用户名: 密码: 验证码:
川西典型伟晶岩型矿床的形成机理及其大陆动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西地区是我国重要的伟晶岩成矿省,产有国内锂储量最大的甲基卡超大型锂矿床、可尔因大型锂铍矿床和丹巴大型白云母矿床等著名伟晶岩型矿床。这三个典型矿床同位于松潘-甘孜造山带,均形成于中生代,且矿种、规模各不相同,是研究伟晶岩型矿床的成矿作用及其与大陆动力学背景关系的理想对象。
    但是,该地区位置偏僻,交通极为不偏,地质研究程度很低。因此,本人所在项目组先后两次到川西开展野外考察,采集了大量的岩石样品。在室内也做了大量测试和研究工作:①由于区域缺乏精确的定年结果,论文做了7件白云母40Ar/39Ar定年;②针对伟晶岩熔体(流体)演化过程,本人亲自做了约50天的包裹体测温工作,并测定了流体的成分和碳氢氧同位素;③对各矿区的伟晶岩及花岗岩进行了岩石化学分析,由其推断成岩成矿的地质过程;④对各矿区的白云母进行了全面的岩石化学分析,从单矿物的角度分析了成岩成矿的地质过程;⑤搜集了大量的地质资料。通过这些工作取得了一些新认识:
    1.系统地研究了甲基卡矿床、可尔因矿床和丹巴矿床,认为三者的成因分别属于“岩浆液态不混溶”、“岩浆结晶分异”和“岩浆+变质混合型”。
    2.岩浆演化过程的不同是造成甲基卡和可尔因矿床矿种相同,规模不等的主要原因。相对于岩浆结晶分异作用,岩浆液态不混溶作用分离出的高度富挥发分的熔体对稀有金属具有很高的富集作用,更易于形成大型、超大型矿床。
    3.在松潘-甘孜造山带,造山过程、岩浆活动、成矿作用之间存在内在联系。甲基卡矿床形成于造山带主体的外围,主要受到单向构造应力影响,构造运动期次较少,构造环境相对封闭,表现为岩浆的一次性侵位,为岩浆液态不混溶作用的发生提供了可能;可尔因矿床位于造山带主体内部,受到自西向东和自北向南的构造应力的影响,遭受多期构造运动,易于发生多期多阶段的岩浆结晶分异作用;丹巴位于造山带主体的东缘中心部位,是自西向东和西北向南双向构造应力在晚期汇聚的中心,该地区的地壳厚度大,构造应力较弱,深部岩浆难以上升侵位,因此,变质作用对伟晶岩矿化具有很大的贡献。
Western Sichuan is an importan pegamatite province in China. There are manypegmatite type deposits in the region, such as: Jiajika rare metal deposit with thelargest lithium reserve in China, Ke'eryin large-medium scale rare metal deposit, andDanba large scale muscovite deposit. The three deposits locate in Songpan-GanziOrogenic Zone, mineralize in Mesozoic, and have different commodity, andmineralizing scale. Thus, they are the ideal objects to study the mineralizions andtheir backgrounds.
    But, the location of Chuanxi is remote, and geolocial study degree is very low. Inorder to get the first hand data, the project group have worked in field there morethan one month. Furthermore, much testing work have been done,such as: ①Becauseof lacking precise dating data, 7 40Ar/39Ar dating experiments have been done;②Inorder to tracing the evolving process of mineralizing fluid, I have worked about 50days to measure the homogeneous temperature of about 1500 fluid inclusions, andfluid component, C, H, O isotope were also been measured;③Petrochemistry studyon pegmatites and granites have been done, by which mineralizing process can bededuced;④the components of Muscovite were analyzed, too, which can prove thereseach result by other means;⑤Great deal of geological data were been colected.By these work, several inclusion were got, such as:
    1. The mineralization of Jiajika, Ke'eryin and Danba deposits respectivelybelong to “magma liquid immiscibility”, “magma fractional crystallization” and“magmatism+metamorphism”.
    2. The difference of magma evolving process is the key reason for the differentmineralizing scale between Jiajika and Ke'eryin deposit. Comparing to magmafractional crystallization, magma liquid immiscibility can separate an highly richvolatile melt, wich can enrichment rare metal greatly. So magma liquid immiscibilitycan forming large scale ore deposits more impossible than magma fractional
    crystallization..3. There are close relation among orogeny, magmation and mineralization ofpegmatite in Songpan-Ganzi Orogenic Zone. Jiajika deposit formed in outer place ofmain part in Songpan-Ganzi orogenic zone. Thus Jiajika area underwent one directiontectonic stress, and located a close environment. These provide possibility for magmaliquid immiscibility. Ke'eryin formed in the interior of main part in Songpan-Ganziorogenic zone, and underwent two direction tetonic sterss, Thus, the regionunderwent several phase tectonic movements. In this condition, Ke'eryin depositformed by magma fractional crystallization in multi-period and multi-phaes. Danbadeposit formed in the center of eastern main part in Songpan-Ganzi orogenic zone.The region is the place of two direciton tectonic stress. Thus in Chuanxi, thelithosphere of Danba region is the thickest, and tectonic stress is weak. Therefore thedeep magma is not able to invade, and metamorphism play an importan role in theprocess of mineralization.
引文
曹志敏, 李佑国, 任建国, 等. 2002.雪宝顶绿往石-白钨矿脉状矿床富挥发分成矿流体特征及其示踪与测年. 中国科学(D 辑), 32(1): 64~72.
    陈西京, 王淑荣, 张秀颖. 1993. 秦岭花岗伟晶岩基本特征与成矿作用.北京:地质出版社.
    陈毓川, 叶庆同, 王京彬等. 2003. 中国新疆阿尔泰成矿带矿床地质、成矿规律与技术经济评价. 北京: 地质出版社. 453.
    程裕淇等. 1994. 中国区域地质概论. 北京:地质出版社. 485.
    仇年铭, 杨岳清. 1985. 福建省南平伟晶岩田成岩成矿规律及找矿方向研究报告.
    仇年铭, 杨岳清. 1985. 福建省南平伟晶岩田成岩成矿规律及找矿方向研究报告. 矿床专著(3), 236.
    川西 402 队. 1962. 四川康定甲基卡矿床 1961~1962 年度详细普查地质报告.
    川西 402 队. 1962. 四川康定甲基卡矿床 1961 年度详细普查报告.
    川西甘孜队. 1960. 四川康定甲基卡矿床 1959 年祥查报告.
    川西甘孜队. 1961. 四川康定甲基卡矿床 1960 年普查勘探报告.
    懂超群, 易钧平. 2005. 铍铜合金市场与应用前景展望. 稀有金属, 29(3): 350~356.
    冯明月, 戎嘉树, 孙志富等. 1996. 北秦岭伟晶岩铀矿. 北京: 地质出版社.
    冯明月. 1996. 商丹地区产铀伟晶岩成因讨论. 铀矿地质, (1): 30~36.
    干国梁. 1988. 熔体-溶液体系中元素分配系数的影响因素及其矿床成因意义. 湖南地质, 7(3):69~84.
    高敏. 2005. 8 月份稀有金属价格. 稀有金属快报, 24(8), 48.
    高玉德, 邹霓, 董天颂. 2004.铌钽矿资源概况及选矿技术现状与进展. 14(2): 87~88.
    高子英, 吕伯西, 段建中等. 1993.滇西花岗伟晶岩. 云南地质, 12(4):367~372.
    郭青蔚. 2005a. 世界铌工业经济概况. 稀有金属快报, 24(2): 15~17.
    郭青蔚. 2005b. 世界钽工业经济概况. 稀有金属快报, 24(1): 12~15.
    何季麟, 王向东, 刘卫国. 2005. 铌钽资源及中国铌钽工业的发展. 稀有金属快报, 24(6): 1~5.
    侯立玮, 付小方. 2002. 松潘-甘孜造山带东缘穹隆状变质地质体. 成都: 四川大学出版社.
    侯立玮. 1996. 扬子克拉通西缘穹状变形变质体的类型与成因. 四川地质学报, 16(1): 6~11.
    侯立玮等. 1994. 四川西部义敦岛弧碰撞造山带与主要成矿系列. 北京: 地质出版社.
    黄典豪. 1982. 论花岗伟晶岩脉的成因. 中国地质科学院矿床地质研究所所刊, (4): 15~24.
    李文,李兆麟,石贵勇. 2000. 云南哀牢山变质流体特征. 岩石学报, 16(4):649~654.
    李文,李兆麟,石贵勇. 2001. 云南哀牢山伟晶岩流体来源研究. 矿物岩石地球化学通报,20(4):266-270.
    李兆麟, 李文, 杨荣勇等. 1998. 哀牢山变质带丫口宝石伟晶岩形成物理化学条件及成因研究矿床地质, 17(Suppl.): 453~456.
    李兆麟, 毛艳华, 雷丽宏等. 1993. 湖南幕阜山花岗伟晶岩矿床绿柱石、海蓝宝石形成物理化学条件研究. 中国科学院地球化学研究所矿床地球化学开放实验室年报. 北京: 地震出版社, 21~31.
    李兆麟, 杨荣勇, 李文, 翟伟. 1998. 中国不同成因伟晶岩形成的物理化学条件. 地质科技情报, 17(Suppl.): 29~34.
    李兆麟, 张文兰, 李文等. 2000. 云南哀牢山和新疆可可托海伟晶岩矿物中熔融包裹体电子探针研究. 高校地质学报, 6(4): 509~522.
    李兆麟. 2001. 关于变质深熔作用与成岩成矿关系的思考. 地学前缘, 8(3): 29~38.
    廖远安. 1992. 金川-过铝多阶段花岗岩体演化特征及其成矿关系. 矿物岩石, 12(1): 12~22.
    刘斌, 朱思林, 沈昆. 2000. 流体包裹体热力学参数计算软件及算例. 北京: 地质出版社. 252.
    刘伟, 李新俊, 邓军. 2002. 东天山金窝子石英脉金矿床成矿流体和成矿物质的来源. 中国科学(D 辑), 32(增刊):105~119.
    刘伟, 李新俊, 谭骏. 2002. 内蒙古大井铜-锡-银-铅-锌矿床的流体混合作用——流体包裹体和稳定同位素证据. 中国科学(D 辑), 32(5): 405~414.
    刘英俊, 曹励明, 李兆麟等. 1984. 元素地球化学. 北京: 科学出版社. 548.
    刘英俊, 张景荣, 孙承辕, 等. 1986. 华南花岗岩中微量元素的地球化学特征. 徐克勤, 涂光炽主编, 花岗岩地质和成矿关系(国际学术会议论文集). 511~525.
    卢焕章, 范宏瑞, 倪培. 2004. 流体包裹体. 北京: 科学出版社. 487.
    卢焕章, 王中刚, 李院生. 1996. 岩浆-流体过渡和阿尔泰 3 号伟晶岩脉之成因. 矿物学报,16(1): 1~7.
    卢焕章. 1996. 华南花岗岩的岩浆与岩浆-流体包裹体及其意义. 桂林工学院学报, 16(1):1~13.
    卢焕章. 1997. 成矿流体. 北京: 北京科学技术出版社. 193~205.
    鲁德实. 1993. 萝北花岗伟晶岩类型划分及稀有元素赋存规律. 地质与勘探, 29(6): 8~12.
    栾世伟, 毛玉元, 范良明等. 1996. 可可托海地区稀有金属成矿与找矿. 成都: 成都科技大学出版社. 95~105.
    栾世伟. 1979. 秦东花岗伟晶岩成因问题讨论. 成都地质学院学报. (3):34~46.
    马拉库舍夫. 1983. 内生成矿作用的岩石学模式(中译本). 国外地质科技, 7, 66~79.
    莫柱孙. 1987. 南岭地区海西期某些断裂带的混合岩化作用及有关 Nb、Ta 伟晶岩矿床. 广东地质. 2(1): 61~68.
    彭省临, 陈子龙等. 1995. 钨、锡液态分离成矿作用的新证据, 中南工业大学学报, (2):143~147.
    斯米尔诺夫. 弗. 伊. 1985. 矿床地质学(中译本). 地质出版社, 87~104.
    四川省地质矿产勘查开发局. 2000. 中华人民共和国区域地质调查报告·巴底幅, 1/5 万.
    宋琦. 1980. 世界锂矿床河矿点的分布及分类. 地质科技动态, (22):35~39.
    唐国凡, 吴盛先. 1984. 四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告.
    唐连江. 1980. 古裂谷与稀有金属伟晶岩. 地质科技动态, 1(4): 1~7.
    万天丰. 2004. 中国大地构造学纲要. 北京: 地质出版社.
    王登红, 邹天人, 徐志刚等. 2004. 伟晶岩矿床示踪造山过程的研究进展.地球科学进展,19(4): 614~620.
    王登红,陈毓川,徐志刚. 2001. 阿尔泰加里东期变质成因伟晶岩型白云母矿床的年代学研究及其意义. 地质学报, 75(3):419-425.
    王登红,陈毓川,徐志刚等. 2002. 阿尔泰成矿省的成矿系列与成矿规律. 北京:原子能出版社.
    王联魁, 黄智龙. 2000. Li-F 花岗岩液态分离与实验. 北京: 科学出版社. 280.
    王文谟, 杨岳清, 陈成湖等. 1999. 福建南平花岗伟晶岩中的铌钽矿物学研究. 福建地质,18(3): 113~134.
    王小春, 叶生平. 2001. 论川西地区构造演化与金矿成矿作用之间的关系. 陈衍景, 张静等主编: 大陆动力学与成矿作用—教育部高级研讨班论文集, 北京: 地震出版社. 153~161.
    吴长年, 朱金初, 陈培荣等. 1994. 冷台的有效去雾方法及其在伟晶岩矿物含纯 CO2 包裹体研究中的应用. 南京大学学报(地球科学), 22(6): 192~196.
    吴长年, 朱金初, 刘昌实等. 1995. 阿尔泰伟晶岩中流体熔融包裹体成分的研究. 地球化学,24(4): 351~358.
    吴尚全, 张甫, 刘刚. 1995. 内蒙古自治区哈达门沟伟晶岩金矿地质. 中国黄金地质丛书.
    西尼亚科夫. 1992. 伟晶岩矿床成矿模式(中译本). 安徽地质科技, (1): 43~59.
    许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京:地质出版社. 190.
    杨岳清, 王文瑛, 倪云祥等. 1998. 福建南平花岗伟晶岩中绿柱石的矿物学研究. 福建地质,17(2): 68~78.
    杨岳清;王文瑛;林国新等. 2003. 福建南平花岗伟晶岩中钾长石的矿物学研究. 福建地质,22(1):1~12.
    袁见齐, 朱上庆, 翟裕生. 1985. 矿床学. 北京:地质出版社. 54~71.
    曾令交, 金景福, 赖生华. 1998. 光石沟含铀花岗伟晶岩成因探讨. 矿物岩石, 18(2): 12~17.
    张德会, 张文淮,许建国. 2004. 富 F 熔体溶液体系流体地球化学及其成矿效应—研究现状及存在问题. 地学前缘. 11(2): 479~490.
    张玲, 林德松. 2004. 我国稀有金属资源现状分析. 地质与勘探, 40(1): 26~30.
    张艳珠, 伍广宇, 刘光龙等. 1986. 横山铌钽矿区伟晶岩中白云母的研究及其找矿意义. 广东地质, 1(2): 53~81.
    中国地质科学院全球矿产资源战略研究中心, 2005. 世界地质矿产品概要, 内部资料,:45~53.
    中国地质矿产信息研究院. 1993. 中国矿产. 北京: 中国建材工业出版社. 391.
    朱和平, 王莉娟, 刘建明. 2003.不同阶段流体包裹体气相成分的四极质谱测定. 岩石学报. 19(2): 341-318.
    朱金初,吴长年,刘昌实等. 2000. 新疆阿尔泰可可杆海 3 号伟晶岩脉岩浆一热液演化和成因[J]. 高校地质学报, 6(1): 40-52.
    朱永峰. 1994. 长英质岩浆中液态不混溶流体的运移机理——兼论成矿作用发生的条件. 地
    学前缘, 1(3~4): 119~126.
    朱永峰. 1995. 长英质岩浆中液态不混溶与成矿作用关系的实验研究. 岩石学报, (1): 1~8.
    庄育勋. 1993. 中国阿尔泰造山带热动力学时空演化和造山过程. 长春:吉林科学技术出版社.
    邹天人, 李庆昌. 2005. 中国新疆稀有稀土金属矿床. 北京: 地质出版社. 111~138.
    邹天人, 徐珏. 1996. 中国碱性伟晶岩型透辉石宝石矿床. 矿床地质(增刊), 15: 42~43.
    邹天人, 杨岳清. 1984. 中国两源伟晶岩的成矿作用. 国际交流地质学术文集—为二十七届国际地质大会撰写. 北京:地质出版社. (3): 145~157.
    邹天人, 张相宸, 贾富义. 1986. 论阿尔泰 3 号伟晶岩脉的成因. 矿床地质, (4): 100~107.
    邹天人,徐建国. 1975. 论伟晶岩的成因和类型的划分. 地球化学, (3):161~174.
    邹天人. 1985. 论中国三个岩浆系列的稀有金属花岗岩及其稀土分布模式. 昆明工学院院报, (1): 15~26.
    邹天人. 1988. 新疆阿尔泰造山花岗岩和非造山带花岗岩及其判别标志. 地质学报, (3): 237~243.
    作者不祥. 1972. 白云母伟晶岩的成因分类. 地质科技动态, 9: 19~24.
    Albarede F.. 1998. The growth of continental crust. Tectonophysics, 296(1/2):1~14.
    Alfonso, P., 1995. Melgarejo, J.C.. The Cap de Creus rare element pegmatite field Catalonia, Spain: model of crystallization. Abstracts XIII ECROFI, Bol. Soc. Esp. Mineral. 18, 4~6.
    Audétat A., Pettke T.. 2003. The magmatic-hydrothermal evolution of two barren granites: A melt and fluid inclusion study of Rito del Medio and Canada Pinabete pluton in northern New Mexico (USA). Geochem. Cosmochem. Acta, 67(1): 97~121.
    Aurisicchio C, Vito C D, Ferrini V, et al. 2001. Nb-Ta oxide minerals from miarolitic pegmatites of the Baveno pink granite, NW Italy. Mineralogy Magazine, 65(4):509~522
    Badanina E. V., Veksler I. V., Thomas R., et al.. 2004. Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusion s in the Khangilay complex, Eastern Transbaikalia(Russia). Chemical Geology, 210:113~133.
    Barnes H L. 1979. Geochemistry of Hydrothermal Ore Deposits. Second Edition. New York: John Wily & Sons.
    Bea, F., Pereira, M.D., Corretge, L.G., Fershtater, G.B., 1994. Differentiation of strongly perphosphorous granites: the Pedrobernardo pluton, central Spain. Geochim. Cosmochim. Acta. 58, 2609~ 2627.
    Bello, R.M., Fuzikawa, K., Gandini, A.L.,et al.. 1997. Caracterizacāo e composicāo qu?mica das inclusoes fluidas em aguamarinha e heliodoro de Vila de Agua Marinha, Munic?pio de
    Teixeiras de Freitas, Bahia. Rev. Eng. Min. REM, 50, 33~39.
    Beurlen H. da Siva M. R. R., de Castro C.. 2001. Fluid inclusion mirothermometry in Be-Ta-(Li-Sn)-bearing Pegmatites from the Borborema Province, Northeast Brazil. Chemical Geology, 173: 107~123.
    Breaks F W, Moore JM Jr. 1992. The Ghost Lake batholith, Superior Province of northwestern Ontario: a fertile, S-type, peraluminous granite-rare-element pegmatite system. Canadian Mineralogist, 30(3): 835~876.
    Breaks F. W., Bond W. D. and Stone D.. 1978. Preliminary geological synthesis of the English reiver subprovince, northwestern Ontario and its bearing upon mineral exploration. Ontario geological Survey, Miscellaneous, 77~55.
    Brookins, D.G.. 1986. Rubidium–strontium geochronologic studies of large granitic pegmatites. Neues Jahrb. Mineral., Abh. 156, 81~ 97.
    Burnham C. W. and Jahns R. H.. 1962. A method for determing the solubility of water in silicate melts. American Journal of Science, 260: 721~745.
    Burnham C. W. and Nekvasil H.. 1986. Equilibrium properties of granite pegmaitite magmas. American Mineralogist, 71: 293~263.
    Cěrny P., Masau M., Goad B. E., et al. 2005. The Greer lake leucogranite, Manitoba, and the origin of lepidolite-subtype granitic pegmatite. Lithos, 80: 305~321.
    Cěrny P.. 1982. Anatomy and classification of granitic pegmatites. Mineralogical Association of Canada Short Course in Granitic Pegmatitic in Science and Industry. Winnipeg, Manitoba. 1~32.
    Cěrny P.. 1985. Extreme fraction in rare-element pegmatite: selected example of data and mechanism. Canadian Mineralogist, 23: 381~421.
    Cěrny P.. 1989. 花岗伟晶岩分类(刘伟译). 地质科技动态, (13): 17~22.
    Cěrny P.. 1991a. Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research, 51:429~468.
    Cěrny, P.. 1991b. Rare-element granite pegmatites: Part II. Regional to global environments and petrogenesis. Geosci. Can. 18, 68– 81.
    Cěrny, P.. 1991c. Rare-element granitic pegmatite. PartⅠ: Regional to global environments and petrogenesis. Geoscience Canada. 16(2): 68~81.
    Chalokwu C. I.. 1997. Ghazi M. A. and Foord E. E.. Geochemical characteristics and K---Ar ages of rare-metal bearing pegmatites from the Birimian of southeastern Ghana. Journal of African Earth Sciences, 24(1-2):1~9.
    Chen W, Zhang Y, Ji Q, et al. 2002. The magmatism and deformation times of the Xidatan rock series, East Kunlun Mountain.Science in China, Series B, 45(Supplement):20~27.
    Condie, K. C.. 1989. Constraints of the origin of Precambrian post-tectonic granites. Symp. Precambrian Granitoids, Helsinki, Abstracts with Program, 32.
    Dingwell D. B., et al.. 1985. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: implication for phonolites, trachytes and rhyolites. Am. Mineral., 70:80~87.
    Echtler H., and Malavieille J.. 1990. Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics, 177:125-138.
    Evensen, J.M., London, D.. 2002. Experimental silicate mineral/melt partition coefficients for beryllium, and the beryllium cycle from migmatite to pegmatite. Geochim. Cosmochim. Acta 66, 2239–2265.
    Frezzotti M.L., Di Vincenzo G., Ghezzo C., and Burke E. A. J. 1994. Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range ( northern Victoria Land, Antarctica). Contrib. Mineral. Petrol. 117: 111~123.
    Gramenitskiy, Ye. N., Shekina, T. I., Berman, D.P., Popenko, D.P.. 1993. Lithium concentration by aluminofluoride melt in a granitic system containing fluorine. Trans. Russ. Acad. Sci., 331A (6): 139~ 144.
    Gramenitskiy, Ye. N., Shekina, T. I.. 1994. Phase relationships in the liquidus part of a granitic system containing fluorine. Geochem. Int., 31 (1), 52~ 70.
    Hannan J. L. Stein H. J.. 1990. Magmatic and hydrothermal process in ore-bearing systems. Stein H. J., Hannah J. L. Ore bearing granite sytems: Petrogenesis and Mineralization Process. Geological Socciety of America Special, 1~10.
    Hanson R.B.. 1997. Hydrodynamics of regional metamorphism due to continental collision. Econ.geol., 92(7~8): 880~891.
    Hess, P.C.. 1995. Thermodynamic mixing properties and the structure of silicate melts. In: Stebbins, J.F., McMillan, P.F., Dingwell, D.B. (Eds.), Structure, Dynamics and Properties of Silicate Melts. Mineral. Soc. America, Washington, D.C. Reviews in Mineralogy, 3: 145~190.
    Hudon, P., Baker, D.R.. 2002. The nature of phase separation in binary oxide melts and glasses: I. Silicate systems. J. Non-Cryst. Solids, 303: 299~ 345.
    Jahns R. H. and Burnham C. H.. 1969. Experimental studies of pegmatite genesis: 1.A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64: 843~864.
    Jahns R. H.. 1982. Internal evolution of granitic pegmatites, in Cěrny P. ed., Granitic Pegmatite in Science and Industry. Mineralogical Association of Canada, Short Course Handbook, 293~346.
    Kovalenko V I. 1995. Endogenous rare metal ore formations and rare metal metallogeny ofMongolia. Economic Geology, 90(3): 520~529.
    Lawlor P. J., Gutiérrez F. O., and Cameron K. L., et al.. 1999. U–Pb geochronology, geochemistry,and provenance of the Grenvillian Huiznopala Gneiss of Eastern Mexico. PrecambrianResearch, 94(1-2): 73~99.
    Levin, E.M., Robbins, C.R., McMurdie, H.F.. 1964. Phase Equilibria Diagrams, vol. 1. AmericanCeramic Society, Westerville, OH.
    London D.. 1985. Pegmatite of Middletown district, Connecticut. 77th Annual Meeting, NewEngland Intercollegiate Geological Conference, Yale University. Connecticut Geological andNatural History Survey Guidebook, 6: 509~533.
    London D.. 2005. Granitic pegmatites: an assessment of current concept and direction for future.Lithos, 80: 281~303.
    London, D., 1986. The magmatic–hydrothermal transition in the Tanco rare-element pegmatite:evidence from fluid inclusions and phase equilibrium experiments. Am. Mineral. 71,376~395.
    London, D., 1987. Internal differentiation of rare-element pegmatites: effects of boron, phosphorus,and fluorine. Geochim. Cosmochim. Acta, 51: 403~ 420.
    London, D., Evensen, J.M.. 2003. Beryllium in silicic magmas and the origin of beryl-bearingpegmatites. In: Grew, E.S. (Ed.), Beryllium: Mineralogy, Petrology, and Geochemistry.Mineralogical Society of America Reviews in Mineralogy and Geochemistry, 50: 445~ 486.
    London, D., Morgan VI, G.B. 1988. Metl-vapor solubilities and element partitioning inperaluminous granite-pegmaitite systems. Contributions to Mineralogy and Petrology, 99:360~373.
    London, D., Morgan VI, G.B., Hervig, R.L.. 1989. Vapor-undersaturated experiments in the systemmacusanite–H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contrib.Mineral. Petrol., 102: 1~17.
    London, D.. 1990. Internal differentiation of rare-element pegmatites:a synthesis of recentresearch. In: Stein, H.J., Hannah, J.L.(Eds.), Ore-Bearing Granite Systems;Petrogenesis andMineralizing Processes. Geological Society of America Special Paper, 246: 35~ 50.
    Macdowell, J.F., Beall, G.H.. 1969. Immiscibility and crystallization in alumina– silica glasses. J.Am. Ceram. Soc., 52: 17~25.
    Mahood, G.A., Nibler, G.E., Halliday, A.N.. 1996. Zoning patterns and petrologic processes inperaluminous magma chambers Hall Canyon pluton, Panamint Mountains, California. Geol.Soc. Amer. Bull., 108: 437~ 453.
    Maluski H, Costa S, and Echtler H. 1991. Late Variscan tectonic evolution by thinning of earlier thickened crust. An 40Ar-39Ar study of the Montagne Noir, southern Massif Central, France.
    Lithos, 26(3~4): 287~304.
    Manning D. A. C.. 1981. The effect of fluorine on the structure on liquidus phaserelationshios in the system Qz-Ab-Or with excess water at 1kbar, Contrib. Mineral. Petrol., 76: 206~215.
    Martin-Romera, C., Vindel, E., Lopez, G.J.A., Cathelineau, M.. 1995. Relationships between fluid migration and regional stress field in mineralized pegmatites: an example from the Spanish central system. Abstracts XIII ECROFI, Bol. Soc. Esp. Mineral., 18: 135~136.
    Matheis G.. 1985. Geological setting of pegamatoid rare-metal mineralization. Fortschrittederm Mineralogie. v.63, Beiheft 1, Program with Abstracts, 150.
    McLelland J., Hamilton M., Selleck B., et al. 2001. Zircon U-Pb geochronology of the Ottawan Orogeny, Adirondack Highlands, New York: regional and tectonic implications. Precambrian Research, 109(1~2): 39~72.
    Morteani G, Preinfalk C, Horn A H. 2000. Classification and mineralization potential of the pegmatites of the Eastern Brazilian Province. Mineralium Deposita, 35:638~655
    Murphy J B, Anderson A J, Archibald D A. 1998. Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: the petrology of the Neoproterozoic Georgeville Pluton, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 35: 110~120.
    Nabelek P. and Ternes K.. 1997. Fluid inclusions in the Harney Peak Granite, Black Hills, South Dakota, USA: Implications for solubility and evolution of magmatic volatiles and crystallization of leucogranite magmas. Geochem. Cosmochim. Acta, 61(7): 1447~1465.
    Nabelek P. I., Mian Liu and Sirbescu M.L.. 2001. Thermo-rheological, shear heating model for leucogranite generation, metamorphism, and deformation during the Proterozoic Trans-Hudson orogeny, Black Hills, South Dakota. Tectonophysics, 342(3-4): 371-388.
    Norton J.J.. 1973. Lithium, cesium and rubidium—the rare alkali metals. In: Brobst D. A. and Prah W. P.(Eds), United States Mineral Resources. U. S. Geological Survey Professinal, 820, 365~378.
    Norton, J.J., Redden, J.A.. 1990. Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks, in the southern Black Hills, South Dakota. Am. Mineral. 75: 631~ 655.
    Novak, M., Selway, J.B., Cěrny, P., Hawthorne, F.C., Ottolini, L.. 1999. Tourmaline of the elbaite–dravite series from an elbaite D. London / Lithos 80 (2005) 281–303 301 subtype pegmatite at Blizˇna′, southern Bohemia, Czech Republic. Eur. J. Mineral. 11: 557~ 568.
    O'Connor, P.J., Gallagher, V., Kennan, P.S.. Genesis of lithium pegmatites from the Leinster Granite Margin, southeastern Ireland: goechemical constraints. Geol. J., 1991, 26: 295~305.
    Parry W T.. 1986. Estimation of XCO2, P, and fluid inclusion volume from fluid inclusion temperature measurement in the system CO2-NaCl-H2O. Economic Geology, 81:
    1009~1013.
    Partington G. A., McNaughton N. J., Willims I.S.. 1995. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia. Economic Geology, 90(3): 616~635.
    Partington GA. 1990. Environmental and structural controls on the intrusion of the giant rare metal Greenbushes pegmatite, Western Australia. Econ.Geol., 85:437-456.
    Pedrosa AC, Lobato LM, and Noce CM. 2000.Cambrian pegmatitic and hydrothermal mineral deposits: the last mineralization record prior to the south Atlantic opening in eastern Brazil. 31th IGC Abstract Volume, digital edition.
    Ramberg H.. 1952.The orginal of metamorphic and metasomatic rocks. Chicago Univ. Press.
    Ramberg H.. 1956. Pegmatite in West Greenland. Geol. Soc. Amer. Bill., (2): 185~214.
    Reyf, F.G.. 1997. Direct evolution of W-rich brines from crystallizing melt within the Mariktikan Granite Pluton, west Transbaikalia. Miner. Deposita, 32: 475~490.
    Ryerson F. J., Watson E. B.. 1987. Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. EPSL, 86: 225~239.
    Schmitt R. S., Trouw R. A. J. and Schmus W. R. V., et al.. 2004. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil) Precambrian Research, 133(1~2,5): 29~61.
    Seltmann R., Breiter K., Fryda J. et al.. 1997. Liquid-liquid immiscibility in the Podles stock. Abstract in Vol. Act and Environment Assembley, (Mexico), 102.
    Shearer, C. K., Papike, J. J., Jolliff, B. L.. 1992. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite–pegmatite system, Black Hills, South Dakota. Can. Mineral. 30, 785~ 809.
    Shmakin B. M.. 1983. Geochemistry and rigin of granitic pegmatite. Geochemistry International, 20: 1~8.
    Simmons, W.B., Foord, E.E., Falster, A.U., King, V.T.. 1995. Evidence for an anatectic origin of granitic pegmatites, western Maine, USA. Abstr. Programs-Geol. Soc. Am. 27, 411.
    Sirbescu M. C. and Nabelek P. I.. 2003. Crystallizaiton conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota——Evidence from fluid inclusions. Geochem. Cosmochim. Acta, 67(13): 2443~2465.
    Stewart, D.B.. 1978. Petrogenesis of lithium-rich pegmatites. Am. Mineral., 63, 970~ 980. Stolz AJ, Jochum KP, Spettel B. et al. 1996. Fluid-and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variation in island-arc basalts: Geology, 24(7):587~590.
    Storey, C.D. Brewer T.S. and. Parrish R.R.. 2004. Late-Proterozoic tectonics in northwest Scotland: one contractional orogeny or several? Precambrian Research, 134(3~4): 227~247
    Stugard Jr., F.. 1958. Pegmatites of the Middletown area, Connecticut. U.S. Geol. Surv. Bull., B1042,Q 613~683.
    Symons D. T. A., Symons T. B. and Lewchuk M. T.. 2000. Paleomagnetism of the Deschambault pegmatites: Stillstand and hairpin at the end of the Paleoproterozoic Trans-Hudson Orogeny, Canada. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25(5): 479~487.
    Taylor S. R., McLennan S. M.. 1985. The Continental crust: Its Composition and Evolution. Blackwell, Oxford.
    Taylor, B.E., Friedrichsen, H.. 1983. Light stable isotope systematics of granitic pegmatites from North America and Norway. Isot. Geosci., 1, 127~167.
    Thomas, A. V., Spooner, E. T. C.. 1988. Fluid inclusions in the system from metasomatic tourmaline within the border unit of the Tanco zoned granitic pegmatite, SE Manitoba. Geochim. Cosmochim. Acta 52: 1065~1076.
    Thomas, A.V., Spooner, E. T. C.. 1992. The volatile geochemistry of magmatic H O–CO fluid inclusions from the Tanco zoned granitic pegmatite, southeastern Manitoba, Canada. Geochim. osmochim. Acta, 56: 49~66.
    Thomas, R., Webster, J.D., Heinrich, W.. 2000. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib. Mineral. Petrol., 139, 394~401.
    Thomasr, R. and Webster J. D.. 2000. Strong tin enrichment in a pegmatite-forming melt. Mineral Deposits, 35: 570~580.
    Tomascak, P. B., Krogstad, E. J., Walker, R. J.. 1998. Sm–Nd isotope systematics and the derivations of granitic pegmatites in southwestern Maine. Can. Mineral., 36, 327~ 337.
    Veksler I. V.. 2004. Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies. Chemical Geology, 210: 7~31.
    Veksler, I.V., Dorfman, A.M., Dingwell, D.B., Zotov, N.. 2002. Element partitioning between immiscible borosilicate liquids: a high-temperature centrifuge study. Geochim. Cosmochim. Acta, 66, 2603~ 2614.
    Veksler, I.V., Fedorchuk, Y.M., Nielsen, T.F.D.. 1998. Phase equilibria in the silica-undersaturated part of the KAlSiO4-Mg2SiO4-Ca2SiO4-SiO2-F system at 1 atm and the larnitenormative trend of melt evolution. Contrib. Mineral. Petrol., 131, 347~ 363.
    Veksler, I.V., Thomas, R.. 2002. An experimental study of B-, Pand F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib. Mineral. Petrol., 143, 673~683.
    Volkert R. A. Zartman R. E. and Moore P. B.. 2005. U–Pb zircon geochronology of Mesoproterozoic postorogenic rocks and implications for post-Ottawan magmatism and
    metallogenesis, New Jersey Highlands and contiguous areas, USA. Precambrian Research,
    139(1~2): 1-19.
    Wang Denghong, Yang Jianmin, Yan Shenghao, et al.. 2001. A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, China. Geology and geochemistry[J]. Resource Geology, 53(3): 177~188.
    Webber K. I., Simmons W. B., Falster A. U., and Nizamoff J. W.. 2000.. Fractionation of HFSE and petrogenetic indicators in NYF-type pegmatites. 31th IGC Abstracts Volume, digital edition.
    Webster J. D. and Holloway J. R.. 1989. Experimental constrains on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2fluids: New implications for granitic differentiation and ore deposition. Geochem. Cosmochim. Acta, 52: 2091~2106.
    Webster J. D., Holloway J. R. and Hervig R. L. 1989. Partitioning of lithophile trace element between H2O and H2O-CO2 fluid and topaz rhyolite melt. Economic Geology, 84: 116~134.
    Webster J. D., Thomas R. L., Rhede D., et al.. 1997. Melt inclusion in quartz from an evolved peraluminous pegmatite: Geochemical evidence from strong tin enrichment in fluorine-rich and phosphous-rich residual liquids. Geochem. Cosmochem. Acta, 61: 2589~2604.
    Webster R. J. D., Hollway J. R.. 1990. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magama. Stein H. J., Hannah J. L. Ore bearing granite sytems: Petrogenesis and Mineralization Process. Geological Socciety of America Special, 21~34.
    Wood D. A., Joron J. L., Treuil M., Norry M. J. and Tarney J.. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib. Mineral. Petrol., 70: 319~339.
    Wood D. A., Tarney J. and Weaver B. L.. 1981. Trace element variations in Altantic ocean basalts and Proterozoic dykes from Northwest Scotland: their bearing upon the nature and geochemical evolution of upper mantle. Tectonophysics, 75: 91~112.
    Zasedatelev A. M. 1974. Possible accumulation of lithium in host rocks of lithium pegmatite veins during old sedimentation processes. Dokl. Acad. Sc. USSR, Earth-Sci. Sect., 218: 196~198.
    Zasedatelev A. M. 1977. Quantitative model of metamorphic generation of rare-metal pegmatite with lithium mineralization. Dokl. Acad. Sc. USSR, Earth-Sci. Sect., 236: 219~221.
    Сминрнова. 1974. 论控制含云母伟晶岩的岩性因素(中译本). 地质科技动态, 10(16):16~20
    Солопов Ю. М.. 1959. Связь слюдоносности петматитовых жил Мамского района с регионалъным метаморфизмом М изд-во АН СССР. 185.
    Солопов Ю. М.. 1962. Метаморфоrенные мусковитовые пегматиы М., 《Наука》. 187.
    Дудкинский Д. Б., Ефремов С В Коэлов В Д 1994 Литий-фтористые граниты Чукотскии ихгеохимические особенности Геохимия,(3):393-402.
    Повилайтис М. М., 1961, О ритмичной зоналъности некоторых тел Исдателъство АН СССРСерия Геология,(2):35-49.
    Повилайтис М. М., 1972, О явлениях фракционной ритмичной кристаллизации в кислыхмагмах и их возможном металлогеническом значении В кн: Редкометалъные граниты ипроблемы дифференциации Москва Недра,227-241.
    Руб М. Г., 1969,Флюоритосодержащие шаровые лавы как показател богатства магмылетучими гранитов АН СССР Свестия ,Серия Геология,(1):45-49.
    Таусон Л. В.,1977 ,Геохимические типы и потенциалъная рудоностъ грантеов Наука,279-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700