用户名: 密码: 验证码:
在轨服务空间机器人机械多体系统动力学高效率建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着空间科学技术的发展,空间机器人机械多体系统的动力学建模获得了广泛的研究。根据现实工程需要,目前空间机器人是自由度较多、结构复杂的航天装备,以及随着空间机器人构件的轻质、柔性化,利用空间刚性机器人的建模理论已经不能解决柔性机器人的动力学建模问题,因而大型空间机器人系统的高效率动力学建模与实时仿真已成为一个新的热点问题。由于大型在轨服务空间机器人的结构复杂性,以及机器人本体的质量随着载荷及燃料的消耗而发生变化等因素,在地面上很难实施全尺寸的动力学参数辨识试验,这就需要开展在轨空间机器人参数辨识技术研究。因此,针对自由浮动空间机器人的动力学高效率建模、实时仿真以及参数辨识问题开展了研究工作,以期为在轨航天器实时控制获得坚实的基础。
     本文对机械多体系统动力学建模的数学基础理论、描述多体系统体间关系的拓扑结构、旋量表示以及基本空间算子等理论进行了详细的介绍;根据Lagrang建立多体系统动力学模型的理论,研究了空间机器人机械多体系统动力学的一般符号推导过程;得到了机械多体系统符号动力学建模算法;利用有限元方法对柔性体的物理模型进行离散,得到了柔性体的质量矩阵和刚度矩阵,由此建立多柔体系统的动力学方程。
     在空间算子代数理论的基础上,将根据空间算子描述的刚性多体系统、柔性多体系统推广到一般的机械多体系统动力学建模应用中进行递推计算。该机械多体系统既可以包含有柔体又包含有刚体,既可以是链式系统又可以是树型多体系统。利用Huston理论的低序体阵列方法描述了一般多体系统的拓扑结构,然后根据判断相邻两体是刚体或者柔体,利用空间算子代数理论建立一般多体系统动力学模型。
     进一步发展了空间算子代数理论体系,采用空间算子描述了机械多体系统广义动力学高效率建模问题。根据系统中铰的驱动情况分别对铰链定义为主动铰和被动铰,通过判断铰链的类型分别按照两次从系统的顶端到基座的顺序、一次从基座到顶端的顺序进行了系统铰接体惯量的递推、系统冗余力的递推和广义加速度和广义主动力的递推。通过上述三种方式的递推过程建立了在轨服务空间机器人系统广义递推动力学模型,实现了高效率O(n)次的计算效率,该算法可以应用于一般机械多体系统(包括刚性多体系统、柔性多体系统、欠驱动系统),求解反向动力学、正向动力学和混合动力学递推。
     基于翟婉明提出的新型积分校正算法,通过将二次微分方程逐步降阶成代数方程,利用违约校正逐次求解出方程的离散值。并且进一步发展了线性多步积分算法高效率的求解大型微分(微分-代数)方程组。全面介绍了机械多体系统动力学的直接数值方法,重点论述了求解微分方程和微分代数方程组的线性多步积分算法。
     分析并解决了利用动量守恒方法进行参数辨识过程中的线性方程组奇异性问题,并且研究了机器人的各类参数等因素对辨识研究的影响。研究了空间刚性机器人(单臂和双臂)本体和操作臂抓取未知目标卫星的参数辨识问题。根据机器人本体携带的测速敏感器测得本体质心的线速度及角速度,通过依次使不同的铰具有初始速度的方法,基于线动量及角动量守恒即可分别对双臂空间机器人本体和未知目标卫星进行未知参数的辨识。
     根据上述理论成果,完成了机械多体系统符号动力学软件编制。该软件有强大的功能模块,运用Mathematica符号软件开发的。软件包括机械多体系统动力学建模、数值积分算法、有限元处理、可视化输出以及控制等模块。软件能实现机械多体系统的动力学符号与数值仿真分析,并可以获得系统的拓扑结构、约束信息以及系统各机械参数的描述,可以输出如仿真运行时间、SOA算子、运动、受力等,并以表格、曲线和动画的形式表现出来。
     最后在以上理论和方法的基础上,对航天工程实例进行了仿真计算验证。对本文提出的理论方法的可行性以及有效性在地面实验室中得到验证。
At present, with the development of the space science and technology, the space robots are becoming imperative to understand their distinctive dynamics. Flexible space robots, as well as large flexible space structures in general, have unveiled a new and challenging field of dynamics and control. The dynamics model of the space flexible robots is very complex. So the high O(n) recursive dynamic method and real time simulation to solve large space robots system become very important. The parameter identification is necessary for precise control because the payload changes the kinematics of the system together with the dynamics. Two methods are proposed under the condition that the robot is free to translate and rotate. The kinematics, recursive dynamics, real time simulation and parameter identification of space robot system have been discussed in this thesis.
     Based on the mathematical basic theory of the multibody system dynamics, the topological structure, screw theory and Spatial Operator Algebra were discussed. The dynamics equation of space robots multibody system was derived based on Lagrange equation. The model of the flexible body was discrete used finite element method, and the mass matrix and stiffness matrix were gained. The dynamic equation of flexible multibody system was gained.
     The recursive dynamics of the general multibody system, which contain rigid body and flexible body, was discussed. The topology of the general multibody system was described used Huston’s Lower-body-array theory, then recursive dynamics was researched according to the feature (flexible or rigid) based on SOA theory.
     The hybrid recursive dynamics base on the spatial operator algebra theory and real time simulation of the generalized flexible multibody was presented in this paper. the generalized flexible multibody was described in according to the type of the joint (active or passive); then the generalized articulated inertia-matrix, the residual forces and the generalized acceleration and torque were computed through twice tip-to-base recursive and once base-to-tip recursive; at last the O(n) hybrid dynamic was gained. Next the real time solver for the large differential-algebra equation was studied based on the linear multi-step method in this paper. Simulations results show that the dynamic modeling and fast integration techniques proposed in this paper are very useful.
     With the parameter identification methods for inertial parameters of the base and unknown object handled by manipulators on a free-floating space robot was concerned in this paper. Firstly, kinematic model of robots based on spatial operator algebra theory was gained. Next, parameter identification of the base was studied based on the conservation principle of linear and angular momentum, then parameter identification of the unknown object handled by manipulators is considered based on the parameter of base. Al last the effect of the parameter of robots to parameter identification was considered.
     Numerical integration method based linear muti-step numerical method was researched. Various numerical methods for dynamics of multibody systems are discussed. A new method for solving the differential-algebra equation and differential equation are discussed. This method was proposed by professor Zhai-Wanming based on Newmark-βmethod. The correct value of the dynamics equation was gained by translates the differential-algebra equation or differential equation to algebra equation by constraint stabilization.
     This chapter has laid the foundation for software module programming. It has studied the multibody system mark dynamics programming. It uses the Mathematica software platform. And it is a visualization contact surface, so the user can easily describe the topology, the restraint information, and information acquisition of the multibody systems which is for simulation analysis. And it also gives the result like simulation run time, the SOA operator, the movement, the stress and so on with the form of the curve and the animation formal expression and so on.
     At last, engineering problems were simulated on computer according to the above theories.The feasibility of the parameter identification methods is demonstrated by a hardware experiment on the ground as well as numerical simulation.
引文
[1]黄文虎、邵成勋等著,多柔体系统动力学.北京,科学出版社,1996
    [2]付京逊,冈萨雷斯RC,李CSG.机器人学.北京,中国科学技术出版社,1989
    [3]蔡自兴,机器人学[M].北京,清华大学出版社,2000:
    [4]尼库(美),机器人学导论—分析、系统及应用(孙富春译).北京,电子工业出版社,2004:
    [5] L. Akin, M. L. Minsky, E. D. Thiel et al. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS) phase II. NASA-CR-3734 - 3736, 1983.
    [6] M. Oda. ETS-VII, Space Robot In-Orbit Experiment Satellite. Proc. 1996 IEEE Int. Conf. on Robotics and Automation, 19967, 39-744.
    [7] K. Yoshida. Space Robot Dynamics and Control: To Orbit, From Orbit, and Future. Robotics Research, The Ninth International Symposium, ed. By J. Hollerbach and D. Koditschek, Springer, 1999, 449-456.
    [8]柳长安,李国栋,吴克河等.自由飞行空间机器人研究综述,机器人,2002,24(4):p380~384
    [9] Jain, G. Rodriguez. Recursive Flexible Multibody System Dynamics using Spatial Operators. Journal of Guidance, Control and Dynamics, 1992(15): 1453-1466
    [10]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用.机电一体化,2000(5):17~19
    [11] Rong-Shine Lin. Virtual Prototyping: Virtual Environments and the Product Design Process. IIE Transactions.MAR.1998,30(3):279
    [12]张旭,毛恩荣.机械系统虚拟样机技术的研究与开发.中国农业大学学报,1994,4(2):94~98
    [13]刘贤喜.机械系统虚拟样机仿真软件的实用化研究, [博士学位论文].北京:中国农业大学,2001
    [14]陈立平,张云清等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005
    [15] M. W. Walker, and D. M. Kim,“Satellite stabilization using space leeches,”Proc. IEEE Amer. Contr. Conf., San Diego, CA, pp. 1314-1319, May 23-25 1990.
    [16] S. Ali. A. Moosavian, and E. Papadopoulos, Kinematic control of redundant freefloating robotic systems. Journal of Advanced Robotics, vol. 15, pp. 429-448, 2001.
    [17]杨唐文,柔性太空机械手振动抑制和误差补偿控制—传感、控制和实验,[东南大学博士学位论文],南京,东南大学,2001
    [18] A. Jain and G. Rodriguez. An Analysis of the Kinematics and Dynamics of Underactuated Manipulators. IEEE Transactions on Robotics and Automation, 1993 9(4),
    [19] H. Peiand and Y. Xu. Control of under actuated free-floating robots in space. Proeeedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Part2(of’3),Victoria,Can,1998:1364一1369P
    [20] Murotsu Y,Senda K.Parameter identification of unknown object handled by free—flying space robot[J].Journal of Guidance,Control,and Dynamics,1994,17(3):488~494.
    [21]刘又午,休斯顿.多体系统动力学.天津.天津大学出版社, 1990.
    [22]何柏岩.柔性多体系统的广义确定性动力学模型及其仿真研究, [天津大学博士学位论文],天津,天津大学,2003
    [23] J. ZNAMENáˇCEK, M. VALá?EK. An efficient implementation of the recursive approach to flexible multibody dynamics. Multibody System Dynamics, 1998(2): 227–252.
    [24]陆佑方.柔性多体系统动力学.北京:高等教育出版社.1996.7
    [25]贾书惠,刚体动力学,北京,高等教育出版社,1987
    [26] Hooker .W W,Wargulies G . The Dynamical Attitude Equation for an n–Body Satellite. J. Astron.,Sci.,Vol.12 ,19 65,pp 123-128
    [27] Hooker W .W .,A Set of r Dynamical Attitude Equation for an Arbitrary n–Body Satellite Having r Rotational Degree of Freedom, A IAA J., 1970,.8, pp 12 05 -1207.
    [28] Roberson R.E. et al, A Dynamical Formulism for an Arbitrary Number of Interconnected Rigid Bodies with Reference to the problem of Satellite Attitude Control,3rd IFAC Congress,1966
    [29] Witenburg J ,Dynamics of System o f Rigid Bodies, Stutgart, Te ubner,1977
    [30] Gupta VK. Dynamic analysis of multi-rigid-body systems. ASME Journal of Engineering for Industry, 1996(3):886-892
    [31] Paul B Analytical dynamics of mechanisms-A computer oriented overview. Mechanism and Machine Theory, 1975, 10(6):481-507
    [32] Nikravesh PE Computer-aided analysis of mechanical systems. Prentice-Hall, Englewood Cliffs, (1988) New Jersey
    [33] Fuhrer C, Schwertassek R. Generation and solution of multibody system equations. Int. J. Non-Linear Mechanics. 199025(2/3):127-141
    [34] Shabana AA. Dynamics of multibody systems, Cambridge University Press, 2005New York
    [35] Seth PN, Uicker JAJ. IMP (Integrated Mechanism Program): a computer-aided design analysis system for mechanisms and linkages. ASME Journal of Engineering for Industry, 1972,94(2):454-464
    [36] Orlando N, Chance MA, Calahan DA () A sparsity oriented approach to the dynamic analysis and design of mechanical systems, Part I and II. Journal of Engineering for Industry, 1977,99(3):773-784
    [37] Uicker Jr. JJ. Dynamic force analysis of spatial linkages. ASME Journal of Applied Mechanics, 1967,34:418-424
    [38] Smith DA, Chance MA, Rubines AC, The automatic generation of a mechanical model for machinery. ASME Journal of Engineering for Industry, 1973,95(2):629-635
    [39] Chance MA, Bayazitoglu YO. Development and application of a generalized d’alembert force for multifreedom mechanical systems. ASME Journal of Engineering for Industry, 1971,93(1):317-327
    [40]金国光.带有大型伸展机构航天器的柔性多体系统动力学分析研究, [天津大学博士学位论文],天津,天津大学,2000
    [41] A.A.Shabana. Dynamics of multibody systems,John Wiley&Sons,1989
    [42] Erdman,A. Cz,Sandor,et al.Kineto-Elastodynamics-A Review of the State-of-the Art and Trends,Mech.Mach.Theory,1972,7(1):19~33
    [43] Winfrey R C. Elastic Link Mechanism Dynamics,ASME,Journal of Engineering for Industry,1971,93:268~272
    [44]杨国良.工业机器人动力学仿真及有限元分析. [华中科技大学硕士学位论文],武汉,华中科技大学,2007
    [45] Canavin JR and Likins PW, Floating reference frames for flexible spacecraft, J. Spacecr. Rockets (1977)14(12), 724–732
    [46] B. Jonker, A finite element dynamic analysis of spatial mechanisms with flexible links. Compui. Meth. Appl. Mech. Engng 1989,76, 1740
    [47] Shabana, A. A. and Yakoub, R. Y.,‘Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory’, in Journal of Mechanical Design 2001,123, 606-621.
    [48] Berzeri, M. and Shabana, A. A.‘Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation’, Journal of Sound and Vibration, 2000,235(4), 539- 565.
    [49] Omar, M. A. and Shabana, A. A.,‘A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation’, in Journal of Sound and Vibration 243(3), 2001, 565-576.
    [50] Mikkola, A. M. and Shabana, A. A.,‘A New Plate Element based on the Absolute Nodal Coordinate Formulation’, in Proceedings of ASME 2001 DETC, Pittsburgh, 2001.
    [51] Berzeri, M. and Shabana, A. A.‘Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation’, Journal of Sound and Vibration, 2000,235(4), 539- 565.
    [52] Omar, M. A. and Shabana, A. A.,‘A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation’, in Journal of Sound and Vibration, 2001,243(3), 565-576.
    [53] Mikkola, A. M. and Shabana, A. A.,‘A New Plate Element based on the Absolute Nodal Coordinate Formulation’, in Proceedings of ASME 2001 DETC, Pittsburgh, 2001.
    [54]洪嘉振,梁敏.多刚体内碰撞数学模型与计算程序.力学学报.1989 21 (4)
    [55]曲广吉.柔性航天器动力学分析.北京:航天科技报告.1995
    [56]陆佑方.柔性多体系统动力学一一理论和应用力学的一个活跃领域.力学与实践.1994,2
    [57]吴洪涛,熊有伦.机械工程中的多体系统动力学问题.中国机械工程,2000,11(6):608~612
    [58] M. Pascal. Some Open Problems in Dynamic Analysis of Flexible Multibody Systems. Multibody System Dynamics 5: 315–334, 2001
    [59] Belytschko T, Schwer L, and Klein MJ, Large displacement, transient analysis of space frames, Int. J. for Numer. Methods in English, 1977 (11), 65–84.
    [60] Simo JC and Vu-Quoc L, On the dynamics in space of rods undergoing large motions: A geometrically exact approach, Comput. Methods Appl. Mech. Eng. (1988) 66, 125–161.
    [61] Cardona A and Geradin M, A beam finite element non-linear theory with finite rotations, Int. J. Numer. Methods Eng. 1988 (26), 2403–2438.
    [62] Downer JD, Park KC, and Chiou JC, Dynamics of flexible beams for multibody systems: A computational procedure, Comput. Methods Appl. Mech. Eng. 1992,96, 373–408
    [63] Agrawal OP and Shabana AA. Dynamics analysis of multibody systems using component modes, Comput. Struct. 1985,21(6), 1303–1312.
    [64] Canavin JR and Likins PW, Floating reference frames for flexible spacecraft, J. Spacecr. Rockets, 1977,14(12), 724–732.
    [65] Cavin RK and Dusto AR, Hamilton’s principle: Finite element methods and flexible body dynamics, AIAA J. 1977,15, 1684–1690.
    [66] Argyris JH, Kelsey S, and Kaneel H, Matrix Methods for Structural Analysis: A Precis of Recent Developments, MacMillan, 1964 New York.
    [67] Belytschko T and Hsieh BJ, Non-linear transient finite element analysis with convected co-ordinates, Int. J. Numer. Methods Eng. 1973 7, 255–271.
    [68] Belytschko T, Schwer L, and Klein MJ, Large displacement, transient analysis of space frames, Int. J. for Numer. Methods in English , 1977 11, 65–84.
    [69] Belytschko T and Glaum LW. Applications of higher order corotational stretch theories to nonlinear finite element analysis, Comput. Struct. 1979, 10, 175–182.
    [70] Belytschko T, Lin JI, and Tsay C-S, Explicit algorithms for the nonlinear dynamics of shells, Comput. Methods Appl. Mech. Eng. 1984 42, 225–251.
    [71]蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究.力学学报. 2005,37(1):48-56
    [72] Edelstein E, Rosen A. Nonlinear Dynamics of a Flexible Multirod (Multibeam) System. ASME. J. DN. Sys. Measurement Control. 1998, 120,( 2),pp. 224-231
    [73]吴立成,陆震.一种柔性机器人的子杆法建模方法.机器人. 2000,22 , (5),pp. 344-349
    [74] P. B. Usoro, R. Nadira and S. S. Mahil, `A finite element/Lagrange approach to modelling lightweight flexible manipulators', Trans. ASME J. Dyn. Sys. Meas. Control, 1986,108, 198-205
    [75] Z. Mohamed, `A finite element approach to modelling a single-link flexible manipulator system', MSc thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK,1995.
    [76] Y. Wang, W.J. Zhang, H.M.E. Cheung. A finite element approach to dynamic modeling of flexible spatial compound bar gear systems Mechanism and Machine Theory, 2001 (36) 469-487
    [77] Omar, M. A., and Shabana, A. A.,‘‘A Two-Dimensional Shear Deformable Beam for LargeRotation and Deformation Problems,’’J. Sound Vib., 2001,243,pp. 565–576.
    [78] Johannes Gerstmayr. A 3D finite element approach to flexible multibody systems. Fifth World Congress on Computational Mechanics 2002,July 7–12, Vienna, Austria
    [79] E. Carrera, M. A. Serna Inverse dynamics of flexible robots. Mathematics and Computers in Simulation. 1996, (41): 485-508
    [80] Kane T R, Ryan R R, Banerjee A K, etal. Dynamics of a cantilever beam attached to a moving base[J].Journal of Guidance,Control,and Dynamics,1987,10(2):139—151.
    [81] Puneet Singla. Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS。2006,Vol. 29, No. 4,:892-899
    [82] Satoko Abiko, Roberto Lampariello and Gerd Hirzinger. Impedance Control for a Free-Floating Robot in the Grasping of a Tumbling Target with Parameter Uncertainty.
    [83] Shu-Xin Wang, Yan-Hui Wang, Bai-Yan He. Dynamic modeling of flexible multibody systems with parameter uncertainty. Chaos, Solitons and Fractals, 2008 (36) 605–611
    [84] Katoh, R., Sakon, H., Yamamoto, T. A Control Method for Space Manipulator Mounted on a Free-Flying Robot by Using Parameter Identification, Proceedings of the Asian-Paci_c Vibration Conf.' 1993,pp.1205-1209,.
    [85] Stepanenko Y, Vukobratovic M. Dynamics of articulated open-chain active mechanisms. Mathematical Biosciences, 1976,28(1-2):137-170
    [86] Luh JYS, Walker MW, Paul RPC. On-Line computational scheme for mechanical manipulators. ASME Journal of Dynamic Systems, Measurement and Control, 1980,102(2):69-76
    [87] J. ZNAMENáˇCEK, M. VALá?EK. An efficient implementation of the recursive approach to flexible multibody dynamics. Multibody System Dynamics, 1998(2): 227–252.
    [88] Yunn-Lin Hwang. Recursive Newton–Euler formulation for flexible dynamic manufacturing analysis of open-loop robotic systems. Int J Adv Manuf Technol, 2006 (29): 598–604
    [89] Saha SK. Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. ASME Journal of Applied Mechanics, 1999.66(4):986-996
    [90] Saha SK, Schiehlen WO. Recursive kinematics and dynamics for closed loop multibody systems. Int. J. of Mechanics of Structures and Machines. 2001.29(2):143-175
    [91] Anderson KS, Critchley JH. Improved order-n performance algorithm for the simulation of constrained multi-rigid-body dynamic systems. Multibody System Dynamics 2003,9(2):185-212
    [92] Jain A ,Rodriguez G. A spatial operator algebra for computation multibody dynamics.In:International Conference on Scientific Com putation and Differential Equations ,Grado.Italy.1997
    [93]熊启家,基于空间算子代数理论的链式多体系统递推动力学研究,南京,南京航空航天大学,2003
    [94]方喜峰,吴洪涛,刘云平,陆宇平.基于空间算子代数理论计算多体系统动力学建模.机械工程学报,2008,1(45):228-234
    [95] A. Jain and G. Rodriguez. An Analysis of the Kinematics and Dynamics of Underactuated Manipulators. IEEE Transactions on Robotics and Automation, Vol. 9, No. 4, August 1993
    [96] A. Sohl, E. Bobrow. A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains. Journal of Dynamic Systems, Measurement, and Control,2001(23):391-399
    [97]何广平,陆震,王凤翔.欠驱动柔性机器人动力学耦合奇异研究.航空学报,2005(26)2:240-245
    [98]陈炜,余跃庆,张绪平,苏丽颖.欠驱动柔性机器人动力学建模与耦合特性.机械工程学报,2006(42)6:16-23
    [99]林壮,欠驱动水平机械臂滑模变结构控制研究,[哈尔滨工程大学硕士学位论文],哈尔滨,哈尔滨工程大学,2007
    [100]袁兆鼎等,刚性常微分方程初值问题的数值解法,科学出版社,1987
    [101] Claus,H.,Singly-implicit Runge-Kutta Methods for Retarded and Ordinary Differential Equations, Computing,1990,434(3):209-222
    [102]齐治昌,数值分析及应用,哈尔滨,国防科技大学出版社,1987
    [103]赵强,基于伴随变换算子表示的链式多体系统动力学理论与应用研究,[南京航空航天大学博士学位论文],南京航空航天大学,2006.
    [104] Deutsch S,Malone T B.The applications of the remote control of the manipulator in manned space exploitation.CISMIFTOMM Symp.theory of Practical Robot Manipulators, 1974,1(2): 137-148
    [105] Gossain D,Smith P. Structural design and test of the shuttle RMS. Pro of AGARD Conf, 1983, 327: 2.1-2.10
    [106]刘云平.航天器多体系统姿态动力学与控制,[南京航空航天大学博士学位论文],南京,南京航空航天大学,2009
    [107] http://zwgk.miit.gov.cn/n11293472/n11293832/n11379123/n11527658/11548860.html
    [108] A. Tatsch, N. Fitz-Coy, and W. Edmonson,“Heterogeneous Expert Robots for On-Orbit Servicing: A New Paradigm,”Infotech Aerospace Conference, Arlington, Virginia, September 26 - 29, 2005
    [109]洪炳熔,柳长安等著.自由飞行空间机器人运动控制及仿真.科学出版社,2005
    [110] Y. UMETANI, K. YOSHIDA. Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1989,5,(3): 303-314
    [111] Vafa, Z., and Dubowsky, S.,“The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach,”The International Journal of Robotics Research, Vol. 9, No. 4, August 1990, pp. 3-21.
    [112] Saha, S.K., ``A unified approach to space robot kinematics.'' IEEE Trans. on Rob. 1996, 12, (3), June, pp. 401--405
    [113]张宇,郝悍勇,孙增圻.柔性宏刚性微空间机器人末端连续轨迹跟踪控制研究.机械工程学报. 2005, (41) 08:125-131.
    [114] Motoyuki K, Yoshifumi M et al. PDS Control of Macro-Micro Arm. In: Proceedings of the 8th IEEE Int. Workshop on Advanced Motion Control. Kawasaki, Japan, 2004: 123-128.
    [115] Cheng X P and Patel R V. Neural network based tracking control of a flexible macro-micro manipulator system. Neural Networks, 2003, 16: 271-186.
    [116] SHINJI HOKAMOTO. FORMULATION AND CONTROL OF SPACE-BASED FLEXIBLE ROBOTS WITH SLEWING-DEPLOYABLE LINKS[J]. Acta ASlronaulim Vol. 42, No, 9, pp. 519--531, 1998
    [117] M. CARON and V. J. MODI. Order-N Formulation and Dynamics of Multi-Unit Flexible Space Manipulators[J]. Nonlinear Dynamics , 1998,17: 347–368,
    [118] Kino Massaru,Goden Tatsuhito.Reaction Torque Feedback Based Vibration Control in Multi-degrees of Freedom Motion System.IECON Proceedings,1998,3:1807~1811
    [119] X.P. Cheng1, R.V. Patel. Neural network based tracking control of a flexible macro–micro manipulator system. Neural Networks, 2003, (16) 271–286
    [120] C.Fernandes,L.Gurvits and Z.X.Li.Attitude control of space platform/manipulator system using internal motion.Proceedings of IEEE Int.Conf on Robotics and Automation,1992:893-898
    [121] Y.Nakanura,T.Suzuki.Planning spiral motions of nonholonomic free-flying space robots. Journal of Spacecraft and Rockets.1997,34(1):137-143
    [122] Yoshihilo Makanura,Ranjan Mukherjee.Nonholonomic path planning of space robots via a bidirectional approach.IEEE Transactions on Robotics and Automation.1991,7(4):500-514
    [123] Wenfu Xu, Bin Liang. A Ground Experiment System of Free-floating Robot for Capturing Space Target. J Intell Robot Syst 2007 (48):187~208.
    [124] Menon, C., Busolo, S., Cocuzza, S., et al.: Issues and new solutions for testing free-flyingrobots[J]. IAC- 04-IAF-1.J. 2004 (5) 1~11
    [125] ByungMoon Kim et al. Designing a low-cost spacecraft simulator. IEEE Control Systems Magazine, 2003.8
    [126]于靖军,刘辛军,丁希仑,戴建生.机器人机构学的数学基础.北京:机械工业出版社,2008
    [127]刘芳华.基于旋量和模态综合的高效递推多柔体系统的建模和仿真研究. [南京航空航天大学博士学位论文],南京,南京航空航天大学,2009
    [128] P. Fisette, D.A. Johnson, J.C. Samin,Afully symbolic generation of the equations of motion of multibody systems containing flexible beams, Comput. Meth. Appl. Mech. Eng. 1997 (142) 123–152.
    [129] Quoc V. L., Simo J. C., Dynamics of Earth-Orbiting Flexible Satellites with Multibody Components. Jounral of Guidance,Control,and Dynamics, 1987, 10,(6),pp 549-558.
    [130] LucaA .D .,Siciliano, Closed-Form Dynamic Model of Planar Multi-Link Light weight Robots, IEEE Trans.on System,Man,and Cybenretics, 1991, 21,(4),pp 826-839.
    [131] Bellezza F. L.,Lanari U. G.,Exact Modeling of the Slewing Flexible Link, Proc. 1990 Int. Conf. On Robotics and Automations, 1990, pp 73 4- 739.
    [132] Yigit A.,Scott R. A.,Ulsoy A. G,Flexural Motion of a Radically Rotating Beam Attacheda Rigid Body,J Sound and Vibration, Vol.12 1, No2, 1988,pp 201-210.
    [133] Benati M .,Morro A., Formulation of Equations of Motion for a Chain of Flexible Link Using Hamiltons Principle, ASME Jounral of Dynamic Systems, Measurement and Control, 1994, 11,(6),pp 81-88.
    [134] E. Carrera, M. A. Serna Inverse dynamics of flexible robots. Mathematics and Computers in Simulation. 1996, (41): 485-508
    [135] J. ZNAMENáˇCEK, M. VALá?EK. An efficient implementation of the recursive approach to flexible multibody dynamics. Multibody System Dynamics, 1998(2): 227–252.
    [136] Yunn-Lin Hwang. Recursive Newton–Euler formulation for flexible dynamic manufacturing analysis of open-loop robotic systems. Int J Adv Manuf Technol, 2006 (29): 598–604
    [137]翟婉明.车辆-轨道耦合动力学(第三版).北京,科学出版社,2007
    [138]钟万勰,子域精细积分及偏微分方程数值解,计算结构力学及其应用1995,12(3),
    [139] Katoh, R., Sakon, H., Yamamoto, T. A Control Method for Space Manipulator Mounted on a Free-Flying Robot by Using Parameter Identification, Proceedings of the Asian-Paci_c Vibration Conf. 1993:1205-1209,.
    [140] Slotine E, Li W.Composite adaptive control of robot manipulator[J].Automatica,1989,25(4):509—519.
    [141] Adenilson R. da Silva, Luiz C. Gadelha de Souza, Joint Dynamics Modeling and Parameter Identification for Space Robot Applications. Mathematical Problems in Engineering,2007(10): 19
    [142] Roberto Lampariello, Gerhard Hirzinger. Modeling and Experimental Design for the On-Orbit Inertial Parameter Identification of Free-flying Space Robots. ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference:Long Beach, California, USA September 24-28, 2005:1-10
    [143] Murotsu Y, rsujios.System identification and resolved acceleration control of space robots by using experimental system.Proceedings of the IEEE/RSj International Workshop on Intelligent Robots and System.USA:IEEE,1991.1669—1674.
    [144] Murotsu Y,Senda K.Parameter identification of unknown object handled by free-flying space robot.Journal of Guidance,Control,and Dynamics,1994,17(3):488-494.
    [145]郭琦,洪炳镕.双臂四自由度空间机器人捕捉未知目标的参数辨识.机器人,2005(27),6,pp:512-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700