用户名: 密码: 验证码:
谷朊粉挤压组织化技术及产品结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压加工技术已广泛应用于植物蛋白组织化产品的生产。谷朊粉是一种来源于小麦籽粒的植物蛋白,可以显著提高挤压组织化产品的组织化和纤维化程度。目前,对谷朊粉的研究主要集中在以面粉为原料的低水分挤压方面,以谷朊粉为原料的高水分挤压文献报道较少,对于谷朊粉挤压组织化加工技术还缺乏系统的研究。
     本文采用单因素实验和多因素实验,分析了谷朊粉挤压过程中挤压机操作参数对系统参数和目标参数的影响规律;应用因子分析法综合评价了挤压产品的质量,优化了工艺操作参数;分析了谷朊粉高、低水分挤压过程中蛋白质结构的变化特点;以不同HMW-GS组成的小麦品种获得的谷朊粉为原料,研究了原料组成对谷朊粉挤压技术及产品特性的影响。主要结论如下:
     (1)单因素试验表明:
     谷朊粉低水分挤压组织化时,物料湿度和套筒温度对系统参数的影响显著,物料湿度、套筒温度、螺杆转速和喂料速度均会影响到目标参数(产品特性)。初步确定各操作参数比较适宜的取值范围为:物料湿度20%~24%,套筒温度190℃,螺杆转速160r/min~220r/min,喂料速度为77.58g/min~81.85g/min.
     谷朊粉高水分挤压组织化时,物料湿度、套筒温度和喂料速度对系统参数的影响显著,物料湿度、套筒温度、螺杆转速和喂料速度均会影响到目标参数(产品特性)。在不考虑因素间的相互影响时,初步确定各操作参数比较适宜的取值范围为:物料湿度50%~54%,套筒温度160℃~170℃,螺杆转速约为160r/min,口畏料速度约为18.90g/min.
     与谷朊粉低水分挤压组织化相比较,高水分挤压组织化时,物料湿度较高,套筒温度、螺杆转速和喂料速度低;高水分挤压时的扭矩和压力低;相同套筒温度和螺杆转速下,高水分挤压的单位机械能耗低。不同物料湿度和螺杆转速下谷朊粉高水分挤压产品的持水力高。
     (2)多因素试验表明:
     挤压组织化时挤压机的系统参数间均呈极显著的正相关(P<0.01),系统参数与目标参数(产品特性)的多个指标显著相关(P<0.05),且目标参数(产品特性)间呈复杂的相关性;不同的产品品质指标符合不同的回归模型;采用因子分析法筛选出公因子来表征挤压产品品质,并根据各因子的得分对产品进行综合评价,构建了回归方程;发现影响谷朊粉低水分挤压组织化产品质量的诸因素主次排序为:套筒温度>物料湿度>螺杆转速>喂料速度;影响谷朊粉高水分挤压组织化产品质量的诸因素主次排序为:物料湿度>喂料速度>套筒温度>螺杆转速。应用频数特性法,得到谷朊粉低水分挤压最优操作参数组合为:物料湿度21.10%-21.83%,套筒温度191.39℃-193.94℃,螺杆转速177.12r/min~188.19r/min,喂料速度67.47g/min~70.63g/min;高水分挤压最优参数组合为:物料湿度52.70%-53.49%,套筒温度159.08。C-162.02℃,螺杆转速154.39r/min~165.61r/min,喂料速度21.66g/min~23.32g/minn。
     (3)操作参数对谷朊粉高、低水分挤压产品结构影响一致点为:
     挤压后,总蛋白的SDS-PAGE (SDS-聚丙烯酰胺凝胶电泳)谱带颜色变浅,醇溶蛋白含量显著降低且其A-PAGE(酸性聚丙烯酰胺凝胶电泳)中、低分子量谱带个数减少,产品在磷酸缓冲液(PB)(提取天然蛋白)、PB+SDS(打破氢键和疏水作用)中的溶解度降低。随物料湿度的升高,挤压产品在PB+2-ME中的溶解度呈现降低的趋势。随套筒温度的升高,谷蛋白含量降低,且SDS-PAGE谱带颜色变浅,在PB、PB+2-ME(打破二硫键作用)和PB+SDS中的溶解度呈升高的趋势。达到完全组织化状态所需要的套筒温度后,谷朊粉高、低水分挤压时蛋白质组分含量随套筒温度的变化趋势相同。
     (4)操作参数对谷朊粉高、低水分挤压产品结构影响非一致点为:
     挤压后,低水分挤压产品总蛋白的SDS-PAGE谱带产生一条新的谱带;高水分挤压产品谷蛋白的SDS-PAGE低分子量谱带个数减少,在PB+2-ME中的溶解度升高。随着物料湿度的升高,低水分挤压产品总蛋白SDS-PAGE谱带颜色加深,醇溶蛋白先降低后升高,α区有一条谱带色泽变浅,谷蛋白含量升高,在PB、PB+SDS、PB+2-ME中溶解度升高;高水分挤压产品醇溶蛋白含量逐渐降低,ω区有一条谱带颜色变浅,γ区有一条谱带颜色加深;谷蛋白含量升高且SDS-PAGE谱带颜色加深,在PB、PB+SDS、 PB+2-ME中溶解度降低,但在PB+SDS+2-ME中溶解度升高;随套筒温度的升高,低水分挤压产品的总蛋白的SDS-PAGE谱带色泽变浅;醇溶蛋白含量先降低后升高,其α区的一条谱带颜色逐渐变深,ω区上端的两条高分子量的谱带颜色逐渐加深;高水分挤压产品醇溶蛋白含量升高,其A-PAGE图谱中ω区的一条谱带颜色之间加深,蛋白质间氢键和输水作用加强,在PB+2-ME中的溶解度升高。
     (5) HMW-GS组成对谷朊粉高水分挤压组织化系统参数和目标参数的影响
     原料组成影响谷朊粉挤压的目标参数。不同亚基类型和亚基组合的谷朊粉挤压时系统参数没有显著性差异,但不同亚基位点类型、不同亚基组合类型对目标参数(产品特性)有显著影响。对于高水分谷朊粉挤压组织化产品,1,7+9,5+10组合的挤压产品质量较好。
Extrusion technology is widely used in textured vegetable protein food production.Gluten is a kind of vegetable proteins derived from wheat with a variety of sources and can be used to significantly improve the texture and fibrosis of the extrusion textured food. The current studies about wheat gluten focused on low-moisture extrusion with wheat flour as raw material. However, the literature reports about high-moisture extrusion with wheat gluten powder as raw materials are less, and the gluten extrusion textured processing technology are lack of systematic research.
     In this paper, the single factor experiment and multiple factor experiment were used to study the influence of extrusion operation parameters on system parameters and target parameters in gluten extrusion process. The factor analysis method was applied to comprehensive evaluation and the extrusion parameters were optimized. And the changes of product structure in high and low moisture extrusion process are studied individually. Additionally, different wheat varieties HMW-GS composition on gluten flour by high-moisture extrusion effect has also been investigated. The main results indicated as follow:
     (1) The single factor experiment of gluten at high and low moisture content showed that material moisture and barrel temperature have siginificant effects on system parameters during low-moisture extrusion. Material moisture, barrel temperature, screw speed and feed speed effect on the target parameters (product property). The suitable range of each operation parameter is intially screened. The range of operation parameters is20%~24%material moisture, barrel temperature about190℃, screw speed at160r/min ~220r/min, feed speed at77.58g/min-81.85g/min. Material moisture, barrel temperature and feed speed have siginificant effects on system parameters during high-moisture extrusion. Material moisture, barrel temperature, screw speed and feed speed effect on the target parameters (product property). The suitable range of each operation parameter is intially screened. The range of operation parameters is50%~54%material moisture, barrel temperature160℃~170℃, screw speed at160r/min, feed speed at18.90g/min.
     The compare of extrusion property with high and low moisture showed the torque and press with high-moisture extrusion are lower than that of low-moisture extrusion. Specific mechanical energy of high-moisture extrusion is lower than that of low-moisture. The water holding capacities which at different material moisture and screw speed with high-moisture extrusion are higher than that of low-moisture extrusion.
     (2) The multiple factor experiment of gluten showed that different system parameters of extrusion machine showed a significant positive correlation (P<0.01), system parameters and many characteristics of product exhibited significantly related (P<0.05), and the different product characteristics showed a complex correlation; different product quality characteristics are in line with different regression models. Three common factors have been used to the characterization of extruded products. According to the factor score of sample, a comprehensive evaluation score of sample was carried out, and then a regression equation of the score was constructed. The effect of operation parameters to the product quality for low-moisture gluten extrusion was follow by barrel temperature> material moisture> screw speed> feed speed. The effect of operation parameters to the product quality for high-moisture gluten extrusion was follow by material moisture>feed speed>barrel temperature> screw speed. A frequency analysics was used to optimize the extrusion process. The optimization of operation parameters at low-moisture were:material moisture21.10%~21.83%, barrel temperature191.39℃~193.94℃, screw speed177.12r/min-188.19r/min, feed speed67.47g/min-70.63g/min. The optimization of operation parameters at high-moisture were:material moisture52.70%-53.49%, barrel temperature159.08℃~162.02℃, screw speed154.39r/min-165.61r/min, feed speed21.66g/min~23.32g/min。
     (3) The product structure of gluten with high and low moisture extrusion showed a similar variation. After extrusion, total protein SDS-PAGE (SDS-polyacrylamide gel electrophoresis) bands showed a lighter color, gliadin content was decreased, and the number of low molecular weight spectrum decreased in A-PAGE (acid polyacrylamide gel electrophoresis). The solubility of product in buffer solution (PB)(extraction of natural protein) and PB+SDS (break the hydrogen bonding and hydrophobic interaction) were reduced. With the increase of barrel temperature, glutenin content decreased and the color of SDS-PAGE bands showed lighter, and it's solubility in PB, PB+2-ME (breaking the two disulfide bonds) and PB+SDS was increased. With the increasing of moisture content, the solubility of extrusion products in PB+2-ME tends to decrease. When the barrel temperature achieves the need of complete organization state, protein fractions content in gluten with high and low moisture extrusion tend to a similar tendency.
     (4) The difference of protein structure between high and low moisture extrusion texturization existed There would be a new band in total protein SDS-PAGE band of low-moisture extrusion product. The solubility in gliadin content and the number of low molecular weight spectrum in glutenin SDS-PAGE in high moisture products was declined, and the number of low molecular weight spectrum in glutenin SDS-PAGE are reduced, but it's solubility in the PB+2-ME solubility are increased. With the moisture content increase, for the low-moisture extrusion, the bands of total protein SDS-PAGE are lighter color, the gliadin content first decreased and then increased, a band color in a region are shallowing, the solubility in PB, PB+SDS and PB+SDS are first decreased and then increased, and the solubility in PB+SDS+2-ME increased. For the high-moisture extrusion, the gliadin content in products decreased gradually, the color of a band in co region is pale, but a band in y region is deepening. Glutenin content increased and SDS-PAGE bands of color deepening, the solubility in PB, PB+2-ME and PB+SDS solution solubility decreased, while the solubility in PB+SDS+2-ME solution slightly elevated. As the increase of temperature in barrel, during the low-moisture extrusion, the color of total protein SDS-PAGE band was shallowing, and the gliadin content reduced first and then elevated. One of the bands in alpha zone gradually become darker, the color of two high molecular weight bands at the upper ω area deepened. During the high-moisture extrusion, the gliadin content increased, the color of a band in ω region of A-PAGE deepening, and its solubility in PB, PB+SDS, PB+2-ME solubility increased.
     (5) Gluten extrusion texturization with different HMW-GS composition properties showed that composition of raw materials affect the property of extruded gluten. The gluten extrusion system parameters between different subunit types and subunits have not significant difference. Different subunits of site types of extrusion products have significant effects on the color, and different subunit combinations type have significantly influence on product property.1,7+9,5+10combined extrusion product quality is better for the high moisture wheat gluten extrusion texturization.
引文
常晓明,刘恩岐.2007.原料体系对大豆蛋白挤压组织化的影响.农产品加工.学刊,(1):20-23
    陈锋亮,魏益民,张波.2010a.物料含水率对大豆蛋白挤压产品组织化质量的影响.中国农业科学,43(4):805-811
    陈锋亮.2010b.植物蛋白挤压组织化过程中水分的作用.[博十学位论文].北京:中国农业科学院
    陈建宝,丁玉庭,刘磷,刘书来,聂小华,孔金祥.2009.响应面法分析工艺参数对麦麸挤压膨化产品吸水特性的影响.浙江工业大学学报,37(2):161-165
    陈宁东,金飞龙,李共国.2009.麦胚芽挤压膨化加工特性及其理化性质研究.粮食与食品工业,16(3):29-32
    陈晓杰,吉万全,王亚娟.2009.新疆冬春麦区小麦地方品种贮藏蛋白遗传多样性研究.植物遗传资源学报,10(4):522-528
    陈雄.2000.挤压膨化过程中物料的变化.粮食与饲料工业,(12):23-25
    陈莹.1991.醇法大豆浓缩蛋白挤压组织化的研究.[博士学位论文].无锡:无锡轻工业学院
    陈莹,沈蓓英.1994.蛋白质的挤压组织化改性:大豆蛋白在挤压过程中的物理,化学变化.华东理工大学学报:自然科学版,20(6):758-763
    陈悦娇,杜冰,陈金明,夏雨,李燕杰,杨公明.2011.水仙乌龙茶膨化前后滋味和香气成分分析.食品与发酵工业,37(6):181-183
    程玉来,吴丹.2010.高蛋白营养膨化粉的工艺研究.食品工业科技,(2):272-274.
    崔占鸿,刘书杰,柴沙驼,郝力壮,赵月平,张晓卫.2011.挤压膨化方式对青海省蚕豆营养价值的影响研究.饲料工业,32(1):48-50
    丁琳,王恺,莫松成.2010.谷物早餐粉冲调性的研究.粮油加工,(6):83-85
    杜双奎.2005.玉米挤压膨化技术.[博十学位论文].杨凌:西北农林科技大学
    童群义,朱桂兰,顾正彪,孙冬铃.2004.谷朊粉的乙酰化和磷酸化复合改性研究.中国粮油学报,19(6):11-13
    杜冰,陈悦娇,李燕杰,江东文,夏雨,杨公明.2010.挤压膨化对铁观音茶梗滋味和香气成分的影响.农业工程学报,(9):381-384
    杜冰,黄继红,程燕锋,夏雨,杨公明.2009.双螺杆挤压膨化破碎啤酒酵母细胞壁的研究.中国酿造(12):26-29
    范玉顶,李斯深,孙海艳,等.2005. HMW-GS与北方手工馒头加工品质关系的研究.作物学报,31(1):97-101
    费国源,孙培龙.2009.蛋白酶改性处理对小麦面筋蛋白溶解度和起泡性的影响.农产品加工(学刊),(1):32-34
    高超,吕飞杰,台建祥,陈晓明,李开绵,陆小静,张国治.2011.木薯叶膨化食品加工参数的研究.食品科技,36(11):99-102
    高富成.1997.现代食品工程高新技术.北京:中国轻工业出版社:58-65
    高梅,张国权,魏益民.2007.小麦醇溶蛋白A-PAGE电泳鉴定技术的分析.西北农林科技大学学报(自然科学版),35(9):53-57
    高维道.1986.食品挤压蒸煮系统的应用和进展.无锡轻工业学院学报,(1):86-91
    耿贵工,刘玉皎.2010.青海蚕豆压膨化食品加工工艺参数研究.食品研究与开发,31(10):33-35
    郭萌萌,耿赞,郝夕祥,郑路,杜金华.2010.啤酒糟-玉米膨化食品的双螺杆挤压工艺与配方.食品与发酵工业,(4):92-95
    郭树国,王丽艳.2009.单螺杆挤压机相关参数的优化.中国饲料,(22):31-33
    郭树国,王丽艳,刘强.2011.挤压参数对组织化大豆蛋白糊化度的影响.中国饲料,(11):26-28
    胡新中,张国权,郑建梅,等.2004.用谷朊粉溶胀指数法测定谷朊粉品质.农业工程学报,28(3):171-175
    黄继红,应恺,潘守前,原德树,王新春.2006.谷朊粉系列素食食品的开发研制.中州大学学报,23(1):122-123,128
    贾光锋,柳慧花.2004.微波改善谷朊粉黏性的研究.粮食与饲料工业,(3):23-24
    江连洲,隋晓楠,齐宝坤,王胜男.2011.酶法水解大豆膨化料提取多肽的工艺.食品科学,32(14):161-164
    姜绍通,唐文婷,潘丽军.2005.小麦面筋蛋白琥珀酰化修饰研究.食品科学,26(12):40-44
    99期货.小麦2011年全国粮食总产量5.7亿吨创造新历史纪录.http://www.gfqh.com.cn/zxzx/ncpqh/xm/jgbg/201112/61378.html[2011-12-02]
    康立宁,魏益民.2004.大豆蛋白及其组织化技术.食品科学,25(z1):112-116
    康立宁,魏益民,张波,赵多勇.2007a.大豆蛋白高水分挤压组织化过程中操作参数对单位机械能的影响.中国粮油学报,22(3):38-42,58
    康立宁,魏益民,张波,赵多勇,张汆,赵学伟.2007b.大豆蛋白高水分挤压组织化过程中工艺参数对系统压力和扭矩的影响.中国粮油学报,22(4):43-49
    康立宁.2007c.大豆蛋白高水分挤压组织化技术和机理研究.[博士学位论文].杨凌:西北农林科技大学
    康志钰,王建军,尚勋武.2007.馒头评分指标的小麦高分子量麦谷蛋白亚基评分系统研究.西北农业学报,16(1):30-34
    郎珊珊,阎树田,石戴卫.2011.高温脱脂花生粕双螺杆挤压组织化的工艺研究.中国粮油学报,26(5):83-86.
    李桂江,周仕学,吕英海.2011.谷朊粉特性与应用.粮食与饲料工业,(4):31-32,35
    李梦琴,任红涛,常志伟,等.2010.蛋白组分与面包评分及TPA指标的相关性.中国粮油学报,25(6):15-20
    李硕碧,高翔,单明珠,李必运.2001.小麦高分子量谷蛋白亚基与加工品质.北京:中国农业出版社:5-6
    李炜炜,陆启玉.2010.面筋蛋白及其组分含量对鲜湿面条色泽的影响研究.食品研究与开发,31(4):157-161
    廖兰,赵谋明,王芹,任娇艳,赵海锋,崔春.2011.柠檬酸对小麦面筋蛋白的脱酰胺作用.江苏大学学报(自然科学版),32(1):16-21
    林锉云,董加礼.1992.多目标优化的方法与理论.长春:吉林教育出版社:
    刘明,刘艳香,张敏,谭斌,谭洪卓,田晓红.2009.双螺杆挤压工艺参数对模头压力及白高粱粉挤压产品品质特性的影响.食品工业科技,(9):95-102
    刘亚伟.2005.小麦精深加工——分离·重组·转化技术.北京:化学工业出版社:49,70
    陆启玉,郭祀远,李炜.2009.麦谷蛋白对鲜湿面条性质的影响.河南工业大学学报(自然科学版),30(5):1-3
    卢燕,张玮玮,王公轲.2008.FTIR用于变性蛋白质二级结构的研究进展.光谱学与光谱分析,28(1): 88-93
    马歌丽,张世涛,唐淑坤,李昌文.2005.谷朊粉的应用及研究进展.粮油加工与食品机械,(12):66-68,71
    齐军茹,杨晓泉,彭志英.2003.小麦面筋蛋白酶法改性研究.食品工业,(5):3-6
    仇超颖,廖兰,崔春,赵谋明.2010.琥珀酸脱酰胺对小麦面筋蛋白酶解特性的影响.食品工业科技,31(8):74-77,232
    单成俊,周剑忠,黄开红,王英,李莹.2009.挤压膨化提高甘薯渣中可溶性膳食纤维含量的研究.江西农业学报,21(6):90-91,99
    尚卫平.2003.多指标综合评价方法的优选.南京经济学院学报,2:50-52
    邵平,孙培龙,孟祥河,姜绍通.2007.琥珀酰化和蛋白酶改性对小麦面筋蛋白功能性质的影响.核农学报,(3):268-272
    史建芳,王晓曦,刘鑫,等.2010.小麦粉品质性状分析及组分含量与水饺皮品质关系.食品科技,35(6):176-180
    石陆娥,唐振兴,俞志明.2005.谷朊粉的开发与利用.现代食品科技,21(1):170-173
    史新慧,王兰.2000.小麦面筋蛋白改性的研究.郑州粮食学院学报,21(1):27-28;31
    石玉,张永丽,于振文.2009.小麦籽粒蛋白质组分含量及其与加工品质的关系.作物学报,35(7):1306-1312
    苏为华.2001.多指标综合评价理论与方法研究.北京:中国物价出版社:
    孙辉,姚大年,李宝云,等.1998.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,13(6):13-16
    孙照勇.2009.植物蛋白复合挤压组织化特性研究[硕士学位论文].北京:中国农业科学院
    孙照勇,张波,陈锋亮,魏益民.2009.植物蛋白高水分挤压组织化研究进展.农业工程学报,25(3):308-312
    唐建卫,刘建军,张平平,等.2008.小麦Glu-1位点变异和1B/1R易位对谷蛋白亚基表达量和面包加:品质的影响.作物学报,34(4):571-577
    王凤成,朱金宝,Khan K,等.2004.小麦谷蛋白亚基的组成及含量与谷蛋白聚合体大分子的关系及其对面包烘焙品质的影响.中国粮油学报,(3):13-17
    王洪武,周建国.2001.双螺杆挤压机工艺参数对组织蛋白的影响.中国粮油学报,16(2):54-58
    王洪武,马榴强.2002.大豆蛋白质原料体系对挤压组织化的影响.中国食品学报,2(1):33-38
    王洪武,林丙鉴.2004.复合组织蛋白挤压加工工艺的初步研究.农业工程学报,20(4):216-219
    王晶,肖安红.2008.小麦粉中高分子量麦谷蛋白亚基组成及含量与小麦粉品质关系的探讨.粮食与饲料工业,(2):6-8
    王宪泽,李菡.1998.影响馒头质量的小麦品质性状.种子,(3):40-42
    王亚军,王金水.2005.乳糖改性提高谷朊粉乳化性研究.食品工业科技,26(4):77-80
    王章存,康艳玲,王绍锋.2006.谷朊粉研究进展.粮食与油脂,(6):3-5
    魏宗平.2005.螺杆几何形状参数对多功能食品加工成型机性能的影响.宝鸡文理学院学报(自然科学版),(2):
    魏益民,康立宁,张波,赵多勇.2006.高水分大豆蛋白组织化生产工艺和机理分析.农业工程学报,22(10):193-197
    魏益民,张汆,张波,康立宁.2007.花生蛋白高水分挤压组织化过程中的化学键变化.中国农业科学,40(11):2575-2581
    魏益民,赵多勇,康立宁,张波.2009.操作参数对组织化大豆蛋白产品特性的影响.中国粮油学报,24(6):20-25
    魏益民,康立宁,张汆.2009.食品挤压理论与技术:中卷.北京:中国轻工业出版社:11,13,130
    武建堂,董海洲,刘传富,左进华,高云.2008.挤压膨化对脱脂花生粕组织化度的影响.食品与发酵工业,34(8),91-94.
    吴卫国,杨伟丽,唐书泽.2005.双螺杆挤压机操作参数对早餐谷物产品特性影响的研究.食品科学,26(4):150-155
    徐颖,汪璇,刘小丹,魏红艳.2010.谷朊粉的功能特性及应用现状.粮食与饲料工业,(10):29-32
    严忠军,卞科,司建中.2005.谷朊粉应用概述.中国粮油学报,20(5):16-20
    杨涛,辛建美,徐青,罗红宇.2010.北太鱿鱼挤压组织化工艺初步研究.渔业现代化,(1):52-55
    杨勇和任健.2009.速溶婴幼儿营养米粉的挤压膨化工艺研究.中国粮油学报(12),129-132.
    杨铭泽.1988.谷物膨化机理的研究.食品与发酵工业,(4):7-16
    于国萍,孙志欣.2009.高湿挤压对组织化大豆蛋白产品特性的影响.东北农业大学学报,40(11):104-107
    虞晓芬,傅玳.2004.多指标综合评价方法综述.统计与决策,(11):119-121
    张丙虎,张波,魏益民,宁更哲.2010a.谷朊粉高水分挤压组织化工艺参数优化.中国粮油学报,(6):90-93
    张丙虎,张波,魏益民,宁更哲.2010b.谷朊粉特性与挤压组织化特性的关系.中国农业科学,43(11):2334-2339
    张春庆,李晴祺.1993.影响普通小麦加工馒头质量的主要品质性状的研究.中国农业科学,36(2):39-46
    张氽.2007.花生蛋白挤压组织化技术及其机理研究.[博士学位论文].杨凌:西北农林科技大学
    张汆,魏益民,张波.2007b.脱脂花生粉特性对其挤压产品结构的影响.中国粮油学报,22(2):53-59
    张红印,王兰,席玛芳,郑晓冬.2002.小麦面筋蛋白质的乙酰化改性.无锡轻工大学学报,21(3):239-243
    张裕中,王景.1998.食品挤压加工技术与应用.北京:中国轻工业出版社:7-8
    赵冬艳,王金水.2003.微波处理提高谷朊粉乳化性的研究.食品科学,24(5):25-28
    赵冬艳,王金水,严忠军.2003.碱性蛋白酶水解提高谷朊粉乳化性的研究.粮食与饲料工业,(8):39-41
    赵冬艳,董海洲.2005.木瓜蛋白酶提高谷朊粉乳化性的研究.粮食与饲料工业,(11):23-25
    赵学伟.2006.小米挤压加工特性研究.[博士学位论文].杨凌:西北农林科技大学
    赵友梅,王淑俭.1990.HMW麦谷蛋白亚基的SDS-PAGE图谱在小麦品质研究中的应用.作物学报,6(3):208-218
    赵宇生,卞科,毋江.2007.谷肌粉的研究与应用.食品科技,(6):31-34
    朱炎辉,吉万全,王亚娟.2007.西南冬麦区地方品种资源HMW-GS遗传多样性研究.植物遗传资源学报,8(4):401-405
    钟昔阳,姜绍通,潘丽军,赵妍嫣.2004.高活性小麦谷朊粉产业化加工技术研究及其应用概述.食品科学,25(增刊):95-100
    钟昔阳,姜绍通,潘丽军,赵佳.2009.超高压对醇溶蛋白/麦谷蛋自功能性质的影响.中国粮油学报,24(8):8-11
    Abecassis J, Abbou R, Chaurand M.1994. Influence of extrusions on extrusion speed, temperature, and pressure in the extruder and on pasta quality. Cereal Chem.,71(3):247-253
    Aguilera J M, Rossi F, Hiche E and Chichester C O.1980. Development and evaluation of an extrusion-texturized peanut protein. Journal of Food Science,45(2):246-250
    Aguilera J M, Crisafulli E B, Lusas E W, Uebersax M A and Zabik M E.1984. Air Classification and Extrusion of Navy Bean Fractions. Journal of Food Science,49(2):543-546
    Ahn H, Hsieh F, Clarke A D and Huff H E.1999. Extrusion for Producing Low-fat Pork and its Use in Sausage as Affected by Soy Protein Isolate. Journal of Food Science,64(2):267-271
    Akhilesh G and Choudhury G S.1999. Screw configuration effects on starch breakdown during twin-screw extrusion of rice flour. Journal of Food Processing & Preservation,23(5):355-375
    Alid G, Yanez E, Aguilera J M, Monckeberg F and Chichester C O.1981. Nutritive Value of an Extrusion-Texturized Peanut Protein. Journal of Food Science,46(3):948-949
    Alonso R, Orue E, Zabalza M J, Grant G and Marzo F.2000. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of the Science of Food and Agriculture, 80(3):397-403
    Amiot J, Brisson G J and Castaigne F.1979. Nutritive value of textured proteinsprepared by the wet spinning process. Canadian Institute of Food Science and Technology Journal,12(1):23-26
    Anderson A K and NG P K W.2000. Changes in disulfide and sulfhydryl contents and electrophoretic patterns of extruded wheat flour proteins. Cereal Chem,77(33):354-359
    Andreas R, Marie H M, Joelle B.1999. Extrusion of wheat Gluten Plasticized with Glycerol:Influence of Process Conditions on Flow Behavior, Rheological Properties, and Molecular Size Distribution. Cereal Chemistry,76(3):361-370
    Anette A, Ellen M M, Ellen M F.2004. Effect of protein quality, protein content,bran addition, DATEM, proving time, and their interaction on hearth bread. Cereal Chemistry,81(6):722-734
    Apichartsrangkoon A, Ledward D A, Bell.1998. Physicochemical properties of high pressure treated wheat gluten. Food Chemistry,63(2):215-220
    Areas J A G.1992. Extrusion of food proteins. Critical Reviews in Food Science and Nutrition,32(4): 365-392
    Asgar M A, Fazilah A, Huda N, Bhat R and Karim A A.2010. Nonmeat protein alternatives as meat extenders and meat analogs. Comprehensive Reviews in Food Science and Food Safety,9 (5):513-529
    Autran J C.1989. Thermal modification of gluten as related to end-use properties. Whest is Unique American Association of Cereal Chemists Paul, Minnessota,U.S.A.
    Badrie N and Mellowes W A.1991. Texture and microstructure of cassava (manihot esculenta crantz) Flour extrudate. Journal of Food Science,56(5):1319-1322
    Badrie N and Mellowes W A.1992. Cassava starch or amylose effects on characteristics of cassava (manihot esculenta crantz) extrudate. Journal of Food Science,57(1):103-107
    BalandrAN-Quintana R R, Barbosa-CANovas G V, Zazueta-Morales J J, AnzaldUA-Morales A and Quintero-Ramos A.1998. Functional and ntritional properties of extruded whole pinto bean meal (phaseolus vulgaris L.). Journal of Food Science,63:113-116
    Barres C, Vergnes B, Tayeb J and Della valle G.1990. Transformation of wheat flour by extrusion cooking: Influences of screw configuration and operating conditions. Cereal Chem,67(5):427-433
    Batterman-Azcona S J, Lawton J W and Hamaker B R.1999. Microstructural changes in zein proteins during extrusion. Scanning,21(3):212-216
    Ben-Hdech H, Gallant D J, Robert P and Gueguen J.1993. Use of near infrared spectroscopy to evaluate the intensity of extrusion-cooking processing of pea flour. International Journal of Food Science& Technology,28(1):1-12
    Bong-Kyung-Koh, Seung-Taik-Lim.2000. Effects of hydroquinone on wheat gluten extrusion. Food Science and Biotechnology,9(6):341-345
    Byler D M, Susi H.1986. Examination of secondary structure of proteins by deconvolved FTIR spectra. Biopolymers,25:169-487
    Chao-Chi Chuang G and Yeh A I.2004. Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking. Journal of Food Engineering,63(1): 21-31
    Cheftel J C, Kitagawa M, Queguiner C.1992. New protein texturization process by extrusion cooking at high moisture levels. Food Reviews international,8(2):235-275
    Chen J, Serafin F L, Pandya R N and Daun H.1991. Effects of extrusion conditions on sensory properties of corn meal extrudates. Journal of Food Science,56(1):84-89
    Chiang A.2007. Protein-protein interactions of soy protein isolate from extrusion processing. University of Missouri-Columbia
    Choi Y and Villota R.1989. Development of kinetic models for methionine degradation in fortified soybean model system. Journal of Food Processing and Preservation,13(5):355-384
    Choudhury G S, Gogoi B K, Oswalt A J.1998. Twin-screw extrusion pink salon muscle and rice flour blends:Effect of kneading element. Journal of Aquatic Food Product Technology,7(2):69-91
    Choudhury G S and Gautam A.1999. Screw configuration effects on macroscopic characteristics of extrudates produced by twin-screw extrusion of rice flour. Journal of Food Science,64(3):479-487
    Choudhury G S and Gautam A.2003. Hydrolyzed fish muscle as a modifier of rice flour extrudate characteristics. Journal of Food Science,68(5):1713-1721
    Clark J P.1978. Texturization by extrusion. Journal of Texture Studies,9(1-2):109-123
    Crowe T W and Johnson L A.2001. Twin-screw extrusion texturization of extruded-expelled soybean flour. Journal of the American Oil Chemists'Society,78(8):781-786
    Dahl S R and Villota R.1991. Twin-screw extrusion texturization of acid and alkali denatured soy proteins. Journal of Food Science,56(4):1002-1007
    Day L, Augustin M A.2006. Wheat-gluten uses and industry needs. Trends in Food Science and Technology,17:82-90
    Ding Q B, Ainsworth P.2006. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. Journal of Food Engineering,73:142-148
    Dong A, Huang P, Caugher W S.1990. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry,29:3303-3308
    Falcone R G and Phillips R D.1988. Effects of feed composition, feed moisture, and barrel temperature on the physical and rheological properties of snack-like products prepared from cowpea and sorghum flours by extrusion. Journal of Food Science,53 (5):1464-1469
    Faller J F and Dep F S.2000. Physical and sensory characteristics of extruded corn/soy breakfast cereal. Journal of Food Quality,23(1):87-102
    Faubion J M and Hoseney R C.1982a. High-temperature short-time extrusion cooking of wheat starch and flour. Ⅰ. Effect of moisture and flour type on extrudate properties. Cereal Chem.,59 (6):529-533
    Faubion J M and Hoseney R C.1982b. High-temperature short-time extrusion cooking of wheat starch and flour.Ⅱ. Effect of protein and lipid on extrudate properties. Cereal Chem,69(6):533-537
    Ferrel, Sung H Y.1982. Chemical phosphorylation of food proteins by sodium trimetaaphosphate. J. Food Sci.,48:716
    Fischer T.2004. Effect of extrusion cooking on protein modification in wheat flour. Journal of Food Science,69(7):303-307
    Gogoi B K, Yam K L. Relationships between residence time and process variables in a corotating twin-screw extruder. Journal of Food Engineering,21(2):177-196
    Hager D F.1984. Effect of extrusion upon soy concentrate solubility. Journal of Agricultural and Food Chemistry,32(2):293-296
    Hao J J, Chen J Y, Chen X J, et al.2006. Analysis of dynamic accumulation of three type of glutenin subunits and their content in relation to sedimentation value in common wheat. Agricultural Sciences in China,5(2):155-160
    Harper J M.1978. Extrusion processing of food. Food Technology,32(7):67-72
    Harper J M.1986. Extrusion texturization of food. Food Technology,40(3):70-76
    Hoseney R C.1986. Compontent interaction during heating and storge of baked produces.In:Chemistry and physics of baking,Special Publication No56,The Royal Society of Chemistry,Burlingtion House, London, Blanshard J. M V, Frazier PJ, ed,216-216
    Hsieh F, Peng I C and Huff H E.1990. Effects of salt, sugar and screw speed on processing and product variables of corn meal extruded with a twin-screw extruder. Journal of Food Science,55(1):224-227
    Isobe S, Noguchi A.1987. High moisture extrusion with a twin-screw extruder:fate of soy protein during the repetition of extrusion cooking. Nippon Shokuhin Kogyo Gakkaishi,34:456-461
    Jaya Shankar T and Bandyopadhyay S.2005. Process variables during single-screw extursion of fish and rice-flour blend. Journal of Food Processing and Preservation,29(2):151-164
    Jeunink J and Cheftel J C.1979. Chemical and physicochemical change in field bean and field bean and soybean protenss texturized by extrusion. Journal of Food Science,44(5):1322-1325
    Kalin F.1979. Wheat gluten application in food products. Journal of the American Oil Chemists' Soiciety, (56):477-479
    Ke Shun Liu, Fu-Hung Hsieh.2007. Protein-protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels. Journal of the American Oil Chemists'Society,84(8):741-748
    Kollengode A N, Sokhey A S, Hann M A.1996. Physical and molecular properties of re-extruded starches as affected by extruder screw configuration. Journal of Food Science,61(3):596-599
    Koh B K, Karwe M V and Schaich K M.1996. Effect of cysteine on free radical production and protein modification in extrusion in extruded wheat flour. Cereal Chem,73(1):115-122
    Laemmili U K.1970. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature.,227:680-685
    Lawton J W, Davis A B and Behnke K C.1985. High-temperature, short-time extrusion of wheat gluten and a bran-like fraction. Cereal chem.,62(4):267-271
    Lesko A J, Degady M.1991. Continuous production of chewing gum using corotating twin screw extruder. USA Patents
    Likimani T A, Sofos J N, Maga J A and Harper J M.1990. Methodology to determine destruction of bacterial spores during extrusion cooking. Journal of Food Science,55(5):1388-1393
    Li M and Lee T C.1996. Effect of extrusion temperature on solubility and molecular weight distribution of wheat flour proteins. J. Agric Food Chem,44:763-768
    Li M and Lee T C.1997. Relationships of the extrusion temperature and the solubility and disulfide bonds distribution of wheat proteins. J. Agric. Food. Chem,45:2711-2717
    Lin S, Huff H E and Hsieh F.2000. Texture and chemical characteristics of soy protein meat analog extruded at high moisture. Journal of Food Science,65(2):264-269
    Lin S, Huff H E and Hsieh F.2002. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science,67(3):1066-1072
    Linko P, Colonna P, Mercier C.1981. High-temperature, short-time extrusion cooking. Advances in Cereal Science and Technology,4:145-235
    Liu K S, Hsieh F.2008. Protein-protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. Journal of Agricultural and Food chemistry,56(8):2681-2687
    Liu S, Peng M, Tu S, Li H, Cai L and Yu X.2003. Single-screw extrusion of pork and soy flour blend. Journal of Food Processing and Preservation,27(5):401-410
    Marsman G J P, Gruppen H, Van Zuilichem D J, Resink J W and Voragen A G J.1995. The influence of screw configuration on the in vitro digestubility and protein solubility of soybean and rapeseed meals. Journal of Food Engineering,26:13-28
    MEGard D, Kitabatake N and Cheftel J C.1985. Continuous restructuring of mechanically deboned chicken meat by HTST extrusion-cooking. Journal of Food Science,50(5):1364-1369
    Mermelstein N H.2000. Extrusion of ingredients. Food Technology,54(3):92-93
    Meuser F and Van L B.1984. System analytical model for the extrusion of starches. Thermal processing and quality of food. London and New York:Elsevier Applied Science Publishers:175-179
    Mitchell John R, G.1992. Structural changes in biopolymers during extrusion. In:Jozel L. Kokini, Chi-Tang Ho, Mukund V. Karwe edited. Food Extrusion Science and Technology. New York, N. Y.: Marcel Dekker Inc.345-360
    Ning L and Villota R.1994. Influence of 7S and 11S globulins on the extrusion performance of soy protein concentrates. Journal of Food Processing and Preservation,18(5):421-436
    Onwulata C I.2010. Use of extrusion-texturized whey protein isolates in puffed corn meal. Journal of Food Processing and Preservation,34:571-586
    Osman M G, Sahai D, Jachson D S.2000. Oil absorption characteristics of multigarain extrudate during frying:effect of extrusion temperature and screw speed. Cereal Chemistry,77(2):101-104
    Partner E L, Wang B, Aglan H A and Mortley D.2004. Physicochemical properties of texturized meat analog made from peanut flour and soy protein isolate with a single-screw extruder 1. Journal of Texture Studies,35(4):371-382
    Park J, Rhee K S, Kim B K and Rhee K C.1993. High-protein texturized products of defatted soy flour, corn starch and beef:shelf-life, physical and sensory properties. Journal of Food Science,58(1):21-27
    Patil R T, Berrios J De J and Tang J.2007. Evaluation of methods for expansion properties of legume extrudates. American Society of Agricultural and Biological Engineers,23(6):777-783
    Phillips R D, Chhinnan M S and Kennedy M B.1984. Effect of feed moisture and barrel temperature on physical properties of extruded cowpea meal. Journal of Food Science,49(3):916-921
    Pilli T D, Carbone B F, Derossi A, Fiore A G and Severini C.2008. Effects of operating conditions on oil loss and structure of almond snacks. International Journal of Food Science & Technology,43(3): 430-439
    Pomeanz,Y.1989. Wheat is unique. Published by AACC St. Paul Minnesota,U.S.A.:2-3
    PrudENcio-Ferreira S H and ArEAs J G.1993. Protein-protein interactions in the extrusion of soya at various temperatures and moisture contents. Journal of Food Science,58(2):378-381
    Prudencio-Ferreira S H and Areas J A.1993. Protein-protein interactions in the extrusion of soya at various temperatures and moisture contents. Journal of Food Science,58(5):378-381
    Rebello C A and Schaich K M.1999. Extrusion chemistry of wheat flour proteins:Ⅱ. Sulfhydryl-Disulfide content and protein structural changes. Cereal Chen,76(5):756-763
    Reyes-Moreno C and Rouzaud Sandez.2002. Optimization of extrusion of extrusion process to transform hardened chickpeas(Cicer arietinum L) into a useful product. Journal of the Science of Food and Agriculture,82(14):1718-1728
    Riaz M N.2001. Textured soy protein and its uses. Agro-Food Ind. Hi-Tech,3(12):28-31
    Robert B.1987. Breakfast cereals:processed grains for human consumption. Cereal Food World,32(3): 241-243
    Ryu G H and Walker C E.1995. The effects of extrusion conditions on the physical properties of wheat flour extrudates. Starch-Starke,47(1):33-36
    Schaich K M and Rebello C A.1999. Extrusion chemistry of wheat flour proteins:Ⅰ. Free radical formation. Cereal chem.,76(5):748-755
    Sefa-Dedeh S and Saalia F K.1997. Extrusion of maize-cowpea blends in a modified oil expeller. Journal of the Science of Food and Agriculture,73(2):160-168
    Siew Yoong L and McCarthy K L.1996. Effect of screw configuration and speed on rtd and expansion of rice extrusion. Journal of Foof Process Engineering,19(2):153-170
    Singh H and MacRitchie F.2001. Use of sonication to probe wheat gluten structure. Cereal Chem.,78(5): 526-529
    Stanley D W and deMan J M.1978. Structural and mechanical properties of textured proteins. Journal of Texture Studies,9(1-2):59-76
    Strecker T D, Cavalieri R P, Zollars R L and Pomeranz Y.1995. Polymerization and mechanical degradation kinetics of gluten and gletenin at extruder melt-section temperatures and shear rates. Journal of Food Science,60(3):532-537
    TomAS R L, Oliveira J C, Akdogan H and McCarthy K L.1994. Effect of operating conditions on physical characteristics of extruded rice starch. International Journal of Food Science & Technology,29(5): 503-514
    Unbehend L, Unbehend G, Lindhauer M G.2003. Protein composition of some Croatian and German wheat varieties and their influence on the loaf voume. Nahrung,47(2):145-148
    Wang N, Bhirud P R, Sosulski F W and Tyler R T.1999. Pasta-like product from pea flour by twin-screw extrusion. journal of food science,64(4):671-678
    Wang N, Bhirud P R and Tyler R T.1999. Extrusion texturization of air-classified pea protein. Journal of Food Science,64(3):509-513
    Wang W M, Klopfenstein C F and Ponte J G.1993. Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran and on the baking quality of the wheat bran. Cereal Chem.,70(6):707-711
    Woodar J C, Shord D D J.1973. Prepation and properties of acid-solubilized bluten conformation. Nutrition,103-105
    Yao G, Liu K S and Hsieh F A.2004. New method for characterizing fiber formation in meat analogs during high moisture extrusion. Journal of Food Science,69(7):303-307
    Yuryev V P, Zasypkin D V, Alexeyev V V, Genin Y V, Ezernitskaya M G and Tolstoguzov V.1990. Structure of protein texturates obtained by thermoplastic extrusion. Food/Nahrung,34(3):607-613
    Zhu J, Huang S, Khan K, O'Brien L.2001. Relationship of protein quantity,quality and dough properties with Chinese steamed bread quality. J Cereal Science,33(2):205-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700