用户名: 密码: 验证码:
构造—流体—成矿体系的复杂性及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成矿系统是地球物质系统的重要组成部分,成矿作用是多组成和多重地质作用耦合的复杂动力学体系与复杂动力学过程,并以构造和流体作用为主导,构成构造、流体、成矿相互耦合的统一动力学体系——构造-流体-成矿体系。本文通过对水口山铅锌金银多金属矿田矿床断裂构造的分形和多重分形特征、成矿元素空间分布的分形与混沌特征的分析及非线性成矿动力学模拟研究,分析和探讨了构造-流体-成矿体系的复杂性及其动力学机理。
     水口山铅锌金银多金属矿田内的矿床为浅成热液矿床,成矿作用与构造活动、流体作用密切相关。地质地球化学分析表明,成矿物质主要来源于上地壳,部分来自深源岩浆,成矿流体主要沿断裂带向上迁移并沉淀成矿。矿田区域断裂构造为多重分形分布。不论是由全部断层、不明性质断层到逆冲断层,还是由全部断层、有矿区断层到无矿区断层,多重分维谱f(α)的最大值、标度指数τ(q)的变化范围的大小、奇异指数α(q)的变化范围的大小、多重分维谱f(α)与X轴的左交点均呈递减的趋势,说明其复杂性亦呈递减的趋勢。
     马王塘和新盟山地区金的地表化探数据服从分形和多重分形分布,其二维化探曲面面积具有双分形(bifractal)关系,显示新盟山地区金的分布要比马王塘地区的分布更复杂,两地区的成矿元素富集程度较高且存在地球化学场的局部富集叠加。矿田区域地层和花岗岩体的元素含量分布的分形关系表明地层和花岗岩体只显示了元素的原生分布规律,而断裂带内的元素分布有两个地质过程控制,即经受了后期改造叠加作用,并可能使一些活动性较强的元素富集程度增高,掩盖了元素的原生分布规律。此外,较小的分维值可以指示成矿作用的发生,F_5、F_(16)断裂带也有较好的找矿前景。康家湾矿区钻孔和坑探资料中各元素品位变化序列的混沌分析表明各元素品位变化为混沌序列,成矿流体的演化及成矿元素的沉淀富集成矿过程为复杂的混沌动力学过程,且垂直方向的复杂性要大于水平方向的复杂性,从而成矿流体以垂直方向演化为主,描述或控制本矿区成矿元素品位变化的独立变量至少需要6~8个。
     数值模拟研究表明,在相对自由的空间内,矿物是分形集聚生长的,分形维数在一定的条件下随着表面粘附几率P_g的增大而减小,随着粒子间的引力场强度的增大而增大。构造对成矿作用控制最重要方面就是显著增高岩石的渗透率,在最佳的构造-岩石组合条件下,形成高的并能较长时间保持的断裂渗透串区域,促进流体流动,构造应力还可以促进矿物的溶解、元素的活化迁移与富集,从而形成大规模的矿床。
     总之,成矿物质的沉淀过程是一个复杂的非线性动力学过程,矿物在热液体系中通过构造应力、流体流动、流体-岩石反应等之间的复杂非线性反馈作用,最终在合适部位沉淀下来,形成了各种具分形与混沌特征的矿床。
Ore-forming system is an important part of the material system of the Earth. Ore-forming is a complex dynamic system and a complex dynamic process coupled multicomponents and multi- processes. The dominant processes are tectonics and fluid, and the coupling of structural deformation, fluid flow and mineralization construct an unitive dynamic system-tectonic-fluid-mineralization system. Using fractal and chaotic theory, the paper researches the fractal and multifractal character of fractures, fractal and chaotic character of spatial distribution ore-forming element of Shuikoushan Pb-Zn-Au polymetallic ore field, Hunan, China. And what's more, along with the nonlinearity ore-forming dynamics numerical simulation, the complex of tectonic-fluid-mineralization system and its dynamic mechanism are analysed and discussed in this paper.The deposits in the Shuikoushan Pb-Zn-Au polymetallic ore field are epithermal deposit and their mineralizations have closed correlation with tectonic deformation and fluid processs. The geological and geochemical data indicate that ore-forming material major come from upper crust and a part of them come from anatectic magma and the ore-forming fluid major transfer along fractures from down to up and deposit at the appropriate site. The fractures in this ore field are multifractal distribution. Not only from all faults, uncertain property faults to reverse thrust faults, but also from all faults, ore bearing area faults to barren area faults, all of the maximum of f(a), the size of x(q) variation range, the size of a(q) variation range, the left point of intersection of f(a) and X axis show a decrease successively tendency and indicate their complex have the same change tendency.The geochemical exploration data of Mawangtang area and Xinmengshan area show fractal and multifractal distribution and the 2 D geochemical exploration curved surfaces have bifractal relation. The fractal values indicate that the Au distribution of Xinmengshan
    area more complex than Mawangtang area and ore-forming elements of both two area have a high grade of concentration, and what's more, the geochemical field show a local enrichment superposition.The fractal analyses of element content of ore field stratum, granite body and fractute zone indicate stratum and granite body can only show the original element distribution but fractute zone show two geological processes control the element distribution. The deuteric superposition processes increse the enrichment of some high activity elements. Furthermore, the little fractal value can show mineralization and F5 and F16 fracture zones show a good ore prospecting forefround.Numerical simulating studies indicate that minerals grow in a relatively free space is a fractal aggregate process and the fractal dimension values will decrease increase along with the increase of sticking probability to the flat surface Pg and increase with the increase of gravitation field intension between ions. The fracture structure is an important role for controlling on hydrothermal mineralization. One of the most important sides is to increase remarkably rock permeability through all kinds of coupling and feedback processs among the tectonic-fluid dynamic system, furthermore, with the best structure-rock combination, to form a long time persistence high fracture permeability zone and therefore lead large scale deposition.In conclusion, the deposition of ore-forming material is a complex nonlinearity dynamics processs. Through all kinds of coupling and feedback processs among the tectonic stress, fluid flow, fluid-rock reaction, minerals deposition at the appropriate site in fault structures al last and then form epithermal deposits with fractal and chaotic character.
引文
陈春仔,金友渔,1997.分形理论在成矿预测中的应用.矿产与地质,11(4):272-276.
    程小久,卢建杭,宋亮明,1994.铅锌品位分维D值的意义和计算程序.地质与勘探,(5):30-35.
    邓军,杨立强,翟裕生等,2000.构造-流体-成矿系统及其动力学的理论格架与方法体系.地球科学,25(1):71-78.
    邓军,翟裕生,杨立强等,1999.剪切带构造流体成矿系统动力学模拟。地学前缘,6(1):115-128.
    杜时贵,潘别桐,1993.岩石节理粗糙度系数的分形特征.水文地质工程地质,(3):36-39.
    冯长根,李后强,祖元刚,1997.非线性科学的理论、方法和应用。北京,科学出版社.
    韩玉英,1992.构造断裂的分形分析.地质科技情报(中国地质大学),11(3):79-84.
    洪流,徐志斌,1996.地洼区脆性变形域断裂的分形研究.大地构造与成矿学,20(3):267-275.
    黄国祥,卢巧嫒,1992.用分形分析(Fractal analysis)研究岩石的断裂破碎和风化.第三届全国岩石动力学学术会议论文选集,204-209.
    贾跃明,1996.流体成矿系统与成矿作用研究.地学前缘,3(4):245-252.
    金章东,1998.江西德兴铜厂斑岩体铜品位的分形结构.矿床地质,17(4):363-368.
    井竹君,1991.混沌简介,数学的实践与认识,1.
    李长江,蒋叙良,徐有浪,麻土华,1996.浙江中生代热液矿床的分形研究.地质科学,31(3):264-271.
    李洪志,宋玉国,1997.金矿脉分形特征及找矿意义研究.贵金属地质,6(1):54-62.
    李先福,李建威,傅昭仁,王学平,1998.湘赣边地区走滑断裂带致矿异常的结构样式及分形特征.地球科学-中国地质大学学报,23(2):141-146.
    连长云,苏小四,2000.胶东地区未发现金矿床资源总量的分形估计.长春科技大学学报,30(1):24-27.
    连长云,苏小四,朴寿成等,1995.中国大陆深断裂系的分形特征.世界地质,14(3):35-39.
    刘传正,1993.活动断裂系统的分段性及其分形几何特征.水文地质工程地质,20(6):16-19.
    刘顺生,谭凯旋,1996.开放体系成矿动力学.地震出版社,北京.
    刘伟,1989.湖南水口山多因复成铅锌金银多金属矿田成矿机理分析。见:陈国达主编,中国科学院长沙大地构造研究所集刊,第3号。北京:科学出版社.
    卢新卫,金章东,1999a.湘中锑矿床空间分布的分形特征.铀矿地质,15(2):100-105.
    卢新卫,马东升,1999b.湘中锑矿带断裂体系分维及其对成矿流体运移和矿床定位的指示作用.矿床地质,18(2):168-174.
    毛华海,张哲儒,2000.分形理论与成矿作用.地学前缘,1(1):195-204.
    孟宪国,1991.R/S分析和地球化学数据的分形处理.地球科学,16(3):281-287.
    孟宪国,赵鹏大,1991.地质数据的分形结构.地球科学,16(2):207-211.
    彭建兵,1993.渭河盆地边界活动断裂的分形几何特征.西安地质学院学报,15(1):52-60.
    秦长兴,翟裕生,1992.矿床学中若干自相似性现象及其意义.矿床地质,11(3):259-265.
    申维,1997.成矿预测中的分形模型分维数估计的新方法.长春地质学院学报,27(1):86-91.
    沈步明,沈远超,1993.新疆某金矿的分数维特征及其地质意义.中国科学(B辑),23(3):297-302.
    施俊法,王春宁,1998.中国金矿床分形分布及对超大型的勘察意义,地球科学,23(6):616-619.
    施泽进,罗蛰潭,彭大钧,1995a.非线性地质勘探导论.成都:四川科学技术出版社,45-70.
    施泽进,罗蛰潭,彭大钧等,1995b..四川地区断层空间分布的多重分形特征.现代地质(中国地质大学研究生院学报),9(4):467-474.
    孙雄,洪汉净,马宗晋,1998.构造应力作用下流体运动的动力学分析-构造流体动力学.地球学报,19(3):150-157.
    谭凯旋,戴塔根,1998a非线性地球化学动力学。地球科学进展,13(2):145-150.
    谭凯旋,龚革联,龚文君,1999a.地质系统的复杂性和非线性地质动力学.地质地球化学.27(2):29-32.
    谭凯旋,龚文君,李小明,1999b.地洼盆地砂岩铜矿床的构造-流体-成矿体系及其演化。大地构造 与成矿学,23(1):35-41.
    谭凯旋,郝新才,戴塔根.1998b.中国断裂构造的分形特征及其大地构造意义.大地构造与成矿学,22(1):17-20.
    谭凯旋,刘顺生,谢焱石,2000a.新疆阿尔泰地区矿床分布的多重分形分析.大地构造与成矿学,2002,24(4):333-341
    谭凯旋,谢焱石,郭定良,2000b.构造-流体-成矿体系的耦合动力学:以湘西金矿为例.矿物岩石地球化学通报,19(4):241-243.
    王奎仁,周有勤,孙立广等,1994.中国几个卡林型金矿床金赋存状态研究.合肥:中国科技大学出版社,105~114.
    王岳军,范蔚茗,郭锋等,2001.湘东南中生代花岗闪长岩错石U-Pb法定年及其成因指示,中国科学(D辑),3l(9):745-751.
    谢和平,王金安,1998.岩石节理(断裂)表面的多重分形性质.力学学报.30(3):314-320.
    谢焱石,谭凯旋,2002a..断裂构造的分形研究及其地质应用.地质地球化学,30(1):71-77.
    谢焱石,谭凯旋,赵志忠,2002b.湘西沃溪金锑钨矿床含矿石英脉厚度变化的分形和混沌分析.大地构造与成矿学,26(1):62-68.
    杨润海,沈秋伟,杨培安,1993.分形方法在揭示基底控岩控矿条件方面的应用.长春地质学院学报,23(1):102-107.
    杨绍清,章新华,赵长安,2000.一种最大李雅普诺夫指数估计的稳健算法.物理学报,49(4):636-640.
    於崇文,1989.地球化学动力学体系。现代地质,3(3):267-289.
    於崇文,1994a.成矿作用动力学.理论体系和方法论.地学前缘,1(3):54-82.
    於崇文,1994b.地球化学系统的复杂性探索.地球科学,19(3):283-286.
    於崇文,1995.江西德兴斑岩铜矿田成矿作用的流体动力分形弥散机制.地质论评,41(3):211-220.
    於崇文,1996.地球化学动力学:地球化学、历史、现状和发展趋势。北京:科学出版社.
    於崇文,2000.地质作用的自组织临界过程动力学.地学前缘,7(1):13-42;7(2):555-586.
    於崇文,岑况,鲍征字等,1993.热液成矿作用动力学.武汉:中国地质大学出版社.
    於崇文,岑况,鲍征宇等,1998.成矿作用动力学。北京:地质出版社.
    於崇文,蒋耀松,肖正域,1995a.安徽铜陵层控矽卡岩型铜矿床的成矿作用动力学.地质学报,69(3):243-254.
    於崇文,蒋耀松,肖正域,1995b.热液成矿分带的溶解.沉淀波结构.地球科学,20(5):540-550.
    於崇文,骆庭川,鲍征宇等,1987.南岭地区区域地球化学,北京:地质出版社.
    张均,周乔伟,2000.分形方法在金矿化时空结构分析中的应用.现代地质,14(1):56-60.
    张理刚,1985.湘西雪峰山区钨锑金矿床的稳定同位素地质.地质与勘探,21(11):24-28.
    张理刚,1989.成岩成矿理论与找矿.北京,北京工业大学出版社.
    张荣华,胡书敏,1992.矿物在热液内化学动力学和物质迁移.北京:科学出版社.
    赵伦山,高太忠,李嘉,1994.液成矿作用的地质地球化学动力学.地球科学,9(3):337-344.
    周乔伟,1998.川西北某金矿元素品位分布的分数维特征研究.四川地质学报,18(4):280-284.
    周永章,Jayanta G,Edward H C等,1995.元素迁移的分维结构、级序路径及共扼地球化学异常存在的理论依据.地球化学,24(1):69-75.
    於崇文,1999.大型矿床和成矿区(带)在混沌边缘.地学前缘,6(1):85-102,6(2):195-230.
    谭凯旋,谢焱石,赵志忠,李小明,2002.构造成矿非线性动力学:2.湘西金矿研究实例.大地构造与成矿学,26(1):37-42
    王江海,吴金平,1990.斜长石振荡环带成因动力学模型.地质科技情报,9(2):1-5.
    於崇文,1998b.固体地球系统的复杂性与自组织临界性.地学前缘,5(3-4):159-182,347-368.
    翟裕生,1996.关于构造-流体-成矿作用研究的几个问题.地学前缘,3(3-4):230-236.
    陈江峰,胡诚,1999.煤中断裂分布的分形特征.煤田地质与勘探,27(1):7-9.
    李久林,1994.断裂系各向异性的分形几何研究.水文地质工程地质,3:25-28.
    Agterberg F P, 1994. Fractals, multifractals, and change of support. In: Dimitrankopoulos R. ed. Geostatistics for the next century. Dordrecht: Kluwer, 223-234.
    Agterberg F P. 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits.International Geology Review, 37:1-8.
    Agterberg F P, 2001. Multifractal Simulation of Geochemical Map Patterns. Proceedings of the international Symposium on Diversity of Mineralization and its Prediction and Assessment. Beijing and Wuhan,6- 14.
    Agterberg F P, Cheng Qiuming, Brown A, Good D, 1996. Multifracral modeling of fractures in the Lac Du Bonnet Batholith, Manitoba. Computers & Geosciences, 22(5):497-507.
    Angevine C L, Turcotte D L, Furnish M D, 1982. Pressure solution lithification as a mechanism for the stick-slip behavior of faults. Tectonnics, 1,151-160.
    Bak P, Tang C, Wiesenfeld K, 1988. Self-organized criticality. Physical Review A, 38 (1): 364 ~ 374
    Barton C C, 1995. La Pointe P R. Fractals in Petroleum Geology and Earth Science Processes. New York: Plenum Press.
    Benning. L G and Seward. T. M,1996. Hydrosuphide complexing of gold in hydrothermal solution from 150℃ to 500℃ and 500 to 1500 bars. Geochim. Comochim. Acta. Vol 60 :1849-1877.
    Berry M V, and Lewis Z V, 1980. On the Weierstrass-Mandelbrot fractal function, Proc.R. Soc.London, 70,459-484.
    Berryman J G, 1986. Effective medium approximation for elastic constants of porous solids with microscopic heterogeneity. J Appl Phys, 59:1136-1140.
    Bethke C M, 1986. Inverse Hydrologic analysis of the distribution and origin of Gulf-type geopressured areas, Journal of Geophysics Research, 91,6535-6545.
    Blenkinson T G, 1994. The fractal distribution of gold deposits. In: Kruhl J H (eds). Fractals and dynamic system in geoscience. Berlin:Springer, 247-258.
    Blenkinsop T G, Sanderson D.J. 1999. Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton.In:McCaffrey K.J.W.,Lonergan L. & Wilkinson J.J. (eds) Fractures,Fluid Flow and Mineralization. Geological Society, London, Special Publicayions, 155:141-151.
    Block A, Von2Bloh W, KlenkeT,et al.,1991. 1Multifractal analysis of the microdistribution of elements in sedimentary structure using images from scanning electron microscopy and energy dispersive X ray spectrometry. Journal of Geophysical Research , B , Soli d Earth and Planets , 96 (10) : 16223-16230.
    Bolton A J, Clennell M B, Maltman A J, 1999. Nonlinear stress dependence of permeability; a mechanism for episodic fluid flow in accretionary wedges. Geology, 27:239-242.
    Bowers T S. 1991. The deposition of gold and othermetals: Pressure induced fluid immiscibility and associated stable isotope signatures. Geochim. Comochim. Acta. Vol 55:2447-2434.
    Carlson C A, 1991. Spatial distribution of ore deposits .Geology, 19:111-114.
    Cartwright I, 1994. The two-dimensional pattermof metamorphic fluid flow at Mary Kathleen. Australia: Fluid focusinf transversw dispersion and im plications for modelingfluid flow. Am. Mineral.79:526-535.
    Cartwright J A, Trudgill B D, Mansfield C S, 1995. Fault growth by segment linkage: an explanation for scatter in mzximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9): 1319-1326.
    Cello G, 1997. Fractal analysis of a Quaternary fault array in the central Apennines, Italy. Journal of Structural Geology. 19(7):945-953.
    Cline J S, Bondnar R J, and Rimstidt J D, 1992. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions; Application to epithermal gold deposits. J. Geophys. Res. 97:9085-9103.
    Cowie P A., Sornette D, and Vanneste C, 1995. Multifracral scaling properties of a growing fault population. Geophysics Journal International, 122: 457-469.
    Cox S F, 1995. Faulting process at high fluid pressure: an example of fault-valve behavior from the Wattle Gully Fault, Victoria, and Australia. Journal of Geophysical Research. Vo. 100, 841-859.
    Cox S F, 1999. Deformational controls on the dynamics of fluid flow in mesothermal gold systems. In: Mccaffrey. K. J. W., Lonergan. L & Wilkinson J J(eds) Fractures, fluid flow and mineralization. Geological Society, London, Special Publications, 155, 123-140.
    Cox S F, Paterson M S, 1991. Experimental dissolution-precipitation creep in quartz aggregates at high temperature. Geophysical Research Letters, Vol. 18, 1401-1404.
    Curewitz D, Karson J A, 1997. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. J Volconal Geotherm Res, 79: 149-168.
    De Wijs H J, 1953. Statistics of ore distribution: (2) theory of binomial distribution applied to sampling and engineering problems. Geol Mijnbouw, 15: 12-24
    De Wijs H J, 1951. Statistics of ore distribution: (1) frequency distribution of assay values. Geol Mijnbouw, 13: 365-375.
    Desai C S, Siriwardane H J, 1984. Constitutive laws for engineering materials. Englewoods Cliffs, New Jersey: Prentice Hall:
    Dewers T, Ortoleva P, 1990. Geochemical selforganization: A mechano-chemical model of metamorphic differentiation. Amer. J. Sci. Vol. 290, 473-521.
    Dewers T, Ortoleva P, 1994. Nonlinear dynamical aspects of deep basin hydrology: fluid compartment formation and episodic fluid release. Am J Sci, 294: 713-755.
    Dove P M, Crerar D A, 1990. Kinetics of quartz dissolution in electrolyte solutions using a hydrthermal mixed flow reactor: Geochim et. Cosm ochim. Acta., Vol. 54: 955-969.
    Druker-Prager D C, Prager W, 1952. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10: 157-165.
    Evertsz C J G, Mandelbrot B B, 1992. Multifractal measures, AppendixB. In: Peitgen H O., Jurgens H and Saupe D (eds). Chaos and Fractals. New York: Springer, 922-953.
    Feder J, 1988. Fractals. New York: Plenum Press.
    Ferry J M, Dipple G M, 1991. Fluid flow. Mineral reactions and metasomatism. Geology. 19: 211-214.
    Ferry J M, Dipple G M, 1992. Models for coupled fluid flow mineral reaction and isotopic alteration during contact metamorphism: The Notch Peak aureole. Utah. Am. Mineral, 77: 577-591.
    Flook A G, 1979. The characterization of textural and structural profiles by the automated measurement of their fractal dimension. 2nd European Symp. Particle Characterization, 591-599.
    Ge S, Garven G, 1992. Hydromechanical modeling of tectonically-driven groundwater flow with application to the Arkoma foreland basin. J Geophy Res, 97: 9119-9144.
    Gharbi R B C, Qasem F, Peters E J, 2001. A relationship between the fractal dimension and scaling groups of unstable miscible displacements. Experiments in Fluids, 31: 357-366.
    Grassberger P, 1984. Dimensions and entropies of strange attractors from a fluctuating dynamics approach, Physica, 13D, 34-54,
    Grutchfield J P等, 1987. 混沌现象, 科学(中译本), 4。
    Haynes D W, Cross K C, Bill R T, and Reed M H, 1995. Olympic Dam ore genesis: a fluid mixing model. Econ. Geol., 90: 281-307.
    Hedenquist J W, 1991. Boiling and dilution in the shallow portion of the Waiotapu geothermal system, New Zealand. Geochim. Cosmochim Acta, Vol, 55: 2753-2765.
    Heinrich C A, Bain J H C, Mernagh T P, Wybom L A I, Andrew A S and Wafing C L, 1995. Fluid and mass transfer during metabasalt alteration and copper mineralization at Mount Isa. Austalia. Econ. Geol. 90: 705-730.
    Hiram T, 1989. Fractal dimension of fault systems in Japan: Fractal structure in rock fracture geometry at various scalcs. Pure and Appt. Geophys, 131: 157-170.
    Hofstra A H, Leventhat J S. Nothrop H R, Landis G P, Rye R O. 1991. Genesis of sediment-hosted disseminated gold deposits by fluid mixing and sulfidization: chemical-reaction-path m odeling of ore-depositionat processes documented in the Jerritt Canyon district, Nevada: Geology. Vol. 19: 36-40.
    Holness M B, 1997. Deformation-enhanced Fluid Transport in the Earth's Crust and Mantle. London: Chapman & Hall.
    Hubbert M K, Rubey W W, 1959. Role of fluid pressure in mechanics of overthrust faulting. Bull. Geol. Soc. Am., 70, 115-166.
    Johnston J D, McCaffrey K J. 1996. Fractal geometries of vein systems and the variation of scaling relationships with mechanism. Journal of Structural Geology. 18: 349-358.
    Kauffman S A, 1989. Origins of Order in Evolution: Self2organization and Selection. In: Goodwin B, Saunders P, eds. Theoretical Biology. Baltimore, Maryland: Johns Hopkins University Press, 67-88.
    Kauffman S A, 1991. Antichaos and adaptation. Scientific A merican, 8: 64-70.
    Kauffman S A, 1993. Origins of Order: Self2Organization and Selection in Evol ution. Oxford: Oxford University Press, 1-709.
    Kaye B H, 1978. Specification of the ruggedness and/or structure of a fine particle profile by its fractal dimension. Powder Technology, 21: 1-16.
    Keilia-Borok V.I.著,周翠英等译,1991.非线性系统的地球岩石层及其在地震预报中的意义,世界地震译从,1.
    Korvin G, 1992. Fractal Model in the Earth science. Amsterdam: Elsevier.
    Kruhl J H, 1994. Fractals and Dynamics Systems in Geoscience. New York: Springer-Verlag.
    Lanchenbruch A H, 1980. Frictional heating, fluid pressure and the resistance to fault motion. Journal Geophysics research 85, 6097-6112.
    Langton C G, 1986. Studying artificial life with cellular automata. Physica, 22D: 120-149.
    Lasaga A C, Rye D M, 1993. Fluid flow and chemical reaction kinetics in metamorphic systems: Amer. Jour. Sci., Vol. 293: 361-404.
    Lee H K, Schwarcz H P, 1995. Fractal clustering of fault activity in California. Geology (Boulder), 23(4): 377-380.
    Lehmann B, Dietrich A, and Wallianos A, 2000. From rocks to ore. Int. J Earth Sci. 89: 284-294.
    Lichtner P C, 1992. Time-space continum description of fluid/rock interaction in permeable media; Water Resources Research,, Vol. 28: 3135-3155.
    Lichtner P C, 1993. Scaling properties of time-space kinetic mass transport equations and the local equilibrium limit. Amer. J. Sci., 293(4): 257-296.
    Lunenschloss B, Muchez P, Bayer U, 1997. Missippi Valley-type mineralizations atthe Variscan thrustfront: Numerical modeling of the temperature field and flow pattern. In: Hendry J. Carey P. Parnell Jet al (eds.) GEOFLU IDS'97, extended Abstracts Volume. Belfast: 190-193.
    Maddox J, 1990. Order in the midst of chaos, Nature. 347. 6292.
    Mandelbrot B B, 1982. Fractal Geometry of Nature. San Francisco: W H Freeman & Co.
    Mathai S K, Roberts S G, 1997. Transient versus continuous fluid flow in seismically active faults: an investigation by electric analogue and numerical modeling. In: Jamtveit B & Yardley B W D.(eds) Fluid flow and transport in rocks: Mechanisms and effects. Chapman & Hall, London, 263-292.
    Matsushita M, Sano M, Hayakawa Y, Honjo H, and Sawada Y, 1984. "Fractal structures of zinc metal leaves grown by electrodeposition," Physical Review Letters 53, 286-289.
    Matthai S K, Henley R W, Heinrich C A, 1995. Gold precipitation by fluid mixing in bedding-parallel fractures near Carbonaceous slates at the Cosmopolitan Howley gold deposit, Northern Australia. Econ Geol., Vol. 90: 3123-2142.
    McCaffrey K J W, Lonergan L, Wilkinson J J, 1999. Fractures, Fluid Flow and Mineralization. Geological Society, London, Special Publications, 155.
    Merino E, 1984. Survey of geochemical self-Puttering phenomena. In: Nicolis G, Bars Reds. Chemical instabilities. Boston: D Reidel Publishing Company, 305-328.
    Nanjo K, Nagahama H, 1998. Satomura. M. Rates of aftershock decay and the fractal structure of active fault systems. Tectonophysics 287; 1-4, 173-186.
    Nicolis C, Nicolis G, 1987. Irreversible phenomena and dynamical systems Analysis in geosciences. Dordrecht, Holland: D. Reidel Publishing Co.
    Nicolis G, Prigogine I, 1977. Self-Organization in Nonequilibrium System. John Wiley & Sons, 1-491.
    Norton D, Knight J, 1991. A model for simulating transport of reactive multispecies components: Model development and demonstratoin; Water Resources Resesrch, Vol. 27: 3075-3094.
    Norton D, Knight J, 1991. A model for simulating transport of reactive multispecies components: Model development and demonstratoin; Water Resources Resesrch, Vol. 27: 3075-3094.
    Ohmoto H, 1986. Stable isotope geochemistry of ore deposit. In: Stable isotope in high temperature geological process, Rev. Miner., Ⅴ. 16, Mineralogical-Society of America, 491-559.
    Okubo P G, Aki K, 1987. Fractal geometry in the San Andreas Fault system. Journal of Geophysical Reasearch, Vol 92, No. B1, 345-355.
    Oldenburg C M, Spera F J, Yuen D A, Earth Sci. Rev. 1990. Vol. 29, 331-348,李广新译,对流岩浆混合中的自组织作用,世界地质,1993,12(2):27-39
    Ortoleva P, 1994. Geochemical Self-Organization. New York: Oxford University Press.
    Ortoleva P, Merino E, Moore C H, Chadam J, 1987b. Geochemical self-organization Ⅱ: The reactiveinfiltration instability. Amer J Sci, 287:1008-1040.
    Ortoleva P, Merino E, Moore C, Chadam J. 1987a. Geochemical self-organization Ⅰ. Reactiontransport feedbacks and modeling approach. Amer J Sci, 287: 979-1007.
    Ortoleva, P., ed, 1990. Self-organization in geological systems. Earth-Science Reviews 29(1-4).
    Packard N, 1988. Adaptation toward the edge of chaos. Technical Report, Center for Complex Systems Research, University of Illinois, CCSR28825.
    Pan Y, Fleet M E, 1992. Calc-silicate alteration in the Homlo gold deposit, Ontario: mineral assembleges, P-T-X constraints, and significance. Econ Geol., Vol. 87: 1104-1120.
    Parry W T, Bruhn R L, 1986. Pore fluid and seismogenic characteristics of fault rock at depth on the Wasatch fault, Uath, Journal Geophysics research, 14, 99-102.
    Phillips O M, 1991. Flow-controlled reactions in rock fabrics. J. fluid Mech., Vol. 212: 263-278.
    Richard W H, Byron R B, 2000. Self-ordering and complexity in epizonal mineral deposits. Annu Rev Earth Planet Sci, 28: 668-719.
    Roberts S, Sanderson D J, 1995. Fractal analysis of Sn-W mineralization from Central lberia: insights into the role of fracture connectivity in the formation of an ore deposit. Economic Geology, 90: 360-365.
    Sander L M, 1986. Fractal growth processes. Nature, 322: 789.
    Sanderson D J,1994.西班牙La Codosera地区钻孔中金品位与矿脉厚度间的分形关系。世界地质,13(4):61-65,杨贵春译自EconomicGeology,1994(1),连长云校。
    Sanderson D J, Zhang X, 1999. Critical stress localization of flow associated with deformation of well-fractured rock masses, with implications for mineral deposits. In: Mccaffret, K. J. W., Lonergan, L. & Wilkinson J. J. (eds) Fractures, fluid flow and mineralization. Geological Society, London, Special Publications, 155, 69-81.
    Scholz C H, Aviles C A, 1985. Fractal dimension of the 1906 San Andreas fault and 1915 Pleasant Valley faults(abstract), Earthquakes Notes, 55, 20.
    Scholz C H., Dawers N H, Yu J L, Anders M H, 1993. Fault growth and fault scaling laws: preliminary result. Journal of Geophyscial Research, 98( 12):21951 -21961.
    Shepoard S M F. 1986. Characterization and isotopic variations in natural waters. In: Valley J W, Taylor H P. and O'neil J R (ed.), Sable isotope in high temperature geological process. Rev. Miner. V. 16, Mineralogical-Society of A nerica.
    Sibson R H.1996. Structural permeabi!ity of fluid-driven fault-fracture meshes. J Struct Geol. 18: 1031-1042.
    Sibson R.H, 1994, Crustal stress, faulting, and fluid flow. In: Geolluids: Origin, Migration,and Evolution of Fluids in Sedirnentary Basins (eds.Parnell J.). Sepc. Publs.Geol.Soc.Lond.78, 69-84.
    Stanley H E, Meakin P, 1998. Multifractal phenomena in physics and chemistry. Nature, 335 (6189): 405-409.
    Steefel C I, Lasaga A C, 1992. Putting transport into water-rock intraction models: Geology, Vol.20:680-684.
    Steefel C I, Lasaga A C, 1994. A coupled model for transport of multiple chem ical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal system. Am. J. Sci., 294:529-592.
    Steefel C L, Van Cappellen P, 1990. A new kinetic approach to modeling water-rock interaction:The role of nucleation, precursors, and Ostwald-ripeningrGeochim. Cosmochim. Acta, Vol. 54:2657-2677.
    Sukmono S, Zen M T, Hendrajava L, Kadir W G A, Santoso D, Dubois J, 1997. Fractal pattern of the Sumatra fault seismicity and its possible application to earthquake prediction. Bulletin of the Seismological Society of America. 87(6):1685-1690.
    Thomas M, Bruce G, Jochen M, 2001. Fractal distributions of veins in drill core from the Hellyer VHMS deposit, Australia: constraints on the origin and evolution of the mineralisiation system. Mineralium Deposita36: 406-415
    Tivey M K, 1995. The influence of hydrothernnal fluid composition and advection rates on black smoker chimney mineralogy: Insights from modeling transport and reaction. Geochim. Cosmochim. Acta, 59(10):1933-1949.
    Tsang Chin-Fu, 1999. Linking thermal, hydrological, and mechanical processes in fractured rocks. Annu.Rev.Earth Planet .Sci., 27:359-384.
    Turcotte D L, 1986. A fractal approach to the relationship between ore grade and tonnage. Economic Geology and the Bulletin of the Society of Economic Geologists. 81(6) :1528-1532.
    Turcotte D L, 1992. Fractals and Chaos in Geology and Geophysics. Cambridge: Cambridge University Press.
    Upton P, 1997. Modeling tem poral and spatial variations in crustal peameability, porocity and pore pressure. In: Hendry J. Carey P. Pamell Jet al( eds. )GEOFLUIDS '97, Extended Abstracts Volume. Belfast: 407-410.
    Voss R F, 1985. Random fractal forgeries. In: Eamshow R A.,(ed.) Fundamental Algorithms for Computer Graphics, Nato Press, 805-835.
    Wells J T, Ghiorso M S, 1991. Coupled flow and reaction in min-ocean ridge hydrothermal systems: the behavior of silica: Geochim . et. Cosmochim. Acta, Vol. 55:2467-2481.
    Winslow M A, 1983. Clastic dike swarms and the structural evolution of the foreland fold and thrust belt of the sourthern Andes. Geol, Soc. Am.Bull., 94,1073-1080.
    Witten T A, Sander LM, 1981. Diffusion limited aggregation. A kinetic critical phenomenon, Phys. Rev. Lett. 47:1400.
    Yuan D A, 1992. Chaotic Processes in the Geological Sciences. New York:Springer-Verlag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700