用户名: 密码: 验证码:
纳米三坐标测量机三维大量程接触扫描探头系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对微小结构和器件对大量程、高精度坐标测量方法和装置的需求,本论文研制了一套可用于微纳米三坐标测量机的接触扫描探头系统。该探头可分为弹性机构和三维传感器两部分:弹性机构由测球、测杆、悬浮片、平面反射镜、弹性元件、固定装置等组成,可将测球在三维方向上的位移转换成平面反射镜的转角或位移;三维传感器负责感测平面反射镜的角度和位移变化。论文完成了以下主要工作:
     (1)提出了由微型迈克尔逊干涉仪和基于DVD光学读取头的二维角度传感器组成的三维传感器;拓展了DVD光学读取头的角度感测范围:研制了体积小且对称性好的三维探头。在此基础上,去掉DVD光学读取头的具体形态,分别设计制作了基于迈克尔逊干涉仪和自准直仪的共光路和并联光路的三维传感器。在并联光路情况下,通过在迈克尔逊干涉仪与对应平面反射镜之间增加聚焦透镜的方式,提高了迈克尔逊干涉仪的抗偏角能力。
     (2)设计了基于簧线的等张力弹性机构和基于“Z”字形以及“V”字形铍青铜簧片的弹性机构,建立了三种弹性机构的刚度模型。确定了测球与被测面之间允许的最大接触力,分别对三种弹性机构进行了优化设计并得出了最佳结构参数,通过ANSYS仿真和实验验证两种方式验证了理论分析结果的正确性。
     (3)构建了不同的实验系统,对加工、组装、调试好的探头,分别进行了测力、分辨力、稳定性、量程和重复性等方面的测试。测试结果表明:探头的测力梯度小于1mN/μm,分辨力为1nm,量程为±20μm20μm×20μm,重复性精度小于30nm;环境温度变化是引起探头信号漂移的主要原因,探头中机械部件和结构对温度的敏感度远远超过光电部分,恒温环境下探头1小时内的漂移量小于30nm。
     (4)分析了探头三轴输出信号间相互耦合的原因,提出了三种不同的解耦模型,搭建了基于PI纳米定位平台的校正系统并获得了原始的校正数据,利用校正数据分别求出了基于多元线性回归三维模型和基于泰勒展开式三维模型中的解耦参数,经对比前者的精度更高。通过对标准量块的平面度、厚度以及一个有效直径约为6mm的凸透镜的测量,验证了探头的有效性。分析了探头的误差,并给出了修正或减小的办法。
In this research a novel scanning probe has been developed, with micron range and nanometer resolution. This probe can be equipped in a3D micro/nano measuring system for microstructure measurement. This scanning probe includes an elastic mechanism, composed by a ball-tip, a stylus, a floating plate, reflective mirrors, elastic components and the housing structure, transforming the3D motion of the tip-ball into the angular and linear displacement of the reflective mirrors, which can be detected by an embedded3D sensor. The main tasks of this research are listed as below:
     1. A3D sensor has been proposed by integrating a micro Michelson interferometer and a DVD pickup head for linear and angular measurement respectively. The angle measuring range of the DVD pickup head has been effectively increased. An elastic-component-based probe structure featured by small size and good symmetry has been designed. Then, instead of the DVD pickup head with a micro auto-collimator which shares the same laser diode with the micro Michelson interferometer, a reformed3D sensor based on the micro auto-collimator and the micro Michelson interferometer has been designed. Additionally, an optional structure of the micro Michelson interferometer and micro auto-collimator with parallel optical path was also developed to achieve better alignment tolerance by introducing a lens beside the reflective mirror.
     2. Three elastic structures with equal-strain based on elastic strings, Z-shaped and V-shaped beryllium bronze plate springs have been designed and the rigidities have been modeled respectively. The maximum permitted contact forces in scanning measurement have been calculated aiming at the typical materials both the specimen and the ball tip. Each structure has been optimized and the proper parameters have been obtained. The optimized designs have been testified by both ANSYS simulation and practical experiments.
     3. After the fabrication, installation and testing of the probes are completed; different experimental systems were set up to calibrate the contacting force, resolution, stability, measuring range and repeatability. Experimental data show that the probe has the contacting force gradient within1mN/μm, resolution of1nm, measuring range of±20μm x±20μm x20μm and the repeatability accuracy within30nm. It's found that the temperature variation contributes most to the reading drift. Compared with the optoelectronic system, the mechanic structure is much more sensitive to the temperature variation. In a constant temperature space the reading drift of the probe is less than30nm for the duration of one hour.
     4. The coupling of three axes has been analyzed and three different mathematic models have been proposed for decoupling. A PI nanopositioning stage was employed to set up the calibration system, with which the original measurement data table was acquired. Then two mathematic models, based on multiple linear regression and Taylor expansion respectively, were configured with the original measurement data to determine the decoupling parameters. The former was found to have higher accuracy. The working performance of the probe has been testified by measuring the flatness and thickness of a standard gauge block and the diameter of a convex lens. Besides, the error source of the probe was analyzed and the methods to improve the measuring accuracy were proposed.
引文
[1]Bos, EJC; Delbressine, FLM; Haitjema, H, High-accuracy CMM metrology for micro systems. 8th International Symposium on Measurement and Quality Control in Production, Erlangen, GERMANY, Oct 12-15,2004
    [2]李勇,周兆英,微型泵和微型阀的进展,仪器仪表学报,Vo1.17,No.1,1996。
    [3]苑伟政,马炳和,微机械与微细加工技术,西北工业大学出版社,2000年8月。
    [4]Kramar, J.A., Jun, J.S., Penzes, W.B., Scire, RE, Teague, E.C., Villarrubia, J.S.,1999, Molecular Measuring Machine Design and Measurements, Proc. of EUSPEN, Denmark, May 28-30,2000, pp.34-44.
    [5]Binning G, Rohrer H., Scanning tunneling microscopy, IBM J. Res. Develop.,30(4)(1986):355
    [6]Binning G, Quate C.E, Atomic Force Microscope, Phy. Rev. Lett.1986,56(9):930
    [7]A Weckenmann, G Peggs,J Hoffmann.. Probing systems for dimensional micro-and nano-metrology. Meas. Sci. Technol.17 (2006) 504-509
    [8]Fan K C, Chu C L, Liao J L and Mou J I 2003 Development of a high precision straightness measuring system with DVD pick-up head Meas. Sci. Technol.1447-54.
    [9]Kuang-Chao Fan, Jingsyan Torng.3-D measurement and evaluation of surface texture produced by scraping process. Measurement, Vol45, p.384-392 (2011).
    [10]Mastylo R, Manske E and Jaeger G 2004 Development of a focus sensor and its integration into the nanopositioning and nanomeasuring machine Proc. OPTO 2004 (Nuremberg, Germany, 25-27 May) pp 123-6.
    [11]R Schmitt, M Uekita and K Vielhaber. Focus sensor with integrated high-range slope measurement. Meas. Sci. Technol.20 (2009) 117003 (5pp)
    [12]Manske, E., et al., New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes. Measurement Science & Technology,2007.18(2): p.520-527.
    [13]Ehret, G., etc. A new high-aperture 193 nm microscope for the traceable dimensional characterization of micro-and nanostructures. Measurement Science & Technology,2009. 20(8)
    [14]A Weckenmann, G Peggs and J Hoffmann. Probing systems for dimensional micro-and nano-metrology. Meas. Sci. Technol.17 (2006) 504-509
    [15]Leach, R K, Murphy, J "The design of co-ordinate measuring probe for characterising truly three-dimensional micro-structures".4th euspen International Conference, Glasgow, UK,31 May 2004-2 June 2004,230-231.
    [16]GN.Peggs, A.J.Lewis, S. Oldfield, "Design for a compact High-Accuracy CMM", Annals of the CIRP, Vol.48, No.l, pp.417-420,1999.
    [17]Haitjema, H., Pril, W.O., and Schellekens, P.H.J. "Development of a Silicon-based Nanoprobe System for 3-D Measurements." CIRP Annals-Manufacturing Technology,50(1):p.365-368. (2001)
    [18]Tan J.B., Cui J.N., "Ultraprecision 3D probing system based on spherical capacitive plate", Sensors and Actuators A 159,1-6 (2010)
    [19]Dai, G. L., Biitefisch, S., Pohlenz, F., Danzebrink, H.U., " A high precision micro/nano CMM using piezoresistive tactile probes," Measurement Science and Technology,20,084001-084009 (2009).
    [20]Pril, W. O., "Development of high precision mechanical probes for coordinate measuring machines," ISBN 90-386-2654-1, PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2002).
    [21]Peiner, E. and et al., "Tactile probes for dimensional metrology with microcomponents at nanometre resolution." Measurement Science and Technology,19(6):p.064001. (2008)
    [22]A Tibrewala, A Phataralaoha and S B'uttgenbach. Development, fabrication and characterization of a 3D tactile sensor. J. Micromech. Microeng.19 (2009) 125005 (5pp)
    [23]李源,MEMS压阻式三维微触觉测头的研究及在纳米测量机上的应用研究,天津大学博±学位论文,2007年。
    [24]F. Meili, M. Fracheboud, S. Bottinelli, etc. "High precison, Low force 3D touch probe for measurements on small objects", European Int. Topical Conf., Achend, Germany, Extended abstract,2003.
    [25]AKung, F Meli and R Thalmann. Ultraprecision micro-CMM using a low force 3D touch probe. Meas. Sci. Technol.18 (2007) 319-327
    [26]Uwe Brand, Thomas Kleine-Besten, Heinrich Schwenke, "Development of a special CMM for dimensional metrology on microsystem components", ASPE 15th Annual Meeting in Scottsdale (Arizona),22th-27th, October 2000.
    [27]E. B. Hughes, Wilson, A., G. N. Peggs, "Design of high accuracy CMM based on multilateration techniques", Annals of the CIRP 49 (2000), pp.391-394.
    [28]Dr. Uwe Brand, "Metrology for Microsystems", Physikalisch-Technische Bundesanstalt Braunschweig, [M], December 1,1998, Potsdam, Germany.
    [29]Muralikrishnan, B., Stone, J.A., and Stoup, J.R.," Fiber deflection probe for small hole metrology". Precision Engineering,30(2):p.154-164.(2006)
    [30]S. W. Kim, "New Design of Precision CMM Based upon Volumetric Phase-Measuring Interferometry", Annals of the CIRP, Vol.50, No.1, pp.357-360,2001.
    [31]Hong Ji, L.X. Kong a, H.Y. Hsua, etc. A high sensitivity optical touch trigger probe for down scaled 3D CMMs. Proc. of SPIE Vol.6280 62800Q-1.
    [32]Cui Jiwen, Li Lei, Tan Jiubin. Optical fiber probe based on spherical coupling of light energy for inner-dimension measurement of microstructures with high aspect ratios. Optical Society of America,2010 Massachusetts Avenue NW, Washington, DC 20036-1023, United States
    [33]Andreas Ettemeyer. New three-dimensional fiber probe for multisensory coordinate measurement. Optical Engineering 51(8),081502 (August 2012).
    [34]Wim P. van Vliet, Peter H. J. Schellekens. Development of a fast mechanical probe for coordinate measuring machines. Precision Engineering 22:141-152,1998.
    [35]Enami, K., Kuo, C.C., Nogami, T., Hiraki, M., Takamasu, K., Ozono, S., "Development of nano-Probe System Using Optical Sensing". IMEKO-XV World Congress, p.189-192.(1999).
    [36]Kiyoshi Takamasu, Masahiko Hiraki, Kazuhiro Enami, "Development of Nano-CMM and Parallel-CMM:CMM in the 21th Century", International Dimensional Metrology Workshop, May 10-13,1999 Tennessee, USA.
    [37]Kiyoshi Takamasu, Satoshi Ozawa, Takayuki Asano, "Basic Concepts of Nano-CMM", The Japan-China Bilateral Symposium on Advanced Manufacturing Engineering,1996.
    [38]Kuang-Chao Fan, Fang Cheng, Weili Wang, etc. A scanning contact probe for a micro-coordinate measuring machine(CMM) 2010 Meas. Sci. Technol.21054002.
    [39]Chih-Liang Chu and Chen-Yu Chiu, Development of a low-cost nanoscale touch trigger probe based on two commercial DVD pick-up heads. Meas. Sci. Technol.18 (2007) 1831-1842.
    [40]T. Liebrich, W. Knapp. New concept of a 3D-probing system for micro-components. CIRP Annals-Manufacturing Technology 59 (2010) 513-516.
    [41]http://panasonic.net/pfsc/
    [42]Balzer, F.G, Hausotte, T., Dorozhovets, N., Manske, E., Jager, G, "Tactile 3D microprobe system with exchangeable styli" Meas. Sci. Technol.,22 (2011).
    [43]Yasuhiro Takaya HSSTTM. Fundamental study on the new probe technique for the nano-CMM based on the laser trapping and Mirau interferometer. Measurement.9-18,1999.
    [44]M Michihata, Y Takaya and T Hayashi. Nano position sensing based on laser trapping technique for flat surfaces. Meas. Sci. Technol.19 (2008) 084013 (7pp).
    [45]Masuzawa T., Hamasaki, Y, Fujino, T.,1993, "Vibroscanning method for nondestructive measurement of small holes", Annals of CIRP,42, p.589-592.
    [46]Kim, B., Masuzawa, T., Bourina, T.,1999, "The vibroscanning method for the measurement of micro-hole profiles", Measurement,10, p.697-705.
    [47]Claverley, J. D., Leach, R. K. A vibrating micro-scale CMM probe for measuring high aspect ratio structures. Microsyst.Technol. Microsyst Technol (2010) 16:1507-1512
    [48]Claverely, J. D., Georgi, A., Leach, R. K. (2010) Modelling the interaction forces between an ideal measurement surface and the stylus tip of a novel vibrating micro-scale CMM probe. International Precision Assembly Seminar (IPAS), Chamonix. Feb 14th-17th 2010.
    [49]John A Kramar, Nanometre resolution metrology with the Molecular Measuring Machine, Meas. Sci. Technol.16 (2005) 2121-2128
    [50]Gaoliang Dai, HelmutWolff, ThomasWeimann, etc. Nanoscale surface measurements at sidewallk of nano-and micro-structures. Meas. Sci. Technol.18 (2007) 334-341
    [51]程方,纳米三坐标测量机控制关键技术研究,合肥工业大学博士论文,2010年3月。
    [52]苗晋伟,纳米三坐标测量机探头研制与系统整合,合肥工业大学硕士论文,2012年4月。
    [53]Wim P. van Vliet, Peter H. J. Schellekens, Development of a fast mechanical probe for coordinate measuring machines. Precision Engineering 22:141-152,1998.
    [54]A Kung, F Meli and R Thalmann. Ultraprecision micro-CMM using a low force 3D touch probe. Meas. Sci. Technol.18 (2007) 319-327.
    [55]Felix Meli and Alain Kung. AFM investigation on surface damage caused by mechanical probing with small ruby spheres. Meas. Sci. Technol.18 (2007) 496-502
    [56]http://www.matweb.com/glass fiber
    [57]Pril, W. O., "Development of high precision mechanical probes for coordinate measuring machines," ISBN 90-386-2654-1, PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2002).
    [58]Roymech "Torsion Equations," Internet access: http://www.roymech.co.uk/Useful_Tables/Torsion/Torsion.html.
    [59]费业泰,误差理论与数据处理(第5版),机械工业出版社,2004年6月。
    [60]孙李红,基于多元线性回归分析的粮食销售量的预测,China's Foreign Trade,2012年10月。
    [61]王惠文,孟洁,多元线性回归的预测建模方法,北京航空航天大学学报,2007,33(4):500。
    [62]何晓兰,姜国权,杜尚丰,基于多项式拟合的摄像机标定算法[J],中南大学学报:自然科学版,2007,38(8):1117-1122。
    [63]钱剑钊,纳米三坐标测量机模拟式探头系统实验研究,合肥工业大学硕士论文,2012年4月。
    [64]鲁铁定,陶本藻,周世健,基于整体最小二乘法的线性回归建模和解法[J],武汉大学学报信息科学版,2008,33(5):504-507。
    [65]孔建,姚宜斌,吴寒,整体最小二乘的迭代解法,武汉大学学报信息科学版,第35卷第6期,2010年6月。
    [66]刘涛,闫志刚,张尊岭,整体最小二乘法在空间直角坐标转换中的应用,中国科技论文在线,http://www.paper.edu.cn。
    [67]黄开斌,愈锦成,整体最小二乘问题的解集与极小范数解,南京师大学报(自然科学版),第20眷第4期,1997年。
    [68]Kim Peterson. Development of Spatial Decision Support Systems for Residential Real Estate. Journal of Housing Research,1998,Volume 9,Issue 1:135-156
    [69]黄兆明,三次元量测仪之微奈米级接触式扫描探头之研制,台湾大学硕士论文,2012年6月。
    [70]王晨晨,异端类型三坐标测量机结构原理及误差修正技术研究。合肥工业大学博士论文,2012年5月。
    [71]张松,张书练,任舟,采用Nd:YAG微片激光器的激光回馈干涉仪的研制[J],红外与激光工程,2011,40(10),1914-1917.
    [72]http://www.renishaw.com.cn/zh/styli-for-touch-probes--6333
    [73]杨桂通,弹性力学简明教程,清华大学出版社,2006年9月。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700