用户名: 密码: 验证码:
并联机构若干基本问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,并联机构日益受到关注,其应用也越来越广泛。与串联机构不同,并联机构的发展只有几十年的历史。并联机构的一些基本问题还没有完全解决,这阻碍了并联机构的发展和应用。6-SPS并联机构是一种典型的并联机构。本文对6-SPS并联机构的运动学正解、奇异性和柔索驱动并联机构作了深入的研究和探讨。
     运动学正解是并联机构的基本问题之一,同时也是研究并联机构其它问题的基础。6-SPS并联机构的正解方程是关于位置和姿态参数的高度耦合的非线性方程组,难以进行解析求解。本文通过分析动平台位置与姿态变量之间的耦合关系、运用Gr bner基算法,得到了15个只含有3个变量的相容方程。基于这15个相容方程,运用正交补方法以及逐步消去高次项的方法,最终将6-SPS并联机构的运动学正解问题表达为一元高次代数方程。研究结果表明,一般6-SPS并联机构的运动学正解问题可以表达为一元20次代数方程,虽然仍然为20次的代数方程,但是比之已有方法计算速度大为提高;用多种方法研究了对称6-SPS并联机构的运动学正解问题,最终将其表达为一元14次的代数方程;3/6-SPS并联机构和3/3-SPS并联机构的运动学正解问题均可以表达为一元8次代数方程。提出了一种椭圆型6-SPS并联机构并将其运动学正解问题表达为一元14次代数方程。
     奇异性分析也是并联机构研究的基本问题之一。奇异性分析在工作空间分析、轨迹规划以及控制系统设计研究中是无法回避的问题。如何给出奇异轨迹的解析表达式一直是众多学者研究并联机构的重点。本文提出了一种研究6-SPS并联机构奇异性的新方法。旋转矩阵采用四元数描述,并将矢量坐标扩展为4维形式,通过分析动平台位置与姿态变量之间的耦合关系以及四元数的性质,得到了采用8个二次方程式表达的运动方程。本文进一步应用该运动方程导出了新型的并联机构雅可比矩阵,通过对该新雅可比矩阵求取行列式,得到了奇异轨迹的解析表达式。该方法适用于所有类型的6-SPS并联机构。
     本文对运动学正解和奇异性的关系进行了初步的研究。研究发现,在奇异位形上,运动学正解将出现重根;也就是机构的运动状态将发生改变,为今后进一步深入研究奠定了基础。
     柔索驱动并联机构是近年来发展起来的新型的并联机构。本文对柔索驱动并联机构的工作空间、刚度等问题进行了研究并搭建了理论分析平台。由于柔索只能承受拉力、而不能施加压力的特性,在研究工作空间时必须遵循拉力为正的原则。应用正交补的方法进行工作空间的研究。借鉴工业机器人的研究方法,研究了柔索驱动并联机构的刚度问题。
With the development of science and technology, parallel mechanisms have been paid more and moreattention, and the application of parallel mechanisms is more and more extensively. Different from theserial mechanism, it is only a few decades that the parallel mechanisms have been developed. Somefundamental problems of the parallel mechanisms have not been fully solved so far, which hinders thedevelopment and application of parallel mechanisms.6-SPS parallel mechanism is a typical parallelmechanism. The forward kinematics analysis and the singularity analysis of the6-SPS parallelmechanism, the cable-driven parallel mechanism have been deeply researched and discussed in thisthesis.
     The forward kinematics analysis is one of the fundamental problems of parallel mechanisms, andwhat’s more, it is the basis of researching some other problems of parallel mechanisms. The forwardkinematic equations are highly coupled nonlinear equations about the position and orientationvarables, and it is difficult to be solved analytically. Through analyzing the coupling relationshipsamong the position and orientation variables of the moving platform, appliying the Gr bner basisalgorithm,15four order compatible algebraic equations, which containing three orientation variables,are obtained. Based on the15compatible equations, using the orthogonal complement method andeliminating the higher terms step by step, the problem of the forward kinematics analysis of the6-SPSparallel mechanisms can be expressed as higher order algebraic equations in the end. The results showthat, the forward kinematics analysis of the general6-SPS parallel mechanisms can be expressed as a20order algebraic equation. Although it is still20order equation, it is more quickly and practicable.The forward kinematics analysis of the symmetrical6-SPS parallel mechanisms has beeen studied byseveral methods, and each of them can express this problem as a14order algebraic equation. Theforward kinematics analysis of both3/6-SPS and3/3-SPS parallel mechanisms can be expressed as a8order algebraic equation. This thesis presents a kind of Elliptical6-SPS parallel mechanisms, ofwhich the forward kinematics analysis can also be expesed as a14order algebraic equation.
     Singularity analysis is one of the fundamental problems of parallel mechanisms too. Thisproblem can not been avoided in the research on workspace, motion planning and the design ofcontrolling system. How to express the singularity locus in an analytical form is the research emphasisfor many researchers for a long time. This thesis presents a new method for the singularity analysis ofthe6-SPS parallel mechanisms. The rotation matrix is been described by quaternion, and both the rotation matrix and the coordinates vectors have been expanded to four dimensional forms. Throughanalyzing the coupling relationship between the position variables and the orientation variables,utilizing properties of the quaternion, eight equivalent equations are obtained. A new kind of Jacobianmatrix is derived from those equations, and the analytical expression of the singularity locus isobtained by calculating the determinant of the new Jacobian matrix. The singularity analysis of allkinds of6-SPS parallel mechanisms can be solved by this analytical method.
     In this thesis, the relationship of forward kinematics and singularity has been studiedpreliminarily. The research shows that, the forward kinematics would have multiple roots if theparallel mechanisms are placed on singular configurations. It means that tha state of mtion will bechanged. And it forms a basis for deeply study in the future.
     The cable-driven parallel mechanism is a new type of parallel mechanism which has beendeveloping in recent years. Workspace, stiffness and other issues have been studied in the thesis. Atheoretical analysis platform has been constructed. Since a cable can only sustains pull rather thanpressure, the principle of keeping the tension positive should be satisfied while analyzing theworkspace of the cable-driven parallel mechanisms. The workspace of the cable-driven parallelmechanisms has been analyzed by the orthogonal complement method. Use the research methods ofindustrial robots for reference, the stiffness of cable-driven parallel mechanism has been studied inthis thesis.
引文
[1]李鹭扬.6-SPS型并联机床若干关键理论研究,[博士学位论文].南京:南京航空航天大学,2007.
    [2] Gwinnett J E. Amusement devices, US Patent, No.1789680, January20,1931.
    [3] Pollard W L V. Position controlling apparatus, US Patent, No.2286571, June16,1942.
    [4] MERLET J P. Parallel Robots. Dordrecht:Springer,2006.
    [5] STEWART D. A platform with six degrees of freedom. Proceedings of the Institution ofMechanical Engineering,1965,180(15):371-385.
    [6] LAZARD D, MERLET J P. The (true) Stewart Platform has12configurations. Proceedings ofthe1994IEEE International Conference on Robotics and Automation, San Diego, CA, USA:IEEE,1994:2160–2165.
    [7] Bonev I.A. The true origins of parallel robots. January,24,2003,http://www.parallemic.org/Reviews/Review007.html
    [8] Cappel K L. Motion simulator, US Patent, No.3295224, January3,1967.
    [9] Hunt K H. Kinematic Geometry Mechanism. Oxford: Oxford University Press.1978.
    [10] Fichter E F. Kinematics of a parallel connection. Proceedings of the ASME MechanicsConference, Cambridge,1984:84-85.
    [11] Fichter E F. A Stewart platform-based manipulator: general theory and practical construction.International Journal of Robotics Research,1986,5(2):157-182.
    [12] Sugimoto K. Kinematic and dynamic analysis of parallel manipulators by means of motoralgebra. ASME Journal of Mechanisms Transmissions and Automation in Design,1987,109(1):3-7.
    [13]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [14]汪劲松,段广洪,杨向东.虚拟轴机床的研究进展――兼谈在清华大学研制成功的VAMTIY型原型样机.科技导报,1998(8):32-34.
    [15]杨建新,郁鼎文,王立平,等.并联机床研究现状与展望.机械设计与制造工程,2002(3):10-14.
    [16]史家顺,李波,孙奕澎,等. DSX5-70型三杆虚轴机床的开放式数控系统.制造技术与机床,2000(2):30~32.
    [17]黄田,倪雁冰,王洋,等.3-HSS并联机床运动学设计.制造技术与机床,2000(3):13-15.
    [18]王知行,李建生. BJ-1型并联机床.制造技术与机床,1999(9):55-55.
    [19]王知行,陈辉,石勇.用七轴联动并串联机床加工汽轮机叶片.世界制造技术与装备市场,2002(6):31-32.
    [20] Dasgupta B, Mruthyunjaya T S. Force Redundancy in Parallel Manipulators: Theoretical andPractical Issues. Mechanism and Machine Theory,1998,33(6):727~742.
    [21] Freudenstein F. Kinematics Past, Present and Future. Mechanism and Machine Theory,1973,8(2):151-160.
    [22]廖启征,梁崇高,张启先.空间7R机构位移分析的新研究.机械工程学报,1986,22(3):1-9.
    [23] LEE H Y, LIANG C G. Displacement Analysis of the General Spatial7-Link7R Mechanism.Mechanism and Machine Theory,1988,23(3):219-226.
    [24]梁崇高.勇攀机构运动分析的高峰——空间7R机构位移分析获突破.中国科学基金,1997,11(2):126-128.
    [25]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2006.
    [26] HUNT K H, PRIMROSE E J F. Assembly configurations of some in-parallel-actuatedmanipulators. Mechanism and Machine Theory,1993,28(1):31-42.
    [27] RAGHAVAN M. The Stewart Platform Of General Geometry Has40Configurations. ASMEJournal of Mechanical Design,1993,115(2):277–282.
    [28] WAMPLER C W. Forward displacement analysis of general six-in-parallel SPS platformmanipulators using soma coordinates. Mechanism and Machine Theory,1996,31(3):331–337.
    [29] HUSTY M L. An algorithm for solving the direct kinematics of general Stewart–Goughplatforms. Mechanism and Machine Theory,1996,31(4):365–379.
    [30] WEN FUAN, LIANG CHONGGAO. Displacement analysis of the6-6stewart platformmechanisms. Mechanism and Machine Theory,1994,29(4):547–557.
    [31] ZHANG C D, SONG S M. Forward Position Analysis of Nearly General Stewart Platforms.ASME Journal of Mechanical Design,1994,116(1):54-60.
    [32] Wu Wenda, Huang Yuzheng. The direct kinematic solution of the planar Stewart Platform withcoplanar ground pionts. Journal of computational mathematics,1996,14(3):263-272.
    [33] Dhingra A K, Almadi A N, Kohli D. A Gr bner-Sylvester hybrid method for closed-formdisplacement analysis of mechanisms. ASME Journal of Mechanical Design,2002,122(4):431-438.
    [34]黄昔光,廖启征,魏世民,等.一般6-6型平台并联机构位置正解代数消元法.机械工程学报,2009,45(1):56–61.
    [35] JI Ping, WU Hongtao. A closed form forward kinematics solution for the6-6PStewart platform.IEEE Transactions on Robotics and Automation,2001,17(4):522–526.
    [36] Tsai L W. Robot Analysis: the Mechanics of Serial and Parallel Manipulators. New York, NY:John Willey&Sons,1999.
    [37] Sandipan Bandyopadhyay, Ashitava Ghosal. Analysis of configuration space singularities ofclosed-loop mechanisms and parallel manipulators. Mechanism and Machine Theory,2004,39(5):519-544.
    [38] Sefrioui J, Gosselin C M. On the quadratic nature of the singularity curves of planar threedegree of freedom parallel manipulators. Mechanism and Machine Theory,1995,30(4):533-551.
    [39] St-Onge B M, Gosselin C M. Singularity analysis and representation of spatial six-dof parallelmanipulators. Recent Advances in Robot Kinematics, Norwell:Kluwer,1996:389~398.
    [40]熊有伦.机器人操作.武汉:湖北科学技术出版社,2002.
    [41] Li H D, Gosselin C M, Richard M J, et al. Analytic form of the six-dimensional singularitylocus of the general Gough–Stewart platform. Journal of Mechanical Design,2006,128(1):279-287.
    [42] Jiang Q, Gosselin C M. Determination of the maximal singularity-free orientation workspacefor the Gough–Stewart platform. Mechanism and Machine Theory,2008,44(6):1281-1293.
    [43]曹毅,黄真,丁华锋,等.6/6型Stewart机构姿态奇异及非奇异姿态工作空间分析.机械工程学报,2005,41(8):50-55.
    [44] Verhoeven R. Analysis of the workspace of tendon-based Stewart platforms,[Ph.DDissertation]. Duisburg:University of Duisburg-Essen,2004.
    [45] Kawamura S, Kino H, Won C. High-speed manipulation by using parallel wire-driven robots.Robotica,2000,18(1):13-21.
    [46] Zheng Y Q. Feedback Linearization Control of a Wire-Driven Parallel Support System in WindTunnels. Proceedings of the Sixth International Conference on Intelligent Systems Design andApplications, Washington, DC, USA: IEEE,2004:6-13.
    [47] Ma O, Diao X. Dynamics Analysis of a Cable-Driven Parallel Manipulator for Hardware-in-the-Loop Dynamic Simulation. Proceedings of2005IEEE/ASME International Conference onAdvanced Intelligent Mechatronics, Monterey, California, USA: IEEE,2005:837-742.
    [48] Gouttefarde M, Merlet J P, Daney D. Determination of the Wrench-Closure Workspace of6-DOF Parallel Cable-Driven Mechanisms. ARK, Ljubljana,2006:315-322.
    [49] Gosselin C M, Wang J. Kinematic analysis and design of cable-driven spherical parallelmechanisms. RoManSy, Montreal, Canada,2004:14-18.
    [50] Bosscher P, Riechel A, Ebert-Uphoff I. Wrench-Feasible Workspace Generation forCable-Driven Robots. IEEE Transaction on Robotics,2006,22(5):890-902.
    [51] Pham C B, Yeo S H, Yang G L, et al. Force-closure workspace analysis of cable-driven parallelmechanisms. Mechanism and Machine Theory,2006,41(1):53-69.
    [52]郑亚青.绳牵引并联机构若干关键理论问题及其在风洞支撑系统中的应用研究,[博士学位论文].泉州:华侨大学,2004.
    [53]张波,战红春,赵明扬,等.柔索驱动三自由度球面并联机构运动学与静力学研究.机器人,2003,25(3):198-200.
    [54] CFInFlight. What is skycam? http://www.c_night.com/pages/skycam.asp, September2004.
    [55] http://www.panasonic.com/business/provideo/news/news04_000.asp
    [56] Albus J, Bostelman R, Dagalakis N. The NIST Robocrane. Journal of Robotic Systems,1993,10(5):709-724.
    [57] Bostelman R V, Albus J S, Dagalakis N G, et al. Applications of the NIST RoboCrane.Proceedings of the5th International Symposium on Robotics and Manufacturing, Maui, HI,August14-18,1994.
    [58] http://www.nist.gov/mel/isd/robocrane.cfm
    [59] Thompson C J, Campbell P D. Tendon Suspended Platform Robot, United States Patent, No.5585707,1996.
    [60] Pusey J, Fattah A, Agrawal S K, et al. Design and Workspace Analysis of a6-6Cable-Suspended Parallel Robot. Mechanism and Machine Theory,2004,39(7):761-778.
    [61] Fattah A, Agrawal S K. On the Design of Cable-Suspended Planar Parallel Robots. ASMEJournal of Mechanical Design,2005,127(5):1021-1028.
    [62] Oh S-R, Agrawal S K. Generation of Feasible Set Points and Control of a Cable Robot. IEEETransactions on Robotics,2006,22(3):551-558.
    [63] Oh S-R, Ryu J, Agrawal S K. Dynamics and Control of a Helicopter Carrying a Payload Usinga Cable-Suspended Robot. ASME Journal of Mechanical Design,2006,128(3):1113-1121.
    [64] Williams RL II, Gallina P, Vadia J. Planar translational cable-direct-driven robots. Journal ofRobotic Systems,2003,20(3):107–120.
    [65] Williams II R L, Albus J S, Bostelman R V.3D cable-based Cartesian metrology system.Journal of Robotic Systems,2004,21(5):237-257.
    [66] Williams II R L, Snyder B, Albus J S, et al. Seven-Dof Cable-Suspended Robot WithIndependent Metrology.2004ASME Design Engineering Technical Conferences andComputers and Information in Engineering Conference, Salt Lake City, UT: ASME,2004:1-9.
    [67] Mayhew D, Bachrach B, Rymer W Z, et al. Development of the MACARM–a Novel CableRobot for Upper Limb Neurorehabilitation. Proceedings of the2005IEEE9th InternationalConference on Rehabilitation Robotics, Chicago, IL, USA: IEEE,2005:299-302.
    [68] Beer R F, Naujokas C, Bachrach B, et al. Development and Evaluation of a GravityCompensated Training Environment for Robotic Rehabilitation of Post-Stroke Reaching.Proceedings of the2nd Biennial IEEE/RAS-EMBS International Conference on BiomedicalRobotics and Biomechatronics Scottsdale, AZ, USA: IEEE,2008:205-210.
    [69] Intelligent Automation, Inc. Biomechanical Assessment of Astronauts.http://www.i-a-i.com/view.asp?aid=262
    [70] Barrette G, and Gosselin C M. Determination of the dynamic workspace of cable-driven planarparallel mechanisms. Journal of Mechanical Design,2005,127(2):242-248.
    [71] Otis M J-D, Nguyen-Dang T-L, Laliberte T, et al. Cable Tension Control and Analysis of ReelTransparency for6-DOF Haptic Foot Platform on a Cable-Driven Locomotion Interface.International Journal of Electrical, Computer, and Systems Engineering,2009,3(1):16-29.
    [72] Legg T H. A Proposed New Design for a Large Radio Telescope. Astronomy and AstrophysicsSupplement,1998,130(2):369-379.
    [73] Nahon M, Gilardi G, Lambert C. Dynamics and Control of a Radio Telescope ReceiverSupported by a Tethered Aerostat. AIAA Journal of Guidance, Control and Dynamics,2002,25(6):1107-1115.
    [74] Babazedeh Y, Taghirad H D, Aref M M. Dynamics Analysis of a Redundant ParallelManipulator Driven by Elastic Cables. Proceedings of the IEEE10th International Conferenceon Control, Automation, Robotics&Vision, ICARCV2008, Hanoi, Vietnam: IEEE,2008:536-542.
    [75] Kossowski C, Notash L. CAT4(Cable Actuated Truss-4Degrees of Freedom): A novel4DOFcable actuated parallel manipulator. Journal of Robotic Systems,2002,19(12):605-615.
    [76] Kossowski C. A novel wire driven parallel robot: design, analysis and simulation of the CAT4:
    [M.Sc Dissertation]. Kingston, ON, Canada: Queen's University,2001.
    [77] Heyden T, Woernle C. Dynamics and Flatness-Based Control of a Kinematically UndeterminedCable Suspension Manipulator. Multibody System Dynamics,2006,16(2):155–177.
    [78] HEYDEN T,WOERNLE C. Flatness-based trajectory tracking control of an under-constrainedcable suspension manipulator. Journal of Proceedings in Applied Mathematics and Mechanics,2004,4(1):129-130.
    [79] Hiller M, Fang S, Mielczarek S, et al. Design, analysis and realization of tendon-based parallelmanipulators. Mechanism and Machine Theory,2005.40(4):429–445.
    [80] Verhoeven R, Hiller M, Tadokoro S. Workspace of tendon-driven stewart platforms: Basics,classification, details on the planar2-dof class. International Conference on Motion andVibration Control MOVIC,1998,3:871-876.
    [81] Verhoeven R, Hiller M, Tadokoro S. Workspace, stiffness, singularities and classification oftendon-driven stewart platforms. International Symposium on Advances in Robot Kinematics,Strobl, Austria,1998:105-114.
    [82] Verhoeven R, Hiller M. Estimating the controllable workspace of tendon-based stewartplatforms. Proceedings of the International Symposium on Advances in Robot Kinematics,Portoroz, Slovenia,2000:277-284.
    [83] Verhoeven R, Hiller M. Tension distribution in tendon-based Stewart platforms. Lenarcic J,Thomas F.(Eds.), Advances in Robot Kinematics, Caldes de Malavella, Spain: KluwerAcademic Publishers,2002:117-224.
    [84] Bergamasco M, Frisoli A, Salsedo F. Design of a new tendon driven haptic interface with sixdegrees of freedom. Proceedings of the8th IEEE International Workshop on Robot and HumanInteraction, Pisa, Italy: IEEE,1999:303-308.
    [85] Ottaviano E, Ceccarelli M, Paone A, et al. A Low-Cost Easy-Operation4-Cable Driven ParallelManipulator. IEEE International Conference on Robotics and Automation ICRA’05, Barcellona:IEEE,2005:4019-4024.
    [86] Ottaviano E, Ceccarelli M, Ciantis M D. A4-4cable-based parallel manipulator for anapplication in Hospital Environment. Proceedings of15th Mediterranean Conference onControl and Automation MED07, Athens, Greece,2007:1-6.
    [87] Lafourcade P, Llibre M, Reboulet C. Design of a parallel wire-driven manipulator for windtunnels. Proceedings of the Workshop on Fundamental Issues and Future Directions forParallel Mechanisms and Manipulators, Quebec City, Quebec,2002:187-194.
    [88] Lafourcade P, Llibre M. First steps toward a sketch-based design methodology for wire-drivenmanipulators. Proceedings of IEEE/ASME International Conference on Advanced IntelligentMechatronics, Kobe: IEEE/ASME,2003:143-148.
    [89] Merlet J-P, Daney D. A new design for wire-driven parallel robot. In2nd Int. Congress, Designand Modelling of mechanical systems, Monastir,2007:19–21.
    [90] Merlet J-P. Kinematics of the wire-driven parallel robot MARIONET using linear actuators.2008IEEE International Conference on Robotics and Automation Pasadena, CA, USA: IEEE,2008:3857-3862.
    [91] Jeong J W, Kim S H, Kwak Y K. Kinematics and workspace analysis of a parallel wiremechanism for measuring a robot pose. Mechanism and Machine Theory,1999,34(6):825-841.
    [92] Jeong J W, Kim S H, Kwak Y K, et al. Development of a parallel wire mechanism formeasuring position and orientation of a robot end-effector. Mechatronics,1998,8(8):845–861.
    [93] Jeong J W, Kim S H, Kwak Y K. Design and Kinematic Analysis of the Wire ParallelMechanism for a Robot Pose Measurement. Proceedings of1998IEEE IntemationalConference or1Robotics&Automation, Leuven, Belgium: IEEE,1998:2941-2946.
    [94] Kawamura S, Choe W, Tanaka S, et al. Development of an ultrahigh speed robot FALCONusing wire drive system. Proceedings of the1995IEEE International Conference on Roboticsand Automation, Nagoya, Japan: IEEE,1995:215-220.
    [95] Kino H, Saisyo K, Hatanaka Y, et al. Torque estimation system for human leg in passive motionusing parallel-wire driven mechanism and iterative learning control.2009IEEE11thInternational Conference on Rehabilitation Robotics, Kyoto, Japan: IEEE,2009:719-724.
    [96] Takeda Y, Funabashi H. Kinematic Synthesis of Spatial In-Parallel Wire-Driven Mechanismwith Six Degrees of Freedom with High Force Transmissibility. Proceeding of ASME2000Design Engineering Technical Conference, Baltimore, Maryland, USA: ASME,2000:383–388.
    [97] Spatial In-Parallel Wire-Driven Mechanism with Six Degrees of Freedom.http://www.mech.titech.ac.jp/~msd/takeda/WireHaptic(1998).htm
    [98] Behzadipour S, Khajepour A. A new cable-based parallel robot with three degrees of freedom.Multibody System Dynamics,2005,13(4):371-383.
    [99] Alikhani A, Behzadipour S, Ali Sadough Vanini S, et al. Workspace Analysis of a Three DOFCable-Driven Mechanism. Journal of Mechanisms and Robotics,2009,1(4):0410051-0410057.
    [100] Su Y X, Duan B Y. The application of the Stewart platform in large radio telescope. Journal ofRobotic Systems,2000,17(7):375–383.
    [101] Su Y X, Duan BY, Zheng C H. Genetic design of kinematically optimal fine tuning Stewartplatform for large spherical radio telescope. Mechatronics,2001,11(7):821–835.
    [102] Zi B, Duan B Y, Du J L, et al. Dynamic modeling and active control of a cable suspendedparallel robot. Mechatronics,2008,18(1):1-12.
    [103] Duan B Y, Qiu Y Y, Zhang F S, et al. On design and experiment of the feed cable-suspendedstructure for super antenna. Mechatronics,2009,19(4):503-509.
    [104]訾斌,段宝岩,杜敬利,等.柔性Stewart平台的动力学建模与控制.高技术通讯,2009,16(6):586~590.
    [105] FAST-Home Page.500米口径球面射电天文望远镜(FAST). http://yjsjy.bao.ac.cn/model.html
    [106]隋春平,张波,赵明扬,等.一种3自由度并联柔索驱动操作臂的建模与控制.机械工程学报,2005,41(6):60-65.
    [107] Ning K J, Zhao M Y, Liu J. A New Wire-Driven Three Degree-of-Freedom ParallelManipulator. Journal of Manufacturing Science and Engineering,2006,128(3):816-819.
    [108]刘杰,宁柯军,赵明扬.一种新型柔索驱动并联机器人的模型样机.东北大学学报(自然科学版),2003,23(10):998-991.
    [109]郑亚青,林麒,刘雄伟.低速风洞绳索引并联支撑系统的运动学参数标定.中国机械工程,2006,17(6):551-554.
    [110]郑亚青,刘雄伟.六自由度绳牵引并联机构的可达工作空间分析.华侨大学学报(自然科学版),2002,23(4):393-398.
    [111]郑亚青,刘雄伟.6自由度绳牵引并联机构的运动轨迹规划.机械工程学报,2005,41(2):77-81.
    [112]郑亚青,刘雄伟,林麒.绳牵引并联机构奇异性分析及无奇异机构设计.机械工程学报,2006,42(2):57-62.
    [113]郑亚青. WDPSS缩比模型的低速风洞测力试验.华侨大学学报(自然科学版),2009,30(2):119-122.
    [114]刘树青,吴洪涛.一种用于风洞的新型柔索驱动并联机构设计.南京理工大学学报,2004,28(6):601-605.
    [115]张立勋,刘攀,张晓超.3自由度绳索牵引并联机器人的工作空间分析.机械设计,2005,25(11):24-26.
    [116]张立勋,王克义,张今瑜,等.基于绳索牵引的骨盆运动并联康复机器人的可控性研究.哈尔滨工程大学学报,2004,28(7):190-794.
    [117] Kuipers J B. Quaternions and Rotation Sequences. Princeton, New Jersey: Princeton UniversityPress,1999.
    [118]王东明.消去法及其应用.北京:科学出版社,2002.
    [119]杭鲁滨,王彦,杨廷力.基于Groebner基法的一般串联6R机器人机构逆运动学分析.上海交通大学学报,1991,38(6):853-856.
    [120]梁崇高,荣辉.一种Stewart平台型机械手位移正解.机械工程学报,1991,27(2):26-30.
    [121] Song S-K, Kwon Do-S. New Closed-Form Direct Kinematic Solution of the3-6Stewart-GoughPlatform Using the Tetrahedron Approach. Proceedings of the International Conference onControl, Automation and Systems, Jeju, Korea,2001:484-487.
    [122] Ma O, Angeles J. Architecture singularities of platform manipulators. Proceedings of the1991IEEE International Conference on Robotics and Automation. California: IEEE1991:1542–1547.
    [123] Gosselin C M, Angeles J. Singularity analysis of closed-loop kinematic chains. IEEE TransRobot Autom,1990,6(3):281–290.
    [124] Kawamura S, Ito K. A new type of master robot for teleoperation using a radial wire drivesystem. Proceedings of the1993IEEE/RSJ International Conference on Intelligent Robots andSystems. Yokohama, Japan: IEEE,1993:55-60.
    [125] Ming A, Higuchi T. Study on multiple degree-of-freedom positioning mechanism using wires(part1)-concept, design and control. International Journal of Japan Social Engineering,1994,28(2):131–138.
    [126] Ming A, Higuchi T. Study on multiple degree-of-freedom positioning mechanism using wires(Part2)-development of a planar completely restrained positioning mechanism. InternationalJournal of Japan Social Engineering,1994,28(3):235-242.
    [127] Maeda K, Tadokoro S, Takamori T, et al. On design of a redundant wire-driven parallel robotWARP manipulator. Proceedings of the IEEE International Conference on Robotics andAutomation, Detroit, Michigan: IEEE,1995:895-900.
    [128] Pusey J, Fattah A, Agrawal S, et al. Design and workspace analysis of a6-6cable-suspendedparallel robot. Mechanism and Machine Theory,2004,39(7):761-778.
    [129] Gosselin C M, Barrette G. Kinematic analysis of planar parallel mechanisms actuated withcables. Proceedings of Symposium on Mechanisms, Machines and Mechatronics, Quebec,Canada,2001:41-42.
    [130] Diao X, Ma O. Workspace Analysis of a6-DOF Cable Robot for Hardware-in-the-LoopDynamic Simulation. Proceedings of the IEEE International Conference on Intelligent Robotsand Systems, Beijing, China: IEEE,2006:4103-4108.
    [131] Bosscher P, Ebert-Uphoff I. Wrench-based analysis of cable-driven robots. Proceedings of IEEEConference on Robotics and Automation, New Orleans, LA: IEEE,2004:4950-4955.
    [132] Pham C B, Yeo S H, Yang G, et al. Workspace analysis of fully restrained cable-drivenmanipulators. Robotics and Autonomous Systems,2009,57(9):901-912.
    [133]刘树青.仿生机械壁虎、腱(柔索)驱动的理论研究及初步应用,[硕士学位论文].南京:南京航空航天大学,2004.
    [134]熊有伦.机器人技术基础.武汉:华中科技大学出版社,1996.
    [135] Dagalakis N G, Albus J S, Wang B L, et al. Stiffness Study of a Parallel Link Robot Crane forShipbuilding Applications. ASME Journal of Offshore Mechanics and Arctic Engineering,1989,111(3):183-193.
    [136] Lafourcade P, Zheng Y Q, Liu X W. Stiffness Analysis of Wire-Driven Parallel KinematicManipulators. Huang T ed. Proceedings of the11th World Congress in Mechanism and MachineScience, Tianjin, China: China Machinery Press,2004:1878-1882.
    [137] Jorge Angles.机器人机械系统原理理论、方法和算法(宋伟刚译).北京:机械工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700