用户名: 密码: 验证码:
工业园区土地覆盖及建筑密度航空遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,工业园区中土地的浪费和低效利用已经成为加剧土地供需矛盾和制约社会经济发展的重要因素,其粗放利用方式亟需改变。目前管理部门已开始加强对工业园区用地效率的监管,但缺乏客观、详细和精确的基础数据如建筑覆盖率、建筑容积率。传统由用地单位提供的数据因缺乏真实性而广受质疑。随着航空遥感技术的发展,特别是以LiDAR (light detection and ranging,机载激光雷达)传感器平台为代表的最新遥感技术在城区建筑物识别方面表现出的明显优势,使得越来越多的学者将其认定为目前最有前景的城区建筑物提取方案。其客观、快速、低成本、实时、动态和人力投入低的特点十分适合开发区建筑密度的估算研究。
     到目前为止,尽管LiDAR数据在建筑物提取方面已有广泛应用,但在建筑类型的区分以及工业园区建筑密度估算方面的研究仍不多见。本研究探讨单独使用LiDAR数据和LiDAR/RGB影像结合两种情况下的建筑物分类和建筑密度估算方法。主要研究内容和结论如下:
     1、LiDAR点云是传感器对地面物体的三维采样,以其为基础计算出的空间自相关特征可以反映地物在高程上的自相关性和高值/低值集聚特点。在仅有LiDAR数据支撑的情况下,尝试充分挖掘点云的空间几何、自相关、高程异质性特征,结合随机森林变量选择、重要性度量和面向对象的分割、分类、基于规则集的分类后处理方法进行建筑物的识别与分类。精度评价结果表明,住宅/工业建筑物可以成功提取,两个区块的总体精度均达到90%以上,总体Kappa超过0.88,充分证明这一技术流程的可靠性和稳定性。
     2、工业和住宅是工业园区中的两类主体建筑,他们在空间中的分布具有明显差异:首先,住宅建筑单个图斑面积较小,绿化较多,在同样大小地块范围内,住宅建筑通常包含更多的空隙成分。其次,住宅建筑通常以小区为单位整体开发,在空间中的排列更加规则整齐,而工业建筑则杂乱无章。以上两种性质可以通过以建筑物为基础的二值化空隙度算法定量,本文对这一部分的内容做了理论和试验两方面探索。
     通过RGB影像与Gabor小波、共生矩阵纹理结合从高分辨率影像中提取出植被掩膜层,用其掩膜掉nDSM分割对象中的植被信息,得到建筑物。经过简单编辑,将建筑物提取结果二值化,从而提取出反映建筑物空隙含量和几何结构的空隙度特征并用于建筑类型的区分。对植被掩膜层的精度评价结果表明,两个区块总体分类精度均超过86%,总体Kappa超过0.7,说明光谱与纹理结合的大范围植被信息提取是成功的;对建筑物分类的分组试验结果表明,两个区块空隙度组的总体精度均超过了85%,显示出良好的总体识别率。Kappa分析结果表明,在建筑物类型的区分中,空隙度特征在95%显著水平上显著优于nDSM,证实了空间信息在建筑物类型识别中的重要价值。
     3、在建筑密度估算中,楼层高度的确定是影响其准确性的关键因素之一。传统的方法往往通过设置统一的层高值计算楼层数,少部分研究按照地域设置差异化的层高值。然而前者无可避免的会增大建筑密度估算误差,后者则不利于自动化的实现。考虑到影响层高的主要因素是建筑物类型,本文按照分类后的建筑类型设置相应的层高值,从而实现更加准确和自动化的建筑密度估算。
     4、针对不同楼层建筑面积不一致的复杂建筑物,提出了小尺度分割并以产生的分割单元为基本单位进行建筑密度的计算,有效降低了将整个建筑图斑作为整体计算时带来的高估误差。综合RMSE,相关分析和残差分析的建筑密度精度评价结果表明,总体误差在0.2以内,回归系数大于0.8,残差小于15%,结果可靠具有重复性。
The waste and low efficiency of industrial land-use has become a critical factor of preventing social economic development and contradiction between land resource supply and demand. The extensive land-use type should be changed. The authenticity of data traditionally provided by land consuming companies becomes increasingly questioned under the background of enhancing monitoring and improving efficiency of land use. As the development of airborne remote sensing technology, the latest LiDAR sensor platform has been recognized as the most promising tools for building extraction in urban area. The property of fast, objective, real-time, low cost and labor saving make it extremely suitable for building density estimation in Economical and Technological Development Zone.
     So far, much effort has been made to the study of building extraction based on LiDAR data, but few attention has been paid to building type classification as well as the estimation of building density in Economic and technological Development Zone. This study focus on the methods of building type classification and building density estimation through two approaches:using LiDAR data alone and the combined use of LiDAR data and RGB imagery. The core points and conclusions are listed as follows:
     1LiDAR points are3D sampling of the earth surface, spatial autocorrelation features derived from this data can characterize the properties of autocorrelation and clustering of objects with high or low elevation. Various sources of features including geometric, autocorrelation and height heterogeneity were integrated on the recognition and classification of buildings through an object oriented approach and post classification technique based solely on LiDAR data. Variable selection and importance measure by random forest classifier were also participated in this process. Accuracy assessment indicated the successful extraction of industrial/residential buildings. Overall classification accuracy of the two blocks were both exceed90%with Kappa value more than0.88. The proposed method was demonstrated to be stable and reliable.
     2In fact, residential and industrial buildings are the predominantly distributed anthropic structure types in Chinese urban region, and present obvious differences in spatial size and pattern which can be identified through building based lacunarity technique. First, the area of residential buildings is generally smaller than that of industrial buildings in Chinese ETDZs. In parcels of land of equal size, the number of buildings and the total area of gap are typically larger in residential areas. Second, residential buildings are often regularly distributed, whereas industrial buildings tend to be disorganized.
     Vegetation mask was generated firstly through classification by using a SVM classifier and an integration of Gabor, GLCM features and RGB imagery. Vegetation objects were then masked out with this vegetation mask. Buildings were thus left. A binary map containing building/non-building was created after some simple editing of the building layer. Lacunarity features that indicate percent and geometry of building gaps were extracted based on this binary map and then applied in building type classification. Vegetation mask was assessed to be high quality indicated by an overall accuracy of86%and a Kappa statistic of more than0.7. The integration of multispectral image and texture was illustrated to be successful for vegetation extraction. Overall classification accuracy of lacunarity group were both exceed85%. Kappa analysis result demonstrated the superiority of lacunarity to nDSM on building type classification in95%confidence level.
     3The floor height was one of the key factors to the accuracy of Building Density estimation. The number of floors were commonly determined by setting a unique threshold as floor height. This parameter was also defined with reference to the location of buildings in some few studies. Nevertheless, the former shall inevitably increase the residuals of building density while the latter suffers from human interaction. Because floor height is mostly correlated to building type, it was defined according to the building type in this study to estimate building density more accurately and automatically.
     4To those complicate structure buildings with multiple floor heights, we proposed a method that involves small scale segmentation and building density estimation based on those small segments. Overestimation error was thus significantly reduced when the whole building polygon was participated as basic unit for building density estimation.
     5The accuracy assessment on Building Density based on RMSE、Correlation Analysis and Residual Analysis illustrated a satisfactory result with the overall error below0.2, regression coefficient greater than0.8and residual error less than15%.
引文
Aguilar, M.A., Saldana, M.M., Aguilar, F.J.,2013. GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. INTERNATIONAL JOURNAL OF REMOTE SENSING,34(7):2583-2606. [doi: 10.1080/01431161.2012.747018].
    Aguilar, M.A., Saldana, M.M., Aguilar, F.J.,2013. GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. International Journal of Remote Sensing,34(7):2583-2606. [doi: 10.1080/01431161.2012.747018].
    Allain, C, Cloitre, M.,1991. Characterizing the lacunarity of random and deterministic fractal sets. Physical review A,44(6):3552.
    Archer, K.J., Kimes, R.V.,2008. Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis,52(4): 2249-2260.
    Bandyopadhyay, M., van Aardt, J.A., Cawse-Nicholson, K.,2013. Classification and extraction of trees and buildings from urban scenes using discrete return LiDAR and aerial color imagery, International Society for Optics and Photonics:873105.
    Bentley, J.L.,1975. Multidimensional binary search trees used for associative searching. Communications of the ACM,18(9):509-517.
    Berger, C., Voltersen, M., Hese, S., et al.,2013. Robust extraction of urban land cover information from HSR multi-spectral and LiDAR data. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of,6(6):1-16.
    Bhaskaran, S., Paramananda, S., Ramnarayan, M.,2010. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Applied Geography,30(4):650-665.
    Blaschke, T.,2010. Object based image analysis for remote sensing. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,65(1):2-16. [doi:10.1016/j.isprsjprs.2009.06.004].
    Breiman, L.,2001a. Random forests. Machine learning,45(1):5-32.
    Breiman, L.,2001b. Random forests. Machine learning,45(1):5-32.
    Breiman, L.,2002. Manual on setting up, using, and understanding random forests v3. 1. Retrieved October,23:2010.
    Chan, J.C., Paelinckx, D.,2008. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112(6):2999-3011.
    Chehata, N., Guo, L., Mallet, C.,2009. Airborne lidar feature selection for urban classification using random forests. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,39(Part 3/W8):207-212.
    Chen, Y., Su, W., Li, J., et al.,2009. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Advances in Space Research,43(7):1101-1110.
    Clausi, D.A.,2002. An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian Journal of remote sensing,28(1):45-62.
    Congalton, R.G.,1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment,37(1):35-46.
    Congalton, R.G., Oderwald, R.G., Mead, R.A.,1983. Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogrammetric Engineering and Remote Sensing.
    Documentation, T.,2012. eCognition Developer 8.7.1:Reference Book. Trimble Germany GmbH, Munich, Germany.
    Dong, P.,2000. Test of a new lacunarity estimation method for image texture analysis. International Journal of Remote Sensing,21(17):3369-3373.
    Dong, P.,2009. Lacunarity analysis of raster datasets and 1D,2D, and 3D point patterns. Computers & Geosciences,35(10):2100-2110.
    Durieux, L., Lagabrielle, E., Nelson, A.,2008. A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,63(4):399-408. [doi:10.1016/j.isprsjprs.2008.01.005].
    Erener, A.,2013. Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection. International Journal of Applied Earth Observation and Geoinformation,21:397-408.
    Forzieri, G., Tanteri, L., Moser, G., et al.,2012. Mapping natural and urban environments using airborne multi-sensor ADS40-MIVIS-LiDAR synergies. International Journal of Applied Earth Observation and Geoinformation.
    Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.,2006. Random forests for land cover classification. Pattern Recognition Letters,27(4):294-300.
    Gonzalez-Aguilera, D., Crespo-Matellan, E., Hernandez-Lopez, D., et al.,2013. Automated urban analysis based on LiDAR-derived building models. Geoscience and Remote Sensing, IEEE Transactions on,51(3):1844-1851.
    Guan, H., Ji, Z., Zhong, L., et al.,2013. Partially supervised hierarchical classification for urban features from lidar data with aerial imagery. International Journal of Remote Sensing,34(1):190-210.
    Guan, H., Li, J., Chapman, M., et al.,2013. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. International Journal of Remote Sensing,34(14):5166-5186.
    Guo, L., Chehata, N., Mallet, C., et al.,2011. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS Journal of Photogrammetry and Remote Sensing,66(1):56-66.
    Haghighat, M., Zonouz, S., Abdel-Mottaleb, M.,2013. Identification Using Encrypted Biometrics, Springer:440-448.
    Han, N., Wu, J., Tahmassebi, A.R.S., et al.,2011. NDVI-Based Lacunarity Texture for Improving Identification of Torreya Using Object-Oriented Method. Agricultural Sciences in China,10(9):1431-1444.
    Haralick, R.M., Shanmugam, K., Dinstein, I.H.,1973. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, (6): 610-621.
    Hay, G.J., Blaschke, T., Marceau, D.J., et al.,2003. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing,57(5):327-345.
    Hermosilla, T., Ruiz, L.A., Recio, J.A., et al.,2012. Assessing contextual descriptive features for plot-based classification of urban areas. LANDSCAPE AND URBAN PLANNING,106(1):124-137. [doi:10.1016/j.landurbplan.2012.02.008].
    Huang, M., Shyue, S., Lee, L., et al.,2008. A knowledge-based approach to urban feature classification using aerial imagery with lidar data. Photogrammetric Engineering & Remote Sensing,74(12):1473-1485.
    Hudson, W.D., Ramm, C.W.,1987. Correct formulation of the kappa-coefficient of agreement, AMER SOC PHOTOGRAMMETRY 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160.53:421-422.
    Kitada, K., Fukuyama, K.,2012. Land-Use and Land-Cover Mapping Using a Gradable Classification Method. Remote Sensing,4(6):1544-1558.
    Kovesi, P.D.,2000. MATLAB and Octave functions for computer vision and image processing. Online:http://www.csse.uwa.edu.au/-pk/Research/MatlabFns/# match.
    Liao, B., Han, X., Xu, J.,2007. Estimating floor area ratio based on SRTM3 and land use data, International Society for Optics and Photonics:67532C.
    Lu, D., Li, G., Moran, E., et al.,2011. Mapping impervious surfaces with the integrated use of Landsat Thematic Mapper and radar data:A case study in an urban-rural landscape in the Brazilian Amazon. ISPRS Journal of Photogrammetry and Remote Sensing,66(6):798-808.
    Lu, D., Weng, Q.,2006. Use of impervious surface in urban land-use classification. Remote Sensing of Environment,102(1):146-160. [doi: 10.1016/j.rse.2006.02.010].
    Lu, D., Weng, Q.,2007. A survey of image classification methods and techniques for improving classification performance. INTERNATIONAL JOURNAL OF REMOTE SENSING,28(5):823-870. [doi:10.1080/01431160600746456].
    Malhi, Y., Roman-Cuesta, R.M.,2008. Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sensing of Environment,112(5):2074-2087.
    Mallet, C., Bretar, F., Roux, M., et al.,2011. Relevance assessment of full-waveform lidar data for urban area classification. ISPRS Journal of Photogrammetry and Remote Sensing,66(6):S71-S84.
    Mandelbrot, B.B.,1983. The fractal geometry of nature., Macmillan
    Mathieu, R., Freeman, C., Aryal, J.,2007. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landscape and Urban Planning,81(3):179-192. [doi: 10.1016/j.landurbplan.2006.11.009].
    Meng, Y., Zhang, F., An, P., et al.,2008. Industrial land-use efficiency and planning in Shunyi, Beijing. Landscape and Urban Planning,85(1):40-48.
    Myint, S.W., Gober, P., Brazel, A., et al.,2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. REMOTE SENSING OF ENVIRONMENT,115(5):1145-1161. [doi: 10.1016/j.rse.2010.12.017].
    Myint, S.W., Gober, P., Brazel, A., et al.,2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment,115(5):1145-1161.
    Myint, S.W., Lam, N.,2005. A study of lacunarity-based texture analysis approaches to improve urban image classification. Computers, environment and urban systems,29(5):501-523.
    Myint, S.W., Lam, N.,2005. Examining lacunarity approaches in comparison with fractal and spatial autocorrelation techniques for urban mapping. Photogrammetric engineering and remote sensing,71(8):927.
    Myint, S.W., Mesev, V., Lam, N.,2006. Urban textural analysis from remote sensor data:Lacunarity measurements based on the differential box counting method. Geographical Analysis,38(4):371-390.
    Pacifici, F., Chini, M., Emery, W.J.,2009. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sensing of Environment,113(6):1276-1292.
    Pan, X.Z., Zhao, Q.G., Chen, J., et al.,2008. Analyzing the variation of building density using high spatial resolution satellite images:the example of Shanghai City. Sensors,8(4):2541-2550.
    Pauly, M.,2003. Point primitives for interactive modeling and processing of 3D geometry., Citeseer
    Plotnick, R.E., Gardner, R.H., O'Neill, R.V.,1993. Lacunarity indices as measures of landscape texture. Landscape ecology,8(3):201-211.
    Reis, S., Tasdemir, K.,2011. Identification of hazelnut fields using spectral and Gabor textural features. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5):652-661.
    Salah, M., Trinder, J., Shaker, A.,2009. Evaluation of the self-organizing map classifier for building detection from lidar data and multispectral aerial images. Journal of Spatial Science,54(2):15-34.
    Sarkar, N., Chaudhuri, B.B.,1992. An efficient approach to estimate fractal dimension of textural images. Pattern Recognition,25(9):1035-1041.
    Schechter, G.,2013. Matlab central file exchange. http://www.mathworks.cn/matlabcentral/fileexchange/4586-k-d-tree.
    SETTLE, J.J., DRAKE, N.A.,1993. LINEAR MIXING AND THE ESTIMATION OF GROUND COVER PROPORTIONS. INTERNATIONAL JOURNAL OF REMOTE SENSING,14(6):1159-1177.
    Sirmacek, B., Unsalan, C.,2011. A probabilistic framework to detect buildings in aerial and satellite images. Geoscience and Remote Sensing, IEEE Transactions on,49(1):211-221.
    Smits, P.C., Dellepiane, S.G., Schowengerdt, R.A.,1999. Quality assessment of image classification algorithms for land-cover mapping:a review and a proposal for a cost-based approach. International journal of remote sensing,20(8): 1461-1486.
    Su, W., Li, J., Chen, Y., et al.,2008. Textural and local spatial statistics for the object -oriented classification of urban areas using high resolution imagery. International Journal of Remote Sensing,29(11):3105-3117.
    Svetnik, V., Liaw, A., Tong, C., et al.,2004. Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules.: 334-343.
    Thapa, R.B., Murayama, Y.,2009. Urban mapping, accuracy,& image classification: A comparison of multiple approaches in Tsukuba City, Japan. Applied geography, 29(1):135-144.
    Tuceryan, M., Jain, A.K.,1993. Texture analysis. Handbook of pattern recognition and computer vision,2:207-248.
    Wang, C., Ma, J., Liang, F.,2010. Floor Area Ratio extraction based on Airborne Laser Scanning data over urban areas:1182-1185.
    Wu, C.S.,2004. Normalized spectral mixture analysis for monitoring urban composition using ETM plus imagery. REMOTE SENSING OF ENVIRONMENT, 93(4):480-492.
    Yu, B., Liu, H., Wu, J., et al.,2010. Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landscape and Urban Planning,98(3):210-219.
    Zhang, R., Zhu, D.,2011. Study of land cover classification based on knowledge rules using high-resolution remote sensing images. Expert Systems with Applications, 38(4):3647-3652.
    Zhao, T., Wang, J.,2014a. Use of lidar-derived NDTI and intensity for rule-based object-oriented extraction of building footprints. International Journal of Remote Sensing,35(2):578-597.
    Zhao, T., Wang, J.,2014b. Use of lidar-derived NDTI and intensity for rule-based object-oriented extraction of building footprints. International Journal of Remote Sensing,35(2):578-597.
    Zhou, Q., Neumann, U.,2008. Fast and extensible building modeling from airborne LiDAR data, ACM:7.
    Zhou, W.,2013. An Object-Based Approach for Urban Land Cover Classification: Integrating LiDAR Height and Intensity Data.
    毕于慧,2007.彩色航空图像森林纹理特征提取方法的研究.
    曾齐红,2009.机载激光雷达点云数据处理与建筑物三维重建.上海:上海大学.
    查勇,2001.测定城市建筑容积率的遥感方法研究.地理科学进展,20(4):378-383.[doi:10.3969/j.issn.1007-6301.2001.04.011].
    陈基伟,韩雪培,2005.高分辨率遥感影像建筑容积率提取方法研究.武汉大学学报(信息科学版),30(7):580-582,587.[doi:10.3321/j.issn:1671-8860.2005.07.004].
    董保根,2013a.机载LiDAR点云与遥感影像融合的地物分类技术研究.
    董保根,2013b.机载LiDAR点云与遥感影像融合的地物分类技术研究.
    段光耀,2012.城市建筑容积率提取及其与地面沉降关系分析.
    付小毛,2006.基于QB影像的上海中心城区建筑容积率估算方法研究,华东师范大学.[doi:10.7666/d.y895864].
    管海燕,2009.LiDAR与影像结合的地物分类及房屋重建研究[D].
    韩凝,2011.空间信息在面向对象分类方法中的应用——以IKONOS影像香榧树分布信息提取研究为例,浙江大学.
    黄昕,2009.高分辨率遥感影像多尺度纹理,形状特征提取与面向对象分类研究.
    李锦业,张磊,吴炳方,et al.,2007.基于高分辨率遥感影像的城市建筑密度和容积率提取方法研究.遥感技术与应用,22(3):309-313.[doi:10.3969/j.issn.1004-0323.2007.03.002].
    刘经南,张小红,2005.利用激光强度信息分类激光扫描测高数据.武汉大学学学报(信息科科学版,30(3):189-193.
    罗伊萍,2010.LIDAR数据滤波和影像辅助提取建筑物.
    陶超,2011.高分辨率遥感影像中的城区与建筑物检测方法研究.
    杨中庆,2006.基于R语言的空间统计分析研究与应用.
    姚春静,2010.机载LiDAR点云数据与遥感影像配准的方法研究.
    袁枫,2010.机载LIDAR数据处理与土地利用分类研究.
    张华,2012.遥感数据可靠性分类方法研究.
    郑毅,2011LIDAR数据的城区建筑物提取技术研究,华中科技大学.[doi:10.7666/d.d201495].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700