用户名: 密码: 验证码:
基于虚拟样机技术的气垫船推进轴系动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气垫船的结构特点,使船体-推进轴系在复杂海洋环境中的耦合问题进一步明显。由于船体-轴系耦合振动问题的复杂性,传统的船舶推进轴系的研究方法大多建立在刚性船体或船体静态变形的基础上,忽略了轴系和船体之间的耦合联系,无法满足气垫船推进轴系动力学特性的研究。因此,从船体-推进轴系整体运动的角度出发,进行气垫船推进轴系动力学特性研究,对于气垫船的发展具有重要意义。
     本文在系统论述轴系及船体振动、复杂海洋环境激励和虚拟样机技术发展概况和研究现状的基础上,应用现代虚拟样机技术,围绕气垫船推进轴系动力学特性问题,进行了详细研究。论文具体内容包括以下几个方面:
     1.针对气垫船推进轴系的结构特点,详细阐述有限元、模态综合法、多体动力学和优化理论等虚拟样机技术的支撑理论,并对刚柔耦合系统多体动力学分析的计算方法进行了分析;
     2.根据气垫船推进轴系的结构特点,提出了一种基于虚拟样机技术,融合多体系统运动学、动力学理论、计算机实体建模和多领域仿真技术,面向系统整体运动的船体-轴系动力学特性研究方法;
     3.对包括柔性船体、轴段、支承系统、弹性联轴器和减速箱在内的气垫船推进轴系虚拟样机建模方法进行了详细研究。对船体Timoshenko离散建模方法和有限元方法建模进行了比较;对标准化、系列化的齿轮减速箱的参数化建模和虚拟装配问题进行了分析,并对直齿轮副和斜齿轮副的接触刚度进行了研究;
     4.通过简化的单轴-弹性支承系统和多段轴-弹性支承系统虚拟样机动力学模型,采用正弦载荷扫频进行了系统的频响特性分析,全面研究了轴-弹性支承系统在基础受不同位移激励、不同相位和激励频率下的轴系的动力学响应问题,比较了刚性轴-弹性支承系统和弹性轴-弹性支承系统的区别,得到了相应的结论;
     5.通过在虚拟样机环境中建立船体实时变形的状态变量,建立了船体-轴系耦合运动的动力学模型。通过简化的船体-多段轴-弹性支承动力学模型,对影响轴承支承力的因素进行了仿真研究;
     6.运用本文提出的基于虚拟样机技术的船体-轴系动力学特性的研究方法,通过结构拓扑分析,建立了气垫船推进轴系实验装置的虚拟样机仿真模型。对推进轴系中减速齿轮箱、中间轴等进行了多种工作状态下的动力学特性研究,取得的结论对实船的研究工作具有相应的指导意义;
     7.对影响推进轴系动力学特性的推进桨激励力和波浪载荷对船体的激励作用进行了详细研究,运用船体运动响应的频域研究方法,确定了频域研究中船体运动响应频响函数的求解方法,通过线性波浪叠加法构造了给定海浪谱下的随机波浪时域模型和海浪波面角时域模型,该时域模型可为进一步的实船船体运动分析提供激励输入;
     8.对气垫船推进轴系进行了优化设计研究。分析了气垫船推进轴系优化设计中目标函数、设计变量和约束函数的选取问题。采用虚拟样机参数化建模方法,结合海浪激励的分析结果,应用广义缩减梯度法对砰击海情下气垫船推进轴系进行了结构优化;
     9.首次提出了一种能模拟复杂海洋环境的激励可控的柔性基础轴系推进系统实验装置的设计思想,设计建造了柔性基础-推进轴系实验装置。该实验装置可作为气垫船推进轴系动力学特性研究有效的实验验证平台。在此实验装置上进行了气垫船推进轴系的实验研究。实验研究表明,本文所提出的基于虚拟样机技术的气垫船推进轴系动力学特性的分析方法是有效和正确的。
     最后,对本文的主要创新点进行了归纳评述,并对进一步的研究方向提出了作者的一些看法。
Because of structure characteristics of hovercraft, coupling problems of ship hull-shafting were more and more obvious under action of complex sea excitement. Traditional research methods of ship shafting were based on rigid ship hull or static deforming of hull because coupling characters was very complex between ship shafting and ship hull. These simplified methods sever connection between shafting and hull. At present, effective study method still is absent to coupling characters study between shafting and ship hull acted by complex environment. So, how to solve the dynamics problems of hovercraft's propulsion shafting is significative to development of hovercraft.
     In the dissertation, present study state of vibration of shafting and ship hull, excitation of complex ocean wave and virtual prototyping were systematically discussed. On the base, dynamics problems of hovercraft were studied particularly applied modern virtual prototyping. The main contents of the dissertation are as follows.
     1. According to structures characteristics of hovercraft's propulsion shaftig, basic theories of virtual prototyping were studied particularly including FEM, modal synthetic method, multi-body dynamics and optimization theory. In addition, numerical calculation method to analyze multi-body system comprised rigid bodies and flexible bodies were studied.
     2. According to structure characteristics of hovercraft's propulsion shaftig, a research method that study dynamics characteristics of ship hull-shafting was put forwarded based on virtual prototyping combining muli-body dynamics, solid modeling of computer and multi-field simulation.
     3. Virtual prototyping of hovercraft's propulsion shaftig comprised flexible ship hull, shaft, bearing systems, elastic couplers and gearbox was studied particularly. Discrete modeling method of ship hull applied Timoshenko elastic beam was compared with modeling method of ship hull applied FEM. Elastic bearing's modeling method and elastic coupler's modeling method were determined in virtual prototype. Parameterize modeling of gear and virtual assembly of gearbox were studied, and contact stiffness of straight gear pair and helical gear pair was studied too.
     4. Virtual prototypes model of single shaft-elastic bearing system and model of multi-shaft system were established. These model's frequency response characteristics were analyzed through sine sweep-frequency method, and shafting dynamic responses were studied when foundation of shafting-elastic bearing system was excited by displacements excitation of variant frequency, variant phase and variant displacement amount. And corresponding conclusions were obtained. According to above problems, differences were compared between rigid shaft-elastic bearing system and elastic shafting-elastic shafting system.
     5. Through creating state variables of real-time deforming of ship hull, dynamic model of coupling system of ship hull-shafting was established in virtual prototype environment. Through simplified dynamic model of ship hull-multi shafts-elastic bearing, factors to influence bearing force were studied.
     6. Applied the modeling and studied method of ship hull-shafting system that been put forward in the dissertation, simulation model of experimential facility of hovercraft's propulsion shafting was established through structure topology analysis. Some part's dynamics characteristics were obtained including gearbox and middle shaft through simulation research. These research conclusions could have directive effects to research of actual ship.
     7. Excitement effect of sea wave acted on propeller and hull were introduced、Applied frequency domain analysis method to movement response of ship hull, solution method of frequency-response function of movement of ship hull was determined. Time domain model of random wave and time domain model of wave surface angle were synthesized through linear wave superposition method. These time domain model could be farther excitement import to movement analysis of actual ship.
     8. Hovercraft's propulsion shafting was as specific study object, how to select objective functions, design variables and restraint functions on optimization design of hovercraft's propulsion shafting were analyzed. Applying parameterize modeling method of virtual prototype, combining the studying results of sea excitement, and using generalized reduced gradient optimization algorithm, structure optimization research of hovercraft's propulsion shafting under whipping condition was done.
     9. A design idea that a kind of experimental equipment of flexible base-shafting propulsion which could simulate complex sea condition and bese excitement could be controlled was put forward first. A kind of simulation experimential facility having flexible base and propulsion shaft ing was designed and built. The experimential facility could supply effective experimental-research means to study dynamic characteristics of hovercraft's propulsion shafting. Using the experimental facility, experimental research was performed about characteristics of hovercraft's propulsion shafting. Experimental research showed that the studied method that been presented in the dissertation about hovercraft's propulsion shafting was effective and correct.
     Finally, main originalities of the dissertation were summarized, and some future directions of research were presented by author.
引文
[1]Panagpulos. E. and Nickerson. A. Propeller Shaft Stresses under Service Coditions.The S. S. Chryssi Investigation. Trans. SNAME,1954,62, p:199-241
    [2]IEEE committee report. Reader's guide to subsynchronous resonance. IEEE Trans. On PWRS,1992, (7)p:150-156
    [3]Dorey. Int. Conf. Of naval Architects and marine engineers,1951,62, p:199-241
    [4]Panagopulos. E. and Nickerson. A. Propeller shafting stresses under service conditions. The S. S. Chryssi investigation. Trans. SNAME,1954,62, p:199-241
    [5]Gatewood, A. R. Some notes on propeller shaft failures. Thans. SNAME.1950, 58, p:755-787
    [6]Jasper, N.H. and Kupp. L. A. An experimental and theoretical investigation of propeller shaft failures. Trans. Trans. SNAME,1952,60, p:314-381
    [7]张洪田,张志华,刘志刚等.船舶推进轴系纵扭耦合振动研究.中国造船,1996,Vol.2(129),p:68-76
    [8]Sankar. S.On the Torsional Vibration of Branched Systems Using Extended Transfer Matrix method. Journal of Mechanical Design 101(1979)4, p:546-553
    [9]Wakabayashi. K. et. al. Analysis of Vibrations of Reciprocating Engine Shaftings by the Transfer Matrix Method:Analysis of Forced Vibration of a Crankshaft. Bulletin of the Marine Engineering Society in Japan 8(1980) 1,p:27-31
    [10]虞烈,刘恒,轴承-转子动力学系统.西安:西安交通大学出版社,2001,p:77-80
    [11]Panagopulos. E. Design-stage calculations of torsional, Axial and lateral vibrations of marine shafting. Trans. SNAME.1950,58, p:329-384
    [12]闻邦椿,顾家柳,夏松波等.高等转子动力学-理论、技术与应用.北京:机械工业出版社,2000
    [13]Duhl R L. Dynamics of distributed parameter turbo rotor systems:Transfer matrix and finite element techniques. Ph.D thesis
    [14]Cornell University. Ithaca N.Y., Jan,1970
    [15]Nelson H D, Mc Vaugh J M. The dynamics of rotor-bearing systems using finite elements. ASME Journal of Engineering, for Industy, Transaction, 1976,98(2), p:593-600
    [16]Zorzi E S, Nelson H D.Finite element simulation of rotor bearing systems with internal damping[J]. ASME Journal of Engineering, for Power, Transaction.1977,99(1), p:71-76
    [17]Hirs G G. A bulk-flow theory for turbulence in lubricant films. ASME Journal of Lubrication Technology,1973(95), p:137-146
    [18]Childs D. Finite length solution for rotordynamic coefficients of turbulent annular seals. ASME Journal of Lubrication Technology,1983(105), p:437-444
    [19]肖锡武,杨正茂,肖光华.开闭裂纹转子的弯扭耦合振动研究.固体力学学报.2003,24(3),p:-340
    [20]Tanaka M. Bercin A. N. Finite element model of the coupled bending and torsional free vibration of uniform beams with an arbitrary crosss-section. Applied Mathematical Modeling Volume:21, issue:6, June,1997, p:39-344
    [21]Hashemi, S. Mohammad, Richard, Marc J. A Dynamic Finite Element method for free vibration of bending-torsion coupled beams. Aerospace Science and Technology Volume:4, Issue:1, January,2000, p:41-55
    [22]Hort. Y, et. al. Lateral Vibrations of Propeller Shaft Systems. Bulletin of the Marine Engineering Society in Japan 6(1978)4, p:338-344
    [23]刘初升,赵跃民.弹性支承不平衡转子系统非线性振动特性研究.中国矿业大学学报,2004,Vol.33(6),p:656—659
    [24]Myklested. N. J. A New Method for Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Type of Beams. J. of Aero: Sci.,1944,11, p:153-162
    [25]陈之炎.船舶推进轴系振动.上海:上海交通大学出版社,1987,p:1-49,60-232
    [26]张志华.柴油机装置振动数值计算.哈尔滨:哈尔滨船舶工程学院出版社,1993
    [27]许运秀,钟学添.船舶轴系纵向振动.北京:人民交通出版社,1985,p:21-34
    [28]张洪田,张志华,刘志刚.船舶推进轴系纵扭耦合振动研究.中国造船,1995(2),p:69-75
    [29]张洪田,张敬秋.大型船舶轴系纵扭耦合振动理论与试验研究.黑龙江工程学院学报,2004,Vol.18(4),p:1-6
    [30]王传溥,刘志刚,张洪田.船舶轴系横向振动共振转速的实验.船舶工程,1995(4),p:23-24
    [31]张洪田,汤儒涛.船舶轴系扭转振动计算的Riccati传递矩阵法.船舶工程,1994(1),p:31-35
    [32]张洪田.船舶轴系合理校中技术研究.黑龙江工程学院学报,2003(4),p:3-7
    [33]王传溥,张洪田,刘志刚等.船舶轴系动态特性的实验与理论计算的综合分析.哈尔滨工程大学学报,1995,16(2),p:7-17
    [34]张天元,刘志刚,张洪田.大型船舶主柴油机轴系轴向振动的非接触测量.船舶工程,1993(1),p:32-35
    [35]张洪田,王芝秋,刘志刚.内燃机复杂轴系扭振计算的动态子结构法.哈尔滨船舶工程学院学报,1993,Vol.14(2),p:34-40
    [36]舒歌群.基于扭转弹性波理论的船舶柴油机推进轴系扭振研究.船舶力学,2005,Vol.9(5):137-142
    [37]Bogacz R, Szolc T, Irretier H. An application of torsional wave analysis to turbogeneration rotor shaft response. Transactions of ASME, Journal of Vibration and Acoustics,1992,114, p:149-153
    [38]Panagopulos. E. Design-stage calculations of torsional, Axial and lateral vibrations of marine shafting. Trans. SNAME.1950,58, p:329-384
    [39]张建军,简炎钧,应启光.船舶复杂轴系扭振计算研究及其应用.船舶工程2000,1,p:35-38
    [40]陈锡恩,船舶轴系扭振计算和测试实例分析.船舶工程,2002(1),p:22-26
    [41]吴杰长,曾凡明.舰船轴系扭振计算的传递矩阵法及三维图形系统.船舶工程,2001(5),p:21-23
    [42]毛海军,孙庆鸿,陈南登.基于分布质量的Riccati传递矩阵法模型与轴系频响函数计算方法研究.东南大学学报,2000,30(6),p:34-38
    [43]姜雪洁,耿厚才.船舶推进轴系的动态模型.振动与冲击,2005,Vol.24(2),p:21-23
    [44]徐立.船舶纵向轴系合理校中的最优化设计.船海工程,2001(4),p:36-38
    [45]徐辅仁.船舶纵向轴系游动端支座间隙的优化设计.上海理工大学学报,2000,2(2),p:115-118
    [46]魏海军,王宏志,满一新.关于船舶轴系校中计算中的弯矩影响问题的探讨.船舶力学,1999,3(2),p:44-48
    [47]王贤烽,周继良,朱宏辉等.船舶推进轴系动态校中与仿真研究.船海工程,1996(4),p:25-29
    [48]Erkaev. N. V., Nagaitseva. N.A. Mathematical model of the unsteady motion of a shaft in a hydrodynamic plain bearing. Joural of Applied Mechanics and Technical Physics,2003,44(5), p:699-707
    [49]魏海军,王宏志.船舶轴系校中多支承问题的研究.船舶力学,2001,Vol.5(1),p:49-54
    [50]Huebner Mark. Tips on choosing plain linear bearings. Power Transmission Design,1997,39(4), p:53-56
    [51]Lebel Gary. Lineshaft alignment surveys solve machine runability problem. Pub & Paper,1996,70(4), p:105-109
    [52]李震,桂长林,李志远等.变载荷作用下轴-轴承系统动力学行为研究.机械设计与研究,2005,Vol.21(1),p:12-16
    [53]李震,桂长林,李志远等.弹性轴-轴承系统动力学行为研究.农业机械学报,2006,4,p:97-101
    [54]Larmi Martti. Torsional vibration analysis of internal combustion engine shafting system. Acta Polytechnica Scandinavica, Mechanical Engineering Serise,1996(119), p:2-27
    [55]秦萍,阎兵,董大伟.多缸内燃机轴系扭振性能的计算分析与改善.内燃机,2002(2)p:21-24
    [56]Jakobsen, Stig Baungaard. Coupled axial and torsional vibration calculations on long-stroke diesel engines. Trans Soc Nav. Archit Mar Eng, Soc of Naval Architects & Marine Enineers, Jersey City, NJ(USA),1991,99, p:405-419
    [57]薛冬新,宋希庚,王义.船用中速柴油机轴系的扭纵耦合振动.大连理工大学学报,1996(4),p:25-29
    [58]吴杰长,吴晓平,陈国钧.舰船推进轴系设计方案的综合评估.海军工程大学学报,2002,14(4),p:59-61.67
    [59]Newkirk B L. Shaft whipping. General electric review,1924,27, p:169-178
    [60]Newkirk B L. Taylor H D. Shaft whipping due to oil action in journal bearing. General electric review,1925,28(8), p:559-568
    [61]Poritsky H. Contribution to the theory of oil whip[J]. Journal of applied mechanics,1953,75(8), p:1153-1161
    [62]任福春等.考虑耦合效应的汽轮发电机组振动.第五届汽轮机学术年会论文集,1996,p:214-218
    [63]任福春等.弯扭耦合不平衡振动响应分析.动力工程96年增刊,1996,p:536-540
    [64]谢诞梅,刘占辉,杨长柱等.汽轮机组轴系扭转振动实验模型设计研究汽轮机技术,2005,Vol.47(3),p:199-202
    [65]何成兵,顾煜炯,杨昆.汽轮发电机组轴系弯扭耦合振动的数学模型.汽轮机技术,2005,Vol.47(1),p:6-9
    [66]张勇,蒋滋康.轴系弯扭耦合振动的数学模型.清华大学学 报,1998,38(8),p:114-117
    [67]张勇,蒋滋康.旋转轴系弯曲振动与扭转振动耦合的分析.清华大学学报(自然科学版),2000,40(6),p:80-83
    [68]舒歌群,饶里,林建生等.连续分布轴系扭弯耦合振动的自由振动研究.车辆与动力技术,2000(4),p:377-408
    [69]周桐,徐健学,傅卫平.弯扭耦合振动对次同步谐振响应的影响.应用力学学报,2000,17(1),p:12-17
    [70]何洪庆,沈达宽,张哲文.涡轮泵的临界转速研究(Ⅰ)均匀转子临界转速的传递矩阵法.推进技术,1998,19(6),p:83-87
    [71]何洪庆,沈达宽,张哲文.涡轮泵转子的临界转速研究(Ⅱ)非均匀转子临界转速的传递矩阵法.推进技术,1999,20(1),p:38-40
    [72]何洪庆,张小龙,沈达宽等.涡轮泵转子的临界转速研究(Ⅲ)计入液体作用力时涡轮泵转子的临界转速.推进技术,1999,Vol.20(2),p:42-44
    [73]傅衣铭.具粘弹性支承的柔轴弹性盘转子系统的动力学分析.湖南大学学报,2001,28(6):23-28
    [74]Courant. R., Variational Method for Solution of Problems of Equilibrium and Vibrations. Bull. Am. Math. Soc.1943,49, p:1-23]
    [75]Turner, M. J., Clough, R. W., Martin H. C., Topp L. C., Stiffness and Deflection Analysis of Complex Structions J. Aero. Sci.1956,23, p:805-523
    [76]袁振伟,褚福磊,林言丽等.考虑流体作用的转子动力学有限元模型.动力工程,2005,Vol.25(4),p:457-461
    [77]沈松,郑兆昌.大型转子-基础-地基系统的非线性动力分析.应用力学学报,2004,Vol.21(3),p:9-12
    [78]沈松,郑兆昌,应怀樵.非对称转子-轴承-基础系统的非线性振动.振动与冲击,2004,Vol.23(4),p:31-34
    [79]Takashi lkeda and Shin Murakami. Dynamic Response and Stability of a Rotating Asymmetric Shaft Mounted on a Flexible Base. Nonlinear Dynamics, 1999,20(1), p:1-19
    [80]Fawzi M A, Saeidy E. Finite-Element Dynamic Analysis of a Rotating shaft with or without Nonlinear Boundary Conditions Subject to Moving Load. Nonlinear Dynamics,2000,21(4), p:377-408
    [81]刘荣强,夏松波,汪光明.轴承标高对多跨轴系振动及稳定性的影响.哈尔滨工业大学学报,1995,27(1),p:127-131
    [82]邹春平陈端石华宏星船舶结构振动特性研究船舶力学2003,Vol.7 No.2:102-115
    [83]姚熊亮,船体振动.哈尔滨:哈尔滨工程大学出版社,2004
    [84]金咸定,赵德有.船体振动学.上海:上海交通大学出版社,2000
    [85]王慧彩,赵德有.用有限元法计算船体总振动时刚度阵奇异处理分析.中国海洋平台,2003,2,p:5-9
    [86]林哲,赵德有.大型及超大型油船振动分析方法研究.大连理工大学学报,1997,4(3),p:
    [87]Pedersen P T. Beam theories for torsional-bending response of ship hulls. Journal of Ship Research.1991,35, p:254-265
    [88]Wu J S, Ho C S. Analysis of wave-induced horizontal-and -torsion-coupled vibration of a ship hull. Journal of Ship Research,1987,31, p:235-252
    [89]HU Y R, JIN X D, CHEN B Z. A finite element model for state and dynamic analysis of thin walled beams with asymmetric cross-sections. Comput. Struct.,1996,61, p:897-908
    [90]叶伟,俞国新,陆鑫森.集装箱船弯扭耦合振动分析.中国造船,1995(1),p:36-44
    [91]黎胜,赵德有,郭昌捷.船体弯扭耦合振动的计算研究.中国造船,2000,Vol.41(2),p:72-77
    [92]周平,赵德有.动态刚度阵法在船体总振动计算中的应用.船舶力学,2006,Vol.10(4),p:126-132
    [93]Peachey D R. Modeling waves and surf. Computer Graphics.1986.20(4), p:65-74
    [94]Fournier A, Reeves W T. A simple model of ocean waves. Computer Graphics, 1986,20(4), p:75-84
    [95]王立军,陈锋,丁福光等.船舶动力定位海浪环境的实时仿真与海浪谱分析.华东船舶工业学院学报(自然科学版),2001,Vol.15(1),p:48-51
    [96]徐利明,姜昱明.基于谱分析的实时波浪模拟.系统仿真学报,2005,Vol.17(9),p:2092-2095
    [97]李晖,郭晨,李晓方.基于Matlab的不规则海浪三维仿真.系统仿真学报,2003,15(7),p:1057-1059
    [98]马杰,田金文,彭复员.海浪的数值模拟及其仿真.华中科技大学学报,2000,Vol.28(4),p:63-65
    [99]杨怀平,孙家广.基于海浪谱的波浪模拟.系统仿真学报,2002,Vol.14(9),p:1175-1178
    [100]孙江龙,叶恒奎.船舶在波浪中运动的计算机仿真.计算机仿真,2004,1,p:87-90
    [101]刘洁,邹北骥,周洁琼等.基于海浪谱的Gerstner波浪模拟.计算机工程与科学,2006,Vol.28(2),p:41-44
    [102]王元慧,边信黔,施小成.海浪噪声的仿真与滤波.计算机仿真,2007,Vol.24(4),p:318-321
    [103]Guedes Soares C, Moan T. Model uncertainty in the long-term distribution of wave-induced bending moments for fatigue design of ship structures. Marine Structure,1991,4, p:295-315
    [104]WuYS, Chen R Z, Lin J R. Experimental technique of hydroelastic ship model. Proc 3rd Int Conf on Hydroelasticity in Marine Technology,2003
    [105]Oslo:Norwegian University of Science and Technology, Oxford, UK,2007
    [106]St. Denis, M. and Pierson, W. J. Jr. On the Motions of Ships in Confused Seas. Trans. SNAME, Vol.61,1953, p:280-358
    [107]Korvin-Kroukovsky,B. V. Investigation of ship motions in regular waves. Tran. SNAME, Vol.63,1955
    [108]Korvin-Kroukovsky, B. V. and Jacobs, W. R. Pitching and heaving motions of a ship in regular waves. Trans. SNAME, Vol.65,1957
    [109]Jacobs, W. R. The analytical calculation of ship bending moments in regular waves. Journal of Ship Research, Vol.2,1958,6, p:20-29
    [110]Vossers, G. Some applications of the slender body in ship hydrodynamics. Ph.D. Thesis, Delft Univ. of Technology, the Netherlands,1962
    [111]Joosen, W. P. A. Slender-body theory for an oscillating ship at forward speed. 5th Symposium on Naval Hydrodynamics,1964 p:167-183
    [112]Tasai, F. On the swaying, yawing and rolling motions of ships in oblique waves. International Shipbuilding Progress, Vol.14, No.153,1967
    [113]Tasai, F. and Takaki,M. Theory and calculation of ship responses in regular waves. J. Soc. Nav. Arch. Japan,1969
    [114]Salvesen. N, Tuck, E.O. and Faltinsen,O. Ship motions and sea loads. Tran. SNAME. Vol.78,1970 p:250-287
    [115]Meyerhoff W.K. and Schlachter, G. An approach for the determination of hullgirder loads in a seaway including hydrodynamic impacts. Ocean Engineering, Vol.7 1980, p:305-326
    [116]Guedes Soares, C. Transient response of ship hulls to wave inpact. Int. Shipbuilding Prog., Vol.36,1989, p:137-192
    [117]Finkelstein, A. B. The initial value problem for transient water waves. Comm. On Pure and Appl.Math., Vol.10 1957, p:511-522
    [118]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社,1998
    [119]戴遗山,段文洋.舰船三维水动力时域预报方法研究.哈尔滨:哈尔滨工程大学,1998
    [120]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999
    [121]Surendran, S., J. Venkata Ramana Reddy. Numerical simulation of ship stability for dynamic environment. Ocean Engineering,2003,30(10), p: 1305-1317
    [122]Surendran. S., Lee. S. K., J. Venkata Ramana Reddy, Lee Gyoungwoo. Non-linear roll dynamics of a Ro-Ro ship in waves.2005,32(14-15),p:1818-1828.
    [123]Eissa. M., A. F. El-Bassiouny. Analytical and numerical solutions of a non-linear ship rolling motion. Applied Mathematics and Computation,2003, 134(2-3), p:243-270
    [124]Mahfouz, B. Ayman. Identification of the nonlinear ship rolling motion equation using the measured response at sea. Ocean Engineering,2004, 31(17-18), p:2139-2156
    [125]Francesutto A., On the nonlinear motion ships and structures and narrow band sea, In:Proceeding of the IUTAM symposium on dynamics of marine vehicles and structures in waves, London UK,1990
    [126]Francesutto A., Stochastic modeling of nonlinear motions in the presence of narrow band excitation, In:Proceedings of the second international offshore and polar engineering conference, San Francisco, USA, 1992, p:554-558
    [127]Francesutto A., Shigeru Naito, Large amplitude rolling in realistic sea, International shipbuilding progress,2004,51(2-3), p:221-235
    [128]袁远,成志军等.船舶在波浪中运动的六自由度非线性耦合方程.上海交通大学学报,2001,35(4),p:541-543
    [129]何晓宇,李宏男.波浪载荷作用下导管架海洋平台利用TLCD的振动控制.振动工程学报,2008.Vol.21(1),p:71-78
    [130]唐友刚,田凯强.船舶参数激励非线性运动升沉、纵摇、横摇耦合关系的研究.中国造船,2000,41(3),p:23-27
    [131]Gregory Lee. Virtual prototyping on personal computer. Mechanical Engineering.1995,117(7), p:70-73
    [132]Bullingrer. H.-J., Warschat, J., Fischer, D. Rapid product development-an overview. Computer in Industry,2000(42), p:99-108
    [133]Ron MeCoy. Virtual Prototyping:The Practical Solution, Inventor'Digest, May/June,1998
    [134]李伯虎,柴旭东,熊光愣等.复杂产品虚拟样机工程的研究与初步实践.系统仿真学报,2002,14(3),p:336-341
    [135]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用.机电一体化,2000(5),p:17-19
    [136]Joseph S.L., Edward M., Osborne R.. Collaborative virtual prototyping. Johns Hopkins APL Technical Digest,1996 Vol.17(3), p:295-304
    [137]Stefan Hass:Cooperative Working on Virtual Prototypes. IFIP Workshop on VP,1994
    [138]James C. Schaaf, Jr.Faye Lynn Thompson. System concept development with virtual prototyping. Proceeding of the 1997 Winter Simulation Conference. 1997, p:941-947
    [139]Allied Naval Engineering Publication. Simulation based design and virtual prototyping. MSIAC s M&S Journal Online,2002(2)
    [140]James A. Rowson. Virtual prototyping. IEEE 1997 Custom Integrated Circuits Conference.1997,p:89-94
    [141]Michael Eccleston. Virtual prototyping. Manufacturing Engineering. 1996, p:129-132
    [142]Stewart D, Hallenbeck D. Three case histories of virtual prototypes to support concurrent engineering. Electronics Industries Forum of New England, Professional Program Proceeding.1997,p:85-89
    [143]Paul Hugang, Pradip Kar, AL Sleder, et al. System design using virtual prototyping technique. IEEE Spectrum,1998,1, p:973-978
    [144]Haug E J. Computer aided analysis and optimization of mechanical system dynamics. Berlin:Springer-Verlag,1984
    [145]洪嘉振,蒋丽忠.动力刚化与多体系统刚-柔耦合动力学.计算力学学报,1999,16(3),p:295-301
    [146]赵强,吴洪涛,朱剑英.多体系统结构动力学建模.南京航空航天大学学报,2006,38(4),p:442-446
    [147]王远峰,杨雷,水小平.多体系统中规则柔性板的离散建模方法研究.动力学与控制学报,2006,4(1),p:37-42
    [148]齐朝晖,陈礼,张伟.多体系统中位移近似与模型修正.大连理工大学学 报,2001,41(2),p:149-151
    [149]吴国荣,颜桂云,陈福全.柔性梁大挠度动力响应分析的多体系统方法.振动与冲击,2007,26(3),p:87-89
    [150]Adrian Sandu, Corina Sandu, Mehdi Ahmadian. Modeling mult ibody system with uncertainties. Part Ⅰ:Theoretical and computational aspects. Multibody Syst Dyn,2006,15, p:373-395
    [151]John J McPhee, Scott M Redmond. Modeling multibody system with indirect coordinates. Comput. Methods Appl. Mech. Engrg.2006,195, p:6942-6957
    [152]Ekaterina Auer. Interval modeling of dynamics for multibody systems. Journal of Computational and Applied Mathematics,2007,199,p:251-256
    [153]Marek Wojtyra. Joint reaction forces in multibody system with redundant constraints. Multibody System Dynamics,2005,14, p:23-46
    [154]Bernd Simeon. On lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Engrg.2006,195,p:6993-7005
    [155]Orlandea. N. and Chace. M. A. Simulation of a vehicle suspension with ADAMS computer program, SAE Paper No.770053
    [156]R. W. Allen, T. J. Rosenthal and T. H. Szostak. Steady state and transient analysis of ground vehicle handing, SAE Paper No.870495
    [157]Hegazy. S, Rahnejat. H and Hussain. K. Multi-body dynamics in full-vehicle handing analysis under transient maneuver. Vehicle System Dynamics. 2000,34(1), p:1-24
    [158]A W & Dubowsky S. The application finite element methods to the dynamic analysis of flexible spatial and co-planar linkage systems. ASME Journal of mechanical design,1971,103, p:643-651
    [159]Y R C. Elastic link mechanism dynamics. ASME Journal of Engineer for Industry,1971,93, p:268-272
    [160]R C.Dynamics Analysis of Elastic Link Mechanisms by Reduction of Coordinates. ASME Journal of Engineering for Industry,1972,94, p:577-582
    [161]Likins P W. Finite element appendage equations for hybrid coordinate dynamic analysis. Journal of Solids & Structures,1972,8,p:709-731
    [162]Hooker W W. Equations of motions for interconnected rigid and elastic bodies:a derivatio independent of angular momentum. Celestial Mechanics,1975,11, p:337-359
    [163]Meirovitch L. A new method of solution of the eigenvalue problem for gyroscopic systems. AIAA J.,1974,14(2), p:453-465
    [164]熊光楞 李伯虎 柴旭东 虚拟样机技术 系统仿真学报2001.Vol.13(1),p:114-117
    [165]邸彦强,李伯虎,柴旭东等.多学科虚拟样机系统建模与仿真平台及其关键技术研究.计算机集成制造系统,2005,Vol.11(7),p:901-908
    [166]孙大涌,先进制造技术.北京:机械工业出版社,1999
    [167]Bob Abarbanel, Eric Brechner, William McNeely, FlyThru the Boeing 777, Third International IFIP WG 5.2 Workshop on formal Design Methods for CAD and Formal Aspects of Collaborative CAD, February 1997,2,p:16-19
    [168]Reinhard Grandl, Virtual process week in the experiment vehicle build at BMW AG Robotics and Computer Integrated Manufaturing.2001(17), p:65-71
    [169]Purschke F, Rabak t je R, Schulze M, Starke A, Symietz M, Zimmermann P. Virtual reality:new methods for improving and accelerating vehicle development. In:Dai F, editor. Virtual reality for industrial application, Computer graphics:systems and applications. Berlin:Springer,1998, p:103-122
    [170]Lehner VD, Defanti TA. Projects in VR:distributed virtual reality: supporting remote collaboration in vehicle desing. IEEE Computer Graphics and Applications.1997,7(2), p:13-17
    [171]Pratt. M. J. Virtual prototypes and product models in mechanical engineering. In Virtual prototyping-Virtual environment and the product design process, Joachim Rix, Stefan Hass, and Jos's Teixeira, Eds. Chapman&Hall, chapter 10,1995.2, p:113-128
    [172]Ahmad Anees, Feng Chan, Sarepaka. Virtual prototyping:a cost-effective emerging methodology. Proceedings of SPIE-The International Society for Optical Engineering,1995, V2537,p:298-307
    [173]Heeding. Ko. Development of virtual prototyping technology in the Camsung engineering project. Symposium on Human Interaction with Complex Systems, HICS,1996, p:145-146
    [174]Menon J.and Regli W Eds. Special Issue:Networ-Centric Computer-Aided Design. Computer-Aided Design,1998,30(5), p:409
    [175]Shawn P. Mc Guan, Steven C. Pintar. Modeling Vehicle Suspension Structural Compliance at Ford Motor Company Using a coupling of ADAMS Theory and MSC/NASTRAN SAE Paper,1994
    [176]王刚林,武哲.基于虚拟样机的飞机总体设计环境的体系研究.航空学 报,2005,Vol.26(2),p:162-166
    [177]蔡则苏,洪炳熔,刘玉强等.基于虚拟样机的月球探测机器人运动学建模.哈尔滨工业大学学报,2004,Vol.36(2),p:219-214
    [178]闫开印,张卫华,丁国富等.铁路机车车辆虚拟样机工程研究.铁道学报2005,Vol.27(5),p:54-60
    [179]钱德猛,赵韩,魏映.汽车振动系统的虚拟样机仿真及试验研究.现代制造工程,2006(1),p:74-77
    [180]李世亮,王卫东.考虑车体弹性的铰接式高速车辆模型及响应计算分析.中国铁道科学,1997(6),p:77-85
    [181]杨军荣,何永,米粮川.基于虚拟样机技术的双管火炮耦合发射动力学研究.南京理工大学学报,2006,Vol.30(4),p:439-443
    [182]熊光楞,张和明.Web的多学科协同设计与仿真平台及其关键技术.计算机集成制造系统-CIMS,2003,9(8), p:704-709
    [183]李伯虎,柴旭东.复杂产品虚拟样机工程.计算机集成制造系统-CIMS,2002,8(9),p:678-683
    [184]李伯虎,柴旭东等.复杂产品协同制造支撑技术的研究.计算机集成制造系统-CIMS,2003,9(8), p:691-697
    [185]任会礼,王学林,胡于进等.起重船吊物系统仿真分析.系统仿真学报,2007,39(1),p:145-150
    [186]Ren Huili, Wang Xuelin, Hu Yujin et al. Dynamic Response Analysis of Moored Crane-Ship with Flexible Booms, Journal of Zhejiang University Science A,2008,9(1)
    [187]GENG Rui-guang, ZHANG Hong-tian, LI wan-you. Virtual prototype collaborative modeling & simulation technology for propulsion device of special ship. Proceedings of ICNC 2009 (The 5th International Conference on Natural Computation),2009, China
    [188]GENG Rui-guang, ZHANG Hong-tian, LI wan-you. Dynamics Characteristics of Air Propeller-Gear Reducer Propulsion Device Based on Virtual Prototype. Proceedings of ICMTAM 2009 (2009 International Conference on Measuring Technology and Mechatronics Automation,2009. China
    [189]王瑁成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997,p:443-448
    [190]周新民,廖伯瑜,尹志宏等.机械结构有限元建模动态凝聚技术的应用.重庆大学学报,2000,27,p:20-23
    [191]赵阳,高淑华.复杂结构的动力学模型缩聚.复旦大学学报,2005,44(3),p:355-362
    [192]Ahmed A. Shabana. Flexible Multibody Dynamics:Review of Past and Recent Development. Multibody System Dynamics,1997,1, p:189-222
    [193]Ottarson G. Modal flexibility implementation in ADAMS/FEA. Michigan, U. S.A.:MDI-Mechanical Dynamics Inc.,1997
    [194]Fischer P.,Witteveen W., et al. Nonlinear analysis of FIAT Brava chassis with 3-cylinder DI diesel engine by elastic multibody simulation. Rome: ADAMS User Meeting,2000
    [195]MSC. ADAMS/Flex Theoretical Background[R], Arizona:Mechanical Dynamics, Inc.,2002
    [196]ADAMS/FEA Reference Manual Version 8.0. Michigan, U. S.A.:MDI-Mechanical Dynamics Inc.,1998, p:15-19
    [197]张雄,王天舒,计算动力学.北京:清华大学出版社,2007,p:215-235。
    [198]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,2000
    [199]王文亮,杜作润.结构振动与动态子结构方法.上海:复旦大学出版社,1985
    [200]D. Minen, Flexible Bodies and ADAMS:Methods and Technique. Mechanical Dynamics, Inc.,1999
    [201]MID, Using the ADAMS/Flex, Mechanical Dynamics, Inc.,1999
    [202]Konno A, Uchiyama M. Modeling of a flexible manipulator dynamics based on the Holzer's method. Journal of Japan Robot Institute,1994,12(7), p: 1021-1028
    [203]Zhang D J, Liu Y W, Houston R L. On the dynamics of an arbitrary flexible body with large overall motion:an integrated approach. Mechanism and Machine Theory,1995,23(3), p:419-438
    [204]Moorehead. S, Wang. D. Collision Detection Using a Flexible Manipulator:A Feasibility Study Proceedings of the 1996 IEEE International Conference on Robotics and Automation,1996, p:804-809
    [205]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程.北京,清华大学出版社,2005,p:60
    [206]Marco Farina, Kalyanmoy Deb, Paolo Amato. Dynamic Multi-objective Optimization Problem:Test Cases, Approximations, and Applications. EVOLUTIONARY COMPUTATION,2004,8(5):425-442
    [207]Wael Khatib, Peter J. Fleming. An Introduction to Evolutionary Computing for Multidisciplinary Optimization[C]. Genetic Algorithms in Engineering Systems:Innovations and Applications 2-4 September,1997:7-12
    [208]梁尚明殷国富主编现代机械优化设计方法.北京化学工业出版社2005
    [209]马宏伟,吴斌.弹性动力学及其数值方法.中国建材工业出版社,2000,p:37
    [210]Booker J F, Dynamically-loaded Journal Bearings:Numerical application of the moboility method. ASME Journal of Lubrication Technology, 1971,93(1), p:168-176
    [211]Piraner H, Pflueger C, Bouthier 0, Commins Crankshaft and bearing analysis processc. North American MDI User Conference. Arizona:Mechanical Dynamics Inc,2002
    [212]Thomas S., Maassen F.. A new transient elasto-hydrodynamic(EHD) bearing model linkable to ADAMS. SAE paper:2001-01-1075
    [213]段秀兵基于低噪声发动机虚拟设计的曲轴耦合动力学研究.天津:天津大学博士学位论文,2004,7
    [214]John K L. Contact Mechanics. Cambridge:Cambridge University Press,1985
    [215]毕凤荣,崔新涛,刘宁.渐开线齿轮动态啮合力计算机仿真.天津大学学报,2005,Vol.38(11),p:991-995
    [216]CJ30-CG19螺旋桨气动计算报告.保定航空技术实业有限公司,2007
    [217]Kerwin, J E, Lee, C-S. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Trans SNAME, Vol.86, 1978, p:218-253
    [218]Hoshino T. Hydrodynamic analysis of propeller in steady flow using a surface panel method. Journal of the society of Naval Architects of Japan, 1989,165, p:55-70
    [219]Kerwin J E, Kinnas S A, et al. A surface panel method for hydrodynamic analysis of ducted propeller. Trans. SNAM E,1987,95, p:93-122
    [220]张阿漫,姚熊亮,侯明亮等.舰船在波浪载荷作用下的加载方式研究.中国舰船研究,Vol.1.(5-6),p:9-15
    [221]沈华.船舶稳性与强度计算.大连:大连海事大学出版社,2001,p:208-247
    [222]朱克强.船舶结构的载荷与响应.上海:上海交通大学出版社,2000,p:131-133
    [223]0. M. Faltinsen著,杨建民等译.船舶与海洋工程环境载荷.上海:上海交通大学出版社,2008,p:213-225
    [224]R.巴塔查雅.海洋运载工具动力学.北京:海洋出版社,1982,p:330
    [225]李积德.船舶耐波性.哈尔滨:哈尔滨工程大学出版社,2007
    [226]魏纳新.水面舰艇在高海情下的横摇运动控制技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2006
    [227]Whitworth. H. A. Cumulative Damage in Composite. Journal of Engineering Materials and Technology,1990,112(2), p:358-361
    [228]MSC.Software著,邢俊文等译.MSC.ADAMS/View高级培训教程.北京:清华大学出版社,2004
    [229]吕世海 马涛 两条大型全垫升气垫船的流体动力性能比较 船舶2005.2.1.p:15-21
    [230]B.A.柯雷扎耶夫.水翼艇气垫船设计手册.北京:国防工业出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700