用户名: 密码: 验证码:
循环流化床颗粒分级特性和射流穿透性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床作为一项高效、低污染的新型燃烧技术,推动了洁净煤发电技术的发展。在燃烧、废弃物处理等循环流化床应用中,固体颗粒通常具有很宽的粒度分布。通过加入少量的粗颗粒,可以提高床内细颗粒含率,改善气固两相接触,增加传热效率,更易于控制细颗粒的停留时间。在循环流化床给风控制上,经常利用空气分级将给风分为一次风和二次风。空气分级是循环流化床锅炉减少NOX排放、控制燃烧质量、降低风机能耗、保证锅炉颗粒循环倍率的有效手段。目前循环流化床二次风存在的最为普遍的问题就是二次风在炉膛内的穿透能力不足。以往的对于双组分颗粒分级的研究工作所用颗粒粒径多为Geldart B类粒子,颗粒粒径相差不大,并且没有涉及对二次风下的双组分颗粒的分离特性的研究。对于射流穿透深度,以往学者并没有对密相区射流进行详细研究,且较少考虑下倾射流。
     本文在方形循环流化床冷态实验台上,采用压差传感器测量了双组分混合颗粒体系压力梯度轴向分布,对提升管不同高度和回料系统中的粗颗粒份额进行了取样分析,并比较了中心区域、边壁区域和边角区域的粗颗粒份额。实验结果表明:在相同的风速下,提升管压力梯度随着Gs以及初始粗颗粒份额的增加而增加,提升管压力梯度随着U0的增加而减小;空气分级后,二次风喷口以下压力梯度增大,二次风喷口以上压力梯度稍微降低或保持不变。随着U0的增加,粗颗粒份额沿高度方向分布增加;增加Gs,粗颗粒分布更加均匀;空气分级导致提升管内粗颗粒份额降低;在床内同一截面上中心粗颗粒份额最低、边壁粗颗粒份额最高、边角粗颗粒份额居于二者之间。
     通过在流化床底部加入二次风,采用PV6D光纤颗粒浓度测量仪测量射流附近颗粒浓度,在二次风中加入CO2示踪,研究了不同底部风速、不同的喷口角度、不同射流喷口直径和风速、不同的物料高度下二次风的扩散情况,并通过数据拟合得出二次风射流的穿透深度公式。本文利用光纤信号波动分析床内的流化状态,比较不同工况下的颗粒浓度分布。射流穿透深度随着射流速度的增加而增大;同一流量下,射流穿透深度随着喷口直径变小而增大;水平射流穿透深度最大,下倾角度越大,穿透深度越低;主流风速和颗粒浓度的增大,都会降低射流穿透深度。
As a high effective and low pollution combustion technology, circulating fluidized bed (CFB) has promoted the development of clean coal power generation technology. In the processes of coal combustion and waste disposal, the solids generally have a wide size distribution and/or different solids densities. When the coarse particles are added into the fine particles, it is able to increase the solids holdup, enhance the heat and mass transfer rates and control the residence time of fine particles. Air classification that divides the total air (TA) into the primary air (PA) and second air (SA) has been adopted, which has advantage of reducing NOX emission, controling burning quality, reducing energy consumption of fans and controlling solids circulation rate (Gs). Currently the most common problem for secondary air in CFB is the lack of penetration. Particles used in previous studies on segregation of binary solids in CFB were mostly of Geldart B type with indistinctive difference in size, and no segregation was mentioned when the air was staging. For the penetration of SA jet, most authors did not study the penetration depth in dense region particularly, and less used inclined jet.
     The axial pressure drop of binary mixtures, and the distribution of coarse particles in the riser and the return line was measured in a 0.25m×0.25m×6.07m square circulating fluidized bed. The influence of gas velocities (U0), solids circulating rate (Gs) and initial coarse particles fraction (Xc0) on the coarse particles fraction distribution and the axial pressure drop profile were examined. Pressure drop decreases with the increasing of Gs and Xc0, increases as U0 decreases while the other operating conditions were consistent. It was found the pressure drop below the secondary air injection port increases while keeps constant or decreases slightly above the secondary air injection port when air was staging. The coarse particles fraction in the riser increases with increasing Xc0 and U0, decreases with air staging. Coarse particles fraction distribution became more uniformity with increasing Gs. Higher coarse particles fraction were found near the wall and less in the center, while intermediate at the corner.
     By using CO2 as tracer, the dispersion of SA jets has been investigated combined with the local solids concentration distribution. Secondary air was injected at the bottom of the riser. Particle concentration near the jet was measured by PV6D optical probe. A modified model for calculating the SA jet's penetration is developed. Particle concentration distributions in different conditions were compared. Jet penetration depth increases with the increase of jet velocity; at the same flow rate, jet penetration depth becomes smaller as the diameter increases; horizontal jet has the maximum jet penetration depth, while the angle increases, the smaller the penetration depth will turn up; increase of mainstream velocity and particle concentration will reduce the jet penetration depth.
引文
1齐海江,王宇奇.我国发电能源结构分析.科技与管理.2004, (2).27~30.
    2冯俊凯,岑可法,倪明江等.循环流化床锅炉理论设计与运行.中国电力出版社, 1998, 14~23
    3沈幼庭,李军,卢啸风.大型循环流化床燃烧技术的最新进展.电站系统工程, 2004, 20:1~4
    4骆仲泱,何宏舟,王勤辉,岑可法.循环流化床锅炉技术的现状及发展前景.动力工程. 2004, 24(6): 761~767
    5 G. X. Yue, H. R. Yang, J. F. Lu, H. Zhang. Latest Development of CFB Boilers in China. The 20th International Conference on Fluidized Bed Combustion, Tsinghua University Press and Springer. 2009, 1~12
    6岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行.北京:中国电力出版社, 1998
    7朱皑强,芮新红.循环流化床锅炉设备及系统.北京:中国电力出版社, 2004
    8卢啸风.大型循环流化床锅炉设备与运行.北京:中国电力出版社, 2006
    9张勇.循环流化床锅炉的技术特点分折.特检视窗, 2008, 45~46
    10吴利勤,吴占杰,阮强.循环流化床锅炉技术特点及应用要求.内蒙古科技与经济. 2005, 37~38
    11 Nieuwland J.J, Huizenga P., Kuipers J.A.M and van Swaaij W.P.M., Hydrodynamic Modeling of Circulating Fluidized Bed. Chem.Eng. J., 2002.
    12赫俏,陆继东,张新文.循环流化床流动特性分析.燃烧科学与技术, 1999 5(3):325~330
    13 Sharma A.K., Tuzla K, Matsen, J., Chen,J.C., Parametric Effects of Particle Size and Gas Velocity on Cluster Characteristics in Fast Fluidized Beds, Powder Technol.,2000,111,114~122
    14 Rhodes M.J., Sollaart M., and Wang X.S. Flow Structure in a Fast Fluid Bed, Powder Technol., 1998, 99:194~200
    15 Bolton L.W., and Davidson, J.F. Recirculating of Particles in Fast Fluidized Risers. Circulating Fluidized Bed Technology. II. Pergamon, Oxford, 1998: 139~146
    16 Bai D.R., Shibuya E., Masuda Y., Nakagawa N., and Kato K., Flow Structure in a Fast Fluidized Bed, Chem. Eng.Sci.,1996,51,957~966
    17 Johnsson F., Svensson A., and Leckner B., Fluidization Regimes inCirculating Fluidized Bed Boilers, Fluidization VII, Engineering Foundation, New York,1992, 471~478
    18 Werther J., Fluid Mechanics of Large-scale CFB Units, Circulating Fluidized Bed Technology IV. AIChe. New York, 1994, 1~4
    19 Schlichthaerle P, Werther J. Axial pressure profiles and solids concentration Distribution in the CFB Bottom Zone. Chem. Eng. Science, 1999, 54(22):5485~5493.
    20 Malcus S., Chaplin G., and Pugsley T., The Hydrodynamics of the high density Bottom Zone in a CFB Riser Analyzed by Means of Electrical Capacitance Tomography(ECT), Chem.Eng.Sci.2000,55,4129~4138.
    21 M.G. Schnitzlein, H. Weinstein. Flow Characterization in High Velocity Fluidization Using Pressure Fluctuation. Chem. Eng. Sci. 1988, 43:2605~2614
    22 D. R. Bai, Y. Jin, Z.Q. Yu, J. X. Zhu. The Axial Distribution of the Cross -sectionally Average Voidage in Fast Fluidized Beds. Powder Technol. 1992, 71:51~58
    23 F. Berruti, J. CHaouki, L. Godfroy, T. S. Pugslet, G.S. Patience. Hydrodynamics of CFB, Canadian J. of Chem. Eng.1995, 73:579~602
    24黄卫星,易彬,杨颖.循环床气固提升管中颗粒浓度的轴向分布.四川大学学报. 2000, 32(6):38~41
    25 D. Bai, K. Kato. Saturation Carrying Capacity of Gas and Flow Regimes in CFB. Journal of Chemical engineering of Japan. 1995, 28:179~185
    26黄卫星,肖泽仪,石炎福,祝京旭.气固两相上行流颗粒加速行为的研究.化学反应与工艺. 2001, 17(2):38~41
    27 W. Zhang, Y. Tung, J.E. Johnsson. Radial Voidage Profiles in Fast Fludized Beds of Different Diameters. Chem. Eng. Sci. 1991, 46:3045~3052
    28 F. Wei, H. F. Lin, Y. Cheng. Profiles of Particle Velocity and Solids Fraction in a High Density Riser. Powder Technol. 1998, 100:183~189
    29 A. S. Issagya, J. R. Grace, D. R .Bai, J. X. Zhu. Radial Voidage Variation in CFB Risers. Can. J. of Chem. Eng. 2001, 79:279~286
    30 E. U. Hartge, D. Rensner, and J. Werther. Solids Concentration and Velocity Patterns in Circulating Fluidized Beds. Circulating Fluidized Bed Technology II. Pergamon Press, Oxford,1988, 165~180
    31白丁荣,蒋大洲,金涌,俞芷青.循环流化床颗粒内循环流动结构的实验研究.第六届全国流态化文集. 1993, 1~7
    32 A. Nienow, P. Rowe, L. Cheung. A quantitative analysis of two segregating powders of different density in gas fluidized beds. Powder Tech. 1978, 20:89.
    33 Goossens W R A, Dumont G L, Spaepen G J.Chem Eng Progr Symp Ser, 1971,67:38
    34 B.Formisani, R.Girimonte, T.Longo. The fluidization process of binary mixtures of solids: Development of the approach on the fluidization velocity internal. Powder Tech. 2008, 97~108
    35 A. Hoffmann, E. Romp, Segregation in a fluidized powder of a continuoussize distribution, Powder Tech. 1991, 66:119~126
    36 D. Geldart, J. Baeyens, D.L Pope, P. van de Wijer. Segregation in beds of large particles at high velocities. Powder Tech. 1981, 30: 195
    37 P. Rowe, A. Nienow, A. Agbim, The mechanism by which particles segregate in gas fluidized beds—binary systems of near-spherical particles,Transactions of the Institute of Chemical Engineers. 1972, 50: 310
    38 P. T. Shannon. Fluid dynamics of gas fluidized batch systems,Ph.D., Illinois Institute of Technology. 1959
    39 A.W. Nienow, N.S. Naimer, T. Chiba, Chem. Eng. Commun. 1987, 62: 53
    40 B. Hirschberg, J. Werther, Factors affecting solids segregation in circulating fluidized bed riser, AIChE Journal, 1998, 44 (1): 25~33
    41 D. Bai, N. Nakagawa, E. Shibuya, H. Kinoshita, K. Kato, Axial distribution of solids holdups in binary solids circulating fluidized beds,Journal of Chemical Engineering of Japan, 1994, 27 (3): 271~275
    42 N. Nakagawa, D. Bai, E. Shibuya, H. Kinoshita, T. Takarada, K. Kato,Segregation of particles in binary solids circulating fluidized beds, Journal of Chemical Engineering of Japan, 1994, 27 (2): 194~198
    43 P. Bareschino, A. Marzocchella, P. Salatino, A. Caammarota, R. Chironne. Segregation and attrition of polydisperse solids in a circulating fluidized bed. CFB8-8th International Conference on Circulating Fluidized Beds, May 10–13, Hangzhou, China, 2005, 224~230
    44 Mitali Das, Meenakshi Banerjee, R.K. Saha. Segregation and mixing effects in the riser of a circulating fluidized bed. Powder Tech. 2007, 178~179
    45 Marzocchella A, Arena U. Hydrodynamics of a circulating fluidized bed operated with different secondary air injection devices. Powder Tech. 1996, 87(3):185~191
    46 Koksal M.Gas mixing and flow dynamics in circulating fluidized beds with secondary air injection.Dissertation for the Doctoral Degree.Halifax: Dalhousie University, 2001.
    47 Namkung W, Kim S D.Radial gas mixing in a circulating fluidized
    48 Kang Y,Song P S,Yun S J,et al.Effects of secondary air injection on gas-solid flow behavior in circulating fluidized beds.Chemical Engineering Communications, 2000, (177):31~47
    49 Ersoy L E.Effect of secondary air injection on the hydrodynamics of CFBs.Dissertation for the Doctoral Degree.Halifax: Dalhousie University, 1998.
    50 Wang X S,Gibbs B M.Hydrodynamics of a circulating fiuidized bed with secondary air injection.In:Basu P,Horio M,Hasatani M,eds.Circulating Fluidized Bed TechnologyⅢ.Oxford:Pergamon Press,1991.225~230
    51 Ilias S,Ying S,Mathur G D,et al.Studies on a swirling circulating fluidized bed[C].In:Basu P,Large J F,eds.Circulating Fluidized Bed TechnologyⅡ.Toronto:Pergamon Press, 1988,537~546
    52 F.A. Zenz. Bubble Formation and Grid Design. Inst. Chem. Eng. Symp. 1968, 30 (2):136~139
    53 J.M.D. Merry. Penetration of a Horizontal Gas Jet into a Fluidized bed. Trans. Inst. Chem. Eng. 1971, 49(2):189~195
    54 N.A. Shakhova, G.A. Minayev. Aerodynamics of Jets Discharge into Fluidized Beds. Heat Transfer-Sov. 1972, 4(1):133~142
    55 V.A. Basov, V.I. Markevka, V.I. Melik-Akhnazarov, Investigation of the structure of a nonuniform fluidized bed. Int. Che. Eng., 1969, 9:263~269
    56罗灵爱.流化床中水平射流穿透深度的研究.哈尔滨工业大学硕士论文. 1987, 61~72
    57李海滨,王洋,张海生.流化床中侧向射流穿透深度的研究.化学反应工程与工艺. 1995,11(2):198~202
    58 K. Savolainen, R. Karvinen. Experimental and Numerical Studies of Particle Turbulence Interaction and Jet Penetration in Gas-particle Flow. Advances in Fluid Mechanics, Computational Methods in Multiphase Flow. 2001,29: 87~96
    59刘佳,陈继辉,卢啸风,刘汉周.循环流化床锅炉二次风射流特性的冷模实验研究.电站系统工程. 2007,23(3):11~14
    60 B. Ljungdahl, B. Zethrnus. Air Jet Penetration into Circulating Fluidized Bed Risers-A Simplified Model Approach, Proceeding of 5th Int. Conf. On Circulating Fluidized Beds. Beijing. 1996: 31 ~ 36
    61杨建华,杨海瑞,岳光溪.循环流化床二次风射流穿透规律的试验研究.动力工程. 2008,28(4):510~513
    62郑成航,程乐鸣,周星龙,徐齐胜,王勤辉,方梦祥,骆仲泱。300 MW单炉膛循环流化床锅炉二次风射程的数值模拟.动力工程.2009,29(9):801~805
    63易彬,气固循环床提升管中的压力梯度与流动行为研究,四川大学硕士论文,2001.
    64漆小波.循环流化床提升管气固两相流动力学研究.四川大学博士学文论文.2003.
    65 Xiao Xianbin, Yang Hairui, Zhang Hai, Lu Junfu, Yue and Guangxi: Research on Carbon Content in Fly Ash from Circulating Fluidized Bed Boilers, Energy and Fuels, 2005, 19: 1520~1525
    66刘佳,循环流化床锅炉二次风射流特性的冷态实验研究与数值模拟,重庆大学硕士论文,2007:26~27
    67 M.P. Martin, P. Turlier, J.R. Bernard, G. Wild, Gas and solid behavior in Cracking Circulating Fluidized Beds, Powder Technol. 70 1992.249~258
    68 Harge B, Werther J,Narakuwa K,Moris S. Capacitance Probe Measurement technique for Local Particle Volume Concentration in circulating fluidized bed combustors. Journal of Chemical Engineering of Japan, 1996, 29: 560~594
    69刘石,潘忠刚,燕桂章,王海刚.应用电容层析成象和压差对比法对流化床内固体颗粒浓度分布的测量研究.工程热物理学报, 2000 ,21(6):759~763.
    70 Wang, C.P., Lu, Z.A., Li, D.K. Experimental Study of the Effect of Internals on Optimizing Gas–solid Flow in a Circulating Fluidized bed. Powder Technology. 2008, 184, 267~274
    71金涌,祝京旭,汪展文等.流态化工程原理.清华大学出版社.2001:27~28
    72 H. Bi, P. Jiang, R.H. Jean, L.S. Fan.. Coarse Particle Effects in a Multi-solid Circulating Fluidized Bed for Catalytic Reactions. Chem. Eng. Sci. 1992,47(12):3113~3124
    73王正阳,回料流和二次风射流对循环流化床流动与燃烧特性的影响.哈尔滨工业大学博士论文. 2009:91~92
    74 Patrick MA. Experimental investigation of the mixing and penetration of a round turbulent jet inject perpendiculonly into a transverse stream.Trans.Ind.Chem. Eng., 1967, 45~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700