanotubes [J]. Sens. Actuat. B 138 (2009) 344-350.
    [98]Paul Benvenuto, A.K.M. Kafi and Aicheng Chen. High Performance Glucose Biosensor Based on the Immobilization of Glucose Oxidase onto Modified Titania Nanotube Arrays [J]. J. Electroanal. Chem.627 (2009) 76-81.
    [99]Zhijuan Zhang, Yibing Xie, Zao Liu, Fei Rong, Yong Wang and Degang Fu. Covalently Immobilized Biosensor Based on Gold Nanoparticles Modified TiO2 Nanotube Arrays [J]. J. Electroanal. Chem.650 (2011) 241-247.
    [100]Minghui Yang, Fengli Qu, Yashuang Lu, Yan He, Guoli Shen and Ruqin Yu. Platinum Nanowire Nanoelectrode Array for the Fabrication of Biosensors [J]. Biomater.27 (2006) 5944-5950.
    [101]Yanyan Liu, Yingchun Zhu, Yi Zeng and Fangfang Xu. An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays [J]. Nanoscale Res. Lett.4(2009) 210-215.
    [102]Yunli Wang, Y ingchun Zhu, Jingjing Chen and Yi Zeng. Amperometric Biosensor Based on 3D Ordered Freestanding Porous Pt Nanowire Array Electrode [J]. Nanoscale DOI: 10.1039/c2nr31256e.
    [103]Xinyi Zhang, Huanting Wang, Laure Bourgeois, Renji Pan, Dongyuan Zhao and Paul A. Webley. Direct Electrodeposition of Gold Nanotube Arrays for Sensing Applications [J]. J. Mater. Chem.18 (2008) 463-467.
    [104]Xinyi Zhang, Dan Li, Laure Bourgeois, Huanting Wang and Paul A. Webley. Direct Electrodeposition of Porous Gold Nanowire Arrays for Biosensing Applications [J]. ChemPhysChem 10(2009)436-441.
    [105]X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao and Y. Q. Mao. Fabrication and Characterization of Highly Ordered Au Nanowire Arrays [J]. J. Mater. Chem.11 (2001) 1732-1734.
    [106]X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng and L. X. Zhao. Electrochemical Fabrication of Highly Ordered Semiconductor and Metallic Nanowire Arrays [J]. Chem. Mater.13 (2001) 2511-2515.
    [107]Xinyi Zhang, Wei Lu, Jiyan Da, Huanting Wang, Dongyuan Zhao and Paul A Webley. Porous Platinum Nanowire Arrays for Direct Ethanol Fuel Cell Applications [J]. Chem. Commun. (2009) 195-197.
    [108]Zhulin Huang, Guowen Meng, Qing Huang, Yajun Yang, Chuhong Zhu and Chaolong Tang. Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering [J]. Adv. Mater.22 (2010) 4136-4139.
    [109]Qiaoling Xu, Guowen Meng, Fangming Han, Xianglong Zhao, Mingguang Kong and Xiaoguang Zhu. Controlled Fabrication of Gold and Polypyrrole Nanowires with Straight and Branched Morphologies via Porous Alumina Template-assisted Approach [J]. Mater. Lett.63(2009)1431-1434.
    [110]Qiaoling Xu, Guowen Meng, Xuebang Wu, Qing Wei, Mingguang Kong, Xiaoguang Zhu and Zhaoqin Chu. A Generic Approach to Desired Metallic Nanowires inside Native Porous Alumina Template via Redox Reaction [J]. Chem. Mater.21 (2009) 2397-2402.
    [111]Rosalinda Inguanta, Salvatore Piazza and Carmelo Sunseri. Synthesis of Self-standing Pd Nanowires via Galvanic Displacement Deposition [J]. Electrochem. Commun.11 (2009) 1385-1388.
    [112]Serge Cosnier and Michael Holzinger. Electrosynthesized Polymers for Biosensing [J]. Chem. Soc. Rev.40 (2011) 2146-2156.
    [113]Jianwen Zhao, Daohong Wu and Jinfang Zhi. A Novel Tyrosinase Biosensor Based on Biofunctional ZnO Nanorod Microarrays on the Nanocrystalline Diamond Electrode for Detection of Phenolic Compounds [J]. Bioelectrochem.75 (2009) 44-49.
    [114]Jianjun Wang, Nosang V. Myung, Minhee Yun and Harold G. Monbouquette. Glucose Oxidase Entrapped in Polypyrrole on High-surface-area Pt Electrodes:A Model Platform for Sensitive Electroenzymatic Biosensors [J]. J. Electroanal. Chem.575 (2005) 139-146.
    [115]Ju Xu, Fengjun Shang, John H.T. Luong, Kafil M. Razeeb and Jeremy D. Glennon. Direct Electrochemistry of Horseradish Peroxidase Immobilized on a Monolayer Modified Nanowire Array Electrode [J]. Biosens. Bioelectron.25 (2010) 1313-1318.
    [116]M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi and U. Gosele. Polymer Nanotubes by Wetting of Ordered Porous Templates [J]. Science 296 (2002) 1997.
    [117]Lili Zhao, Maekele Yosef, Martin Steinhart, Petra Goring, Herbert Hofmeister, Ulrich G6sele and Sabine Schlecht. Porous Silicon and Alumina as Chemically Reactive Templates for the Synthesis of Tubes and Wires of SnSe, Sn, and SnO2 [J]. Angew. Chem. Int. Ed.45 (2005) 311-315.
    [118]S. Aravamudhan, K. Luongo, P. Poddar, H. Srikanth and S. Bhansali. Porous Silicon Templates for Electrodeposition of Nanostructures [J]. Appl. Phys. A 87 (2007) 773-780.
    [119]Timothy A. Crowley, Kirk J. Ziegler, Daniel M. Lyons, Donats Erts, Hakan Olin, Michael A. Morris and Justin D. Holmes. Synthesis of Metal and Metal Oxide Nanowire and Nanotube Arrays within a Mesoporous Silica Template [J]. Chem. Mater.15 (2003) 3518-3522.
    [120]V. Sudha Rani, S. Anandakumar, Hojun Lee, Wonbae Bang, Kimin Hong, S. S. Yoon, J.-R. Jeong and CheolGi Kim. Structural and Magnetic Properties of Electrodeposited Cobalt Nanowires in Polycarbonate Membrane [J]. Phys. Stat. Sol. A 206 (2009) 667-670.
    [121]I. Kazeminezhad, A.C. Barnes, J.D. Holbrey, K.R. Seddon and W. Schwarzacher. Templated Electrodeposition of Silver Nanowires in a Nanoporous Polycarbonate Membrane from a Nonaqueous Ionic Liquid Electrolyte [J]. Appl. Phys. A 86 (2007) 373-375.
    [122]Yaser Bahari Mollamahalle, Mohammad Ghorbani and Abolghasem Dolati. Electrodeposition of Long Gold Nanotubes in Polycarbonate Templates as Highly Sensitive 3D Nanoelectrode Ensembles [J]. Electrochim. Acta 75 (2012) 157-163.
    [123]O. Rabin, P.R. Herz, Y.-M. Lin, A.I. Akinwande, S.B. Cronin and M.S. Dresselhaus. Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass [J]. Adv. Mater.13 (2003) 631-638.
    [124]S.Y. Jeong, J.Y. Kim, H.D. Yang, B.N. Yoon, S.-H. Choi, H.K. Kang, C.W. Yang and Y.H. Lee. Synthesis of Silicon Nanotubes on Porous Alumina Using Molecular Beam Epitaxy [J]. Adv. Mater.15 (2003) 1172-1176.
    [125]Changdeuck Bae, Hyunjun Yoo, Sihyeong Kim, Kyungeun Lee, Jiyoung Kim, Myung M. Sung and Hyunjung Shin. Template-Directed Synthesis of Oxide Nanotubes:Fabrication, Characterization, and Applications [J]. Chem. Mater.20 (2008) 756-767.
    [126]Hideki Masuda and Kenji Fukuda. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina [J]. Science,9 (1995) 1466-1468.
    [127]V. P. Parkhutlk and V. I. Shershulsky. Therotical Modelling of Porous Oxide Growth on Aluminium [J]. J. Phys. D:Appl. Phys.25 (1992) 1258-1263.
    [128]L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer. Growth Kinetics and Mechanisms of Aluminum-oxide Films Formed by Thermal Oxidation of Aluminum [J]. J. Appl. Phys.92 (2002) 1649-1656.
    [129]Zixue Su and Wuzong Zhou. Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides [J]. Adv. Mater.20 (2008) 3663-3667.
    [130]Jerrod E. Houser and Kurt R. Hebert. The Role of Viscous Flow of Oxide in the Growth of Self-ordered Porous Anodic Alumina Films [J]. Nature Mater.8 (2009) 415-420.
    [131]Hidetaka Asoh, Sachiko Ono, Tomohito Hirose, Masashi Nakao and Hideki Masuda. Growth of Anodic Porous Alumina with Square Cells [J]. Electrochem. Acta 48 (2003) 3171-3174.
    [132]Huimin Ouyang, Marc Christophersen and Philippe M. Fauchet. Enhanced Control of Porous Silicon Morphology from Macropore to Mesopore Formation [J]. Phys. Stat. Sol. A 202 (2005) 1396-1401.
    [133]T. W. Cornelius, B. Schiedt, D. Severin, G. Pepy, M. Toulemonde, P. Yu Apel, P. Boesecke and C. Trautmann. Nanopores in Track-etched Polymer Membranes Characterized by Small-Angle X-ray Scattering [J]. Nanotechnol.21 (2010) 155702-1-7.
    [134]Precila Porrata, Elena Goun and Hiroshi Matsui. Size-Controlled Self-Assembly of Peptide Nanotubes Using Polycarbonate Membranes as Templates [J]. Chem. Mater.14 (2002)4378-4381.
    [135]Satinder K. Sharma, Amritha Rammohan and Ashutosh Sharma. Templated One Step Electrodeposition of High Aspect Ratio n-type ZnO Nanowire Arrays [J]. J. Colloid Interface Sci.344 (2010) 1-9.
    [136]H. Wang and H.W. Wang. Analysis on Porous Aluminum Anodic Oxide Film Formed in Re-OA-H3PO4 Solution [J]. Mater. Chem. Phys.97 (2006) 213-218.
    [137]W. Lee, K. Nielsch and U. Gosele. Self-ordering Behavior of Nanoporous Anodic Aluminum Oxide (AAO) in Malonic Acid Anodization [J]. Nanotechnol.18 (2007) 475713-1-8.
    [138]Woo Lee, Ran Ji, Ulrich Gosele and Kornelius Nielsch.Fast Fabrication of Long-range Ordered Porous Alumina Membranes by Hard Anodization [J]. Nature Mater.5 (2006) 741-747.
    [139]Kathrin Schwirn, Woo Lee, Reinald Hillebrand, Martin Steinhart, Komelius Nielsch and Ulrich Gosele. Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization [J]. ACS Nano 2 (2008) 302-310.
    [140]Xin Wang and Gaorong Han. Fabrication and Characterization of Anodic Aluminum Oxide Template [J]. Microelectron. Eng.66 (2003) 166-170.
    [141]Sachiko Ono, Makiko Saito, Miyuki Ishiguro and Hidetaka Asoh. Controlling Factor of Self-Ordering of Anodic Porous Alumina [J]. J. Electrochem. Soc.151 (2004) B473-B478.
    [142]Mickael Lillo and Dusan Losic. Pore Opening Detection for Controlled Dissolution of Barrier Oxide Layer and Fabrication of Nanoporous Alumina with Through-hole Morphology [J]. J. Membrane Sci.327 (2009) 11-17.
    [143]Xiaoyue Wang, Yong Liu, Xiang Zhou, Baojun Li, Hai Wang, Wenxia Zhao, Hong Huang, Chaolun Liang, Xiao Yu, Zhong Liu and Hui Shen. Synthesis of Long TiO2 Nanowire Arrays with High Surface Areas via Synergistic Assembly Route for Highly Efficient Dye-sensitized Solar Cells [J]. J.Mater. Chem.22 (2012) 17531-17538.
    [144]Weiyong Yuan, Zhisong Lu, Jinping Liu, Huili Wang and Chang Ming Li. ZnO Nanowire Array-templated LbL Self-assembled Polyelectrolyte Nanotube Arrays and Application for Charged Drug Delivery [J]. Nanotechnology 24 (2013) 045605-1-8.
    [145]Zhiwei Zhao, Wei Lei, Xiaobing Zhang, Baoping Wang and Helong Jiang. ZnO-Based Amperometric Enzyme Biosensors [J]. Sensors 10 (2010) 1216-1231.
    [146]Kenneth A. Mauritz and Robert B. Moore. State of Understanding of Nafion [J]. Chem. Rev.104 (2004) 4535-4585.
    [147]J. E. B. Randles. A Cathode Ray Polarograph. Part Ⅱ.-The Current-voltage Curves [J]. Trans. Faraday Soc.44 (1948) 327-338.
    [148]Zhenxing Liang, Wenmin Chen, Jianguo Liu, Suli Wang, Zhenhua Zhou, Wenzhen Li, Gongquan Sun and Qin Xin. FT-IR Study of the Microstructure of Nafion Membrane [J]. J. Membrane Sci.233 (2004) 39-44.
    [149]Liang Wang and Zhuobin Yuan. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-wall Carbon Nanotubes [J]. Sensors 3 (2003) 544-554.
    [150]Yuehe Lin, Fang Lu, Yi Tu and Zhifeng Ren. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles [J]. Nano Lett.4 (2004) 191-195.
    [151]Yige Zhou, Si Yang, Qingyun Qian, Xinghua Xia. Gold Nanoparticles Integrated in a Nanotube Array for Electrochemical Detection of Glucose [J]. Electrochem. Commun.11 (2009)216-219.
    [152]Ahmad Umar, M.M. Rahman, A. Al-Hajry, Y.B. Hahn. Enzymatic Glucose Biosensor Based on Flower-shaped Copper Oxide Nanostructures Composed of Thin Nanosheets [J]. Electrochem. Commun.11 (2009)278-281.
    [153]Xinyu Li, Yunlong Zhou, Zhaozhu Zheng, Xiuli Yue, Zhifei Dai, Shaoqin Liu and Zhiyong Tang. Glucose Biosensor Based on Nanocomposite Films of CdTe Quantum Dots and Glucose Oxidase [J]. Langmuir 25 (2009) 6580-6586.
    [154]Mashkoor Ahmad, Caofeng Pan, Zhixiang Luo and Jing Zhu. A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor [J]. J. Phys. Chem. C 114(2010)9308-9313.
    [155]Xiangfeng Chu, Xiaohua Zhu, Yongping Dong, Tongyun Chen, Mingfu Ye and Wenqi Sun. An Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the Platinum Electrode Modified with NiO Doped ZnO Nanorods [J]. J. Electroanal. Chem.676 (2012) 20-26.
    [156]Debabrata Pradhan, Farnaz Niroui and K. T. Leung. High-Performance, Flexible Enzymatic Glucose Biosensor Based on ZnO Nanowires Supported on a Gold-Coated Polyester Substrate [J]. ACS Appl. Mater. Interfaces.2(2010) 2409-2412.
    [157]J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li and Z. L. Dong. Zinc Oxide Nanocomb Biosensor for Glucose Detection [J]. Appl. Phys. Lett.88 (2006) 233106-1-3.
    [158]Raghavan Baby Rakhi, Kanikrishnan Sethupathi and Sundara Ramaprabhu. A Glucose Biosensor Based on Deposition of Glucose Oxidase onto Crystalline Gold Nanoparticle Modified Carbon Nanotube Electrode [J]. J. Phys. Chem. B 113 (2009) 3190-3194.
    [159]Bin Fang, Cuihong Zhang, Guangfeng Wang, Meifang Wang and Yulan Ji. A Glucose Oxidase Immobilization Platform for Glucose Biosensor Using ZnO Hollow Nanospheres [J]. Sens. Actuat. B 155 (2011) 304-310.
    [160]Lineweaver Hans and Burk Dean.The Determination of Enzyme Dissociation Constants [J]. J. Am. Chem. Soc.56 (1934) 658-666.
    [161]Shao Su, Yao He, Shiping Song, Di Li, Lihua Wang, Chunhai Fan and Shuit-Tong Lee. A Silicon Nanowire-based Electrochemical Gucose Biosensor with High Electrocatalytic Activity and Sensitivity [J]. Nanoscale 2(2010) 1704-1707.
    [162]David R. Walt and Venetka I. Agayn. The Chemistry of Enzyme and Protein Immobilization with Glutaraldehyde [J]. TrAC Trends Anal. Chem.13 (1994) 425-430.
    [163]Ruska Nenkova, Danka Ivanova, Janina Vladimirova and Tzonka Godjevargova. New Amperometric Glucose Biosensor Based on Cross-linking of Glucose Oxidase on Silica Gel/multiwalled Carbon Nanotubes/polyacrylonitrile Nanocomposite Film [J]. Sens. Actuat. B 148(2010) 59-65.
    [164]Samuel B. Adeloju and Abdulazeez T. Lawal. Fabrication of a Bilayer Potentiometric Phosphate Biosensor by Cross-link Immobilization with Bovine Serum Albumin and Glutaraldehyde [J]. Anal. Chim. Acta 691 (2011) 89-94.
    [165]Afsaneh Safavi and Fatemeh Farjami. Electrodeposition of Gold-platinum Alloy Nanoparticles on Ionic Liquid-chitosan Composite Film and Its Application in Fabricating an Amperometric Cholesterol Biosensor [J]. Biosens. Bioelectron.26 (2011) 2547-2552.
    [166]Catherine Marquid. Chemical Reactions in Cottonseed Protein Cross-linking by Formaldehyde, Glutaraldehyde, and Glyoxal for the Formation of Protein Films with Enhanced Mechanical Properties [J]. J. Agri. Food. Chem.49 (2001) 4676-4681.
    [167]Abdulazeez T. Lawal and Samuel B. Adeloju. Comparison of Enzyme Immobilisation Methods for Potentiometric Phosphate Biosensors [J]. Biosens. Bioelectron.25 (2009) 406-410.
    [168]L. del Torno-de Roman, M.A. Alonso-Lomillo, O. Dominguez-Renedo and M.J. Arcos-Martinez. Gluconic Acid Determination in Wine by Electrochemical Biosensing [J]. Sens. Actuat. B 176 (2013) 858-862.
    [169]J. E. B. Ranlies. Kinetics of Rapid Electrode Reactions [J].Discuss. Faraday Soc.1 (1947) 11-19.
    [170]Bin Fang, Cuihong Zhang, Guangfeng Wang, Meifang Wang and Yulan Ji. A Glucose Oxidase Immobilization Platform for Glucose Biosensor Using ZnO Hollow Nanospheres [J]. Sens. Actuat. B 155 (2011) 304-310.
    [171]Rafiq Ahmad, Nirmalya Tripathy, Jin Hwan Kim and Yoon-Bong Hahn. Highly Selective Wide Linear-range Detecting Glucose Biosensors Based on Aspect-ratio Controlled ZnO Nanorods Directly Grown on Electrodes [J]. Sens. Actuat. B 174 (2012) 195-201.
    [172]Gary L. Long and J. D. Winefordner. Limit of Detection A Closer Look at the IUPAC Definition [J]. Anal. Chem.55 (1983) 712A-724A.
    [173]A. Umar, M. M. Rahman, S. H. Kim and Y. B. Hahn. ZnO Nanonails:Synthesis and Their Application as Glucose Biosensor [J]. J. Nanosci. Nanotechnol.8 (2008) 3216-3221.
    [174]Z. W. Zhao, X. J. Chen, B. K. Tay, J. S. Chen, Z. J. Han and K. A. Khor. A Novel Amperometric Biosensor Based on ZnO:Co Nanoclusters for Biosensing Glucose [J]. Biosens. Bioelecton.23 (2007) 135-139.
    [175]C. K. Chiang, Jr. C. R. Fincher, Y. W. Park and A. J. Heeger. Electrical Conductivity in Doped Polyacetylene [J]. Phys. Rev. Lett.39 (1977) 1098-1101.
    [176]J. Reut, A. Opik and K. Idla. Corrosion Behavior of Polypyrrole Coated Mild Steel [J]. Synt. Met.102 (1999) 1392-1393.
    [177]Andy Rudge, Ian Raistrick, Shimshon Gottesfeld and John P. Ferraris. A Study of The Electrochemical Properties of Conducting Polymers for Application in Electrochemical Capacitors [J]. Electrochim. Acta 39 (1994) 273-287.
    [178]E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin. Supercapacitors Based on Conducting Polymers/nanotubes Composites [J]. J. Power Sources 153 (2006) 413-418.
    [179]G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger. Flexible Light-emitting Diodes Made from Soluble Conducting Polymers [J]. Nature 357 (1992) 477-479.
    [180]Mirtha Umana and Jess Waller. Protein-modified Electrodes. The Glucose Oxidase/polypyrrole System [J]. Anal. Chem.58 (1986) 2979-2983.
    [181]Nicola C. Foulds and Christopher R. Lowe. Enzyme Entrapment in Electrically Conducting Polymers. Immobilisation of Glucose Oxidase in Polypyrrole and Its Application in Amperometric Glucose Sensors [J]. J. Chem. Soc., Faraday Trans.1(1986) 1259-1264.
    [182]Samuel B. Adeloju, Shannon J. Shaw and Gordon G. Wallace. Polypyrrole-based Amperometric Flow Injection Biosensor for Urea [J]. Anal. Chim. Acta 323 (1996) 107-113.
    [183]S.Serradilla Razola, B.Lopez Ruiz, N.Mora Diez, H.B Mark and J-M Kauffmann. Hydrogen Peroxide Sensitive Amperometric Biosensor Based on Horseradish Peroxidase Entrapped in a Polypyrrole Electrode [J]. Biosens. Bioelectron.17 (2002) 921-928.
    [184]Jerzy J. Langera, Marian Filipiak, Jasmina Ke,cinska, Joanna Jasnowska, Jacek Wlodarczak and Bartosz Buladowski. Polyaniline Biosensor for Choline Determination [J]. Sur. Sci.573 (2004) 140-145.
    [185]Fangxin Hu, Shihong Chen, Chengyan Wang, Ruo Yuan, Yun Xiang and Cun Wang. Multi-wall Carbon Nanotube-polyaniline Biosensor Based on Lectin-carbohydrate Affinity for Ultrasensitive Detection of Con A [J]. Biosens. Bioelectron.34 (2012) 202-207.
    [186]Raju Khan, Pratima R. Solanki, Ajeet Kaushik, S. P. Singh, Sharif Ahmad and B. D. Malhotra. Cholesterol Biosensor Based on Electrochemically Prepared Polyaniline Conducting Polymer Film in Presence of a Nonionic Surfactant [J]. J. Polym. Res.16 (2009) 363-373.
    [187]李永舫.导电聚合物的电化学制备性质研究[J].电化学 10(2004)369-376.
    [188]Said Sadki, Philippe Schottland, Nancy Brodie and Guillaume Sabouraud. The Mechanisms of Pyrrole Electropolymerization [J]. Chem. Soc. Rev.29(2000) 283-293.
    [189]E. M. Genies and G. Bidan. Spectroelectrochemical Study of Polypyrrole Films [J]. J. Electroanal. Chem.149(1983) 101-113.
    [190]Wei Zhao, Jingjuan Xu, Chuanguo Shi and Hongyuan Chen. Multilayer Membranes via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing [J]. Langmuir 21 (2005) 9630-9634.
    [191]Changsheng Shan, Huafeng Yang, Jiangfeng Song, Dongxue Han, Ari Ivaska and Li Niu. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene [J]. Anal. Chem.81 (2009) 2378-2382.
    [192]Yuhming Uang and Tsechuan Chou. Criteria for Designing a Polypyrrole Glucose Biosensor by Galvanostatic Electropolymerization [J]. Electroanalysis 14 (2002) 1564-1570.
    [193]Yuhming Uang and Tsechuan Chou. Fabrication of Glucose Oxidase/polypyrrole Biosensor by Galvanostatic Method in Various pH Aqueous Solutions [J]. Biosens. Bioelectron.19 (2003) 141-147.
    [194]Natalija German, Arunas Ramanavicius, Jaroslav Voronovic and Almira Ramanaviciene. Glucose Biosensor Based on Glucose Oxidase and Gold nanoparticles of Different Sizes Covered by Polypyrrole Layer [J]. Colloid. Surface. A 413 (2012) 224-230.
    [195]Jing Li and Xiangqin Lin. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Poly (o-aminophenol) Film on Polypyrrole-Pt Nanocomposite Modified Glassy Carbon Electrode [J]. Biosens. Bioelectron.22 (2007) 2898-2905.
    [196]Mahendra D. Shirsat, Chee O. Too and Gordon G. Wallace. Amperometric Glucose Biosensor on Layer by Layer Assembled Carbon Nanotube and Polypyrrole Multilayer Film [J]. Electroanalysis 20 (2008) 150-156.
    [197]Guangqing Xu, Samuel B. Adeloju, Yucheng Wu and Xinyi Zhang. Modification of Polypyrrole Nanowires Array with Platinum Nanoparticles and Glucose Oxidase for Fabrication of a Novel Glucose Biosensor [J]. Anal. Chim. Acta 755 (2012) 100-107.
    [198]K. Singh, B. P. Singh, Ruchika Chauhan and T. Basu. Fabrication of Amperometric Bienzymatic Glucose Biosensor Based on MWCNT Tube and Polypyrrole Multilayered Nanocomposite [J]. J. Appl. Polym. Sci.125 (2012) E235-E246.
    [199]A F. Diaz, Juan I Castullo, J A. Logan and Wenyaung Lee. Electrochemistry of Conducting Polypyrrole Films [J]. J. Electroanal. Chem.129 (1981) 115-132.
    [200]Joseph Wang and Mustafa Musameh. Carbon-nanotubes Doped Polypyrrole Glucose Biosensor [J]. Anal. Chim. Acta 539 (2005) 209-213.
    [201]Jianmin Wu and Longwei Yin. Platinum Nanoparticle Modified Polyaniline-Functionalized Boron Nitride Nanotubes for Amperometric Glucose Enzyme Biosensor [J]. ACS Appl. Mater. Interfaces 3 (2011) 4354-4362.
    [202]Dan Shan, Shanxia Wang, Yuanyuan He and Huaiguo Xue. Amperometric Glucose Biosensor Based on in situ Electropolymerized Polyaniline/poly (acrylonitrile-co-acrylic acid) Composite Film [J]. Mater. Sci. Eng. C 28 (2008) 213-217.
    [203]John Njagi and Silvana Andreescu. Stable Enzyme Biosensors Based on Chemically Synthesized Au-polypyrrole Nanocomposites [J]. Biosens. Bioelectron.23 (2007) 168-175.
    [204]Joseph Wang. Glucose Biosensors:40 Years of Advances and Challenges [J]. Electroanalysis 13 (2001) 983-987.
    [205]Hong Wu, Jun Wang, Xinhuang Kang, Chongmin Wang, Donghai Wang, Jun Liu, Ilhan A. Aksay and Yuehe Lin. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/graphene/chitosan Nanocomposite Film [J]. Talanta 80 (2009) 403-406.
    [206]Zhenhai Wen, Suqin Ci and Jinghong Li. Pt Nanoparticles Inserting in Carbon Nanotube Arrays:Nanocomposites for Glucose Biosensors [J]. J. Phys. Chem. C 113 (2009) 13482-13487.
    [207]Jianding Qiu, Wenmei Zhou, Jin Guo, Rui Wang and Ruping Liang. Amperometric Sensor Based on Ferrocene-modified Multiwalled Carbon Nanotube Nanocomposites as Electron Mediator for the Determination of Glucose [J]. Anal. Biochem.385 (2009) 264-269.
    [208]Yanshi Chen, Jinhua Huang and Chiachih Chuang. Glucose Biosensor Based on Multiwalled Carbon Nanotubes Grown Directly on Si [J]. Carbon 47 (2009) 3106-3112.
    [209]Alina N. Sekretaryova, Darya V. Vokhmyanina, Tatyana O. Chulanova, Elena E. Karyakina and Arkady A. Karyakin. Reagentless Biosensor Based on Glucose Oxidase Wired by the Mediator Freely Diffusing in Enzyme Containing Membrane [J]. Anal. Chem.84 (2012) 1220-1223.
    [210]Huimin Deng, Wei Shen and Zhiqiang Gao. An Interference-Free Glucose Biosensor Based on an Anionic Redox Polymer-Mediated Enzymatic Oxidation of Glucose [J]. ChemPhysChem 2013 DOI:10.1002/cphc.201200961.
    [211]Isabelle Migneault, Catherine Dartiguenave, Michel J. Bertrand and Karen C. Waldron. Glutaraldehyde:Behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking [J]. Bio Techniques 37 (2004) 790-802.
    [212]Jinping Liu, Chunxian Guo, Changming Li, Yuanyuan Li, Qingbo Chi, Xintang Huang,Lei Liao and Ting Yu. Carbon-decorated ZnO Aanowire Array:A Novel Platform for Direct Electrochemistry of Enzymes and Biosensing Applications [J]. Electrochem. Commun. 11(2009)202-205.
    [213]Xinyu Pang, Dongmei He, Shenglian Luo and Qingyun Cai. An Amperometric Glucose Biosensor Fabricated with Pt Nanoparticle-decorated Carbon nanotubes/TiO2 Nanotube Arrays Composite [J]. Sens.Actuat. B 137(2009) 134-138.
    [214]J. Ruz□ic□ka and E.H. Hansen. Flow Injection Analyses. Part Ⅰ. A New Concept of Fast Continuous Flow Analysis [J]. Anal. Chim. Acta 78 (1975) 145-157.
    [215]J. Ruzicka and J.W.B. Stewart. Flow Injection Analysis:Part Ⅱ. Ultrafast Determination of Phosphorus in Plant Material by Continuous Flow Spectrophotometry [J]. Anal. Chim. Acta 79 (1975) 79-91.
    [216]J.W.B. Stewart, J. Ruzicka, H. Bergamin Filho and E.A. Zagatto. Flow Injection Analysis: Part III. Comparison of Continuous Flow Spectrophotometry and Potentiometry for the Rapid Determination of the Total Nitrogen Content in Plant Digests [J]. Anal. Chim. Acta 81 (1976) 371-386.
    [217]J. Ruzicka, J.W.B. Stewart and E.A. Zagatto. Flow Injection Analysis:Part Ⅳ. Stream Sample Splitting and Its Application to the Continuous Spectrophotometric Determination of Chloride in Brackish Waters [J]. Anal. Chim. Acta 81 (1976) 387-396.
    [218]J. Ruzicka and E.H. Hansen. Flow Injection Analysis:Part X. Theory, Techniques and Trends [J]. Anal. Chim. Acta 99 (1978) 37-76.
    [219]Yanlin Zhang and Samuel B. Adeloju. Flow Injection-hydride Generation Atomic Absorption Spectrometric Determination of Selenium, Arsenic and Bismuth [J]. Talanta 76 (2008) 724-730.
    [220]Samuel B. Adeloju and Yanlin Zhang. Vapor Generation Atomic Absorption Spectrometric Determination of Cadmium in Environmental Samples with In-Line Anion Exchange Separation [J]. Anal. Chem.81 (2009) 4249-4255.
    [221]Fumio Mizutani, Yukari Sato, Yoshiki Hirata and Soichi Yabuki. High-throughput Flow-injection Analysis of Glucose and Glutamate in Food and Biological Samples by Using Enzyme/polyion Complex-bilayer Membrane-based Electrodes as the Detectors [J]. Biosens. Bioelectron.13 (1998) 809-815.
    [222]Yuhua Su, Weixiong Huang, Rongzong Hu, Haodong Ding and Kangkang Hu. Development of a Novel, Sensitive Amperometric-FIA Glucose Biosensor by Packing up the Amperometric Cell with Glucose Oxidase Modified Anion Exchange Resin [J]. Biosens. Bioelectron.24 (2009) 2665-2670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700