用户名: 密码: 验证码:
典型含氢小分子联氨及联氨盐的高压实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢是元素周期表中的第一号元素,核外只含有一个电子,在所有元素中具有最简单的电子结构。由于其电子结构的独特性,氢元素既可以归为IA族碱金属元素,又被认为具有VIIA卤族元素类似的性质。对于氢的研究,不仅具有重要的学术意义,更具有深远的实际应用价值。一方面,金属氢是二十一世纪最为重要的十大物理问题之一,氢被认为在压力作用下会由绝缘体转变为金属,并且金属氢是一种潜在的室温超导体,在实际应用中有望使超导体这一应用广泛的功能材料摆脱低温的限制。然而,现有实验条件下尚未观测到金属氢的确切证据。鉴于直接对氢加压实现金属化所需的压力过高,理论研究结果认为含氢化合物中其他元素对氢原子会产生一种化学预压作用,这会大大降低氢金属化所需的压力。因此,富氢材料的高压研究为金属氢的研究提供了另一条途径。另一方面,氢通常的单质形态是氢气,是一种由双原子分子组成的具有极高燃烧热能的气体。氢能源因为其高能量密度、可循环利用且绿色无污染等良好的特性而被认为是一种新型能源材料,人们期望氢能源能够减少人们对于传统化石燃料的依赖,从而降低日益严重的CO2污染对环境造成的压力。除却传统以C和H元素为主的化石燃料外,N和H元素组成的化合物也因为其良好特性引起人们广泛兴趣。首先,这类材料完全燃烧产物为N2和H2O,不会对环境产生污染;其二,N-N键和H-H键的键能都非常高,分别基于N元素和H元素的聚氮和富氢材料都已经被广泛研究和应用,若两者结合,性能将更加优异。此外,氢键的存在对含氢材料高压下的结构和性质发挥着重要的作用,在与N原子电负性相近的O,F,Br和Cl等元素与H元素结合形成的化合物中,都在较低压力下发现了氢键对称化这一特殊现象。然而在以NH两种元素形成的化合物中却尚未观测到氢键对称化的确切证据。因此研究这一类型氢键的对称化现象对深入认识物质中原子之间的基本相互作用力具有非常意义。
     在本文中,我们选取典型含氢小分子联氨(N2H4)及联氨盐水合联氨(N2H4H2O),盐酸联氨(N2H4HCl)和溴酸联氨(N2H4HBr)作为研究体系。采用原位高压实验测量技术,辅助以空间群分析、第一性原理计算,首次对典型含氢小分子联氨及联氨盐高压下的结构、氢键以及材料稳定性进行了详细研究。研究结果使我们对这一类材料的高压行为有了深入了解,并在一定程度上揭示了振动模式之间复杂的耦合、共振作用和氢键对称化等特殊的高压现象,对我们实现氢的金属化以及富氢材料进一步加氢设计具有一定的借鉴作用。具体结果如下:
     (1)高压下N2H4的结构变化及氢键的研究
     联氨是一种由N元素和H元素形成的典型含氢小分子,其含氢量高达12.6wt%,常与液态氢混合作为一种混合燃料应用在航空航天领域。前人对固态联氨的研究多集中在低温条件下,高压下相变序列以及结构尚未确定。通过原位高压拉曼光谱测量和同步辐射XRD技术,对联氨进行高压实验研究分别至46.5和33.0GPa。实验结果显示液态联氨在1.2GPa发生固化,通过Raman峰指认,群论分析和XRD光谱精修,首次确定第一个固态相I的结构为P21。随着压力增加,相I在2.4GPa进一步转变为相II,光谱的变化显示这可能是由于联氨分子之间氢键的形成导致的。在18.4GPa,拉曼光谱中NH2基团的Deformational振动峰发生了从红移到蓝移的转变,标志着联氨发生等结构相变,结构转换为相III。通过对Deformational振动模式的构型及其周围成键环境的分析,首次对分叉型氢键在压力作用下的变化进行了分析,提出分叉型氢键中两个分枝键长和键角随压力的调整是等结构相变的相变机制。此外,在20.6GPa以上,NH伸缩振动振动峰随压力增加不断向低波数移动,同时峰强减弱,峰宽变宽,至约30GPa彻底消失。这种明显的模式软化行为正是由于氢键的增强引起的,是氢键对称化过程中的一个重要光谱特征。通过DMP理论对这一现象分析指出,联氨中N-H…N这种氢键模型的对称化可能发生在大约60GPa。
     (2)N2H4H2O的高压行为研究
     我们利用原位高压Raman光谱测量和同步辐射XRD实验技术对水合联氨(N2H4H2O)首次进行了高压下结构变化的实验测量。实验结果显示液态水合联氨在3.2GPa固化为相I。拉曼光谱特征显示在相I中H2O中的H原子被N2H4中的不饱和N原子吸引形成NH+3离子。样品在7.2GPa进一步发生变化,结构由相I变为相II,光谱分析认为这次相变是N2H4分子的扭转引起的。第一次Raman光谱测量至36.0GPa,结果显示大多数OH对称伸缩峰在20GPa以上红移消失不见,此压力点与H2O中对应模式的软化压力相近,表明O-H…N类型的氢键对称化也可能发生在较低压力范围内。在整个加压过程中,没有观测到杂质N2H4和H2O的拉曼信号,由此证明1:1组份的N2H4和H2O其高压结晶物为纯净的一水联氨。在卸压过程中,压力降至2.3GPa时光谱发生剧烈变化,通过对比和指认,发现此时样品为纯联氨的相I结构,一水联氨发生分解,水的信号消失。第二次Raman光谱测量至13.3GPa,结果显示在卸压至1.9GPa时样品发生分解,水的Raman信号消失,测得为纯联氨。同步辐射XRD光谱显示样品在40.4GPa左右发生了分解,卸至1.5GPa时光谱未再发生进一步变化。(3)高压下N2H4HCl的结构变化及氢键的研究
     我们利用原位高压拉曼光谱测量技术和同步辐射XRD衍射实验技术,首次对固体N2H4HCl进行高压实验研究分别至39.5和24.6GPa。通过对测得同步辐射XRD光谱进行全谱拟合,确定常温常压条件下固态N2H4HCl相I结构为C2/c。在相I中N2H+5离子交错排列,通过N-H…N模式的氢键连接成链。从相I到相II的结构转变发生在7.3GPa,在相II中Cl-离子开始参与形成氢键,导致NH伸缩振动模式发生明显的软化红移并与低频区振动模式发生费米共振。通过对主要晶格振动峰和光学振动峰随压力移动频率的计算和分析,发现NH伸缩振动峰表现出缓慢的峰位移动,通过分析我们认为主要是由氢键增强对压力效用的抵消造成的。压力高于19.8GPa时,相II转变为相III,此相中费米共振现象消失,共振过程完成,证明部分N-H…Cl模式的氢键可能发生了对称化。样品结构直到最高压力39.5GPa未再发生变化。在不同的结构中,Deformational模式振动峰表现出截然不同速率的反常红移,这种频移速率的变化也是相变的证据之一。(4)高压下N2H4HBr的结构和氢键对称化研究
     我们利用原位高压Raman光谱测量,红外光谱(IR)和同步辐射XRD实验技术对固态N2H4HBr进行高压研究,压力分别至65.4,23.9和27.0GPa。通过相I的Raman光谱特征峰指认和XRD衍射光谱的全谱拟合,确定常温常压条件下相I结构为C2/c。相I到相II的转变发生在6.6GPa。Raman光谱分析表明Br-离子参与形成氢键导致氢原子位置的移动是这次相变的根本原因。通过对相II中XRD测量光谱的指标化,确定相II结构为P1。在12.7GPa,样品结构转变为相III,在相III中,软化的NH伸缩振动模式与低频区振动模式发生了明显的费米共振,开始于12.7GPa,结束于24.5GPa。在34.5GPa,结构进一步相变为IV相,部分N-H…Br类型的氢键在此相中发生了氢键对称化。相IV稳定至最高压力65.4GPa未再变化,卸压后结构回到相I,证明相变是可逆相变。
Hydrogen is the first element in the periodic table of the elements, which has thesimplest atomic structure in all elements with only one electron outside the nucleus.Owing to the special electronic structure, the hydrogen can be recognized as an alkalimetal element in IA family, and also one member of the halogen elements in VIIAfamily. The study of hydrogen not only has academic significance, but also is crucialin practical application. On one hand, Metallic hydrogen is one of ten major physicalproblems in21st century. It is predicted that the hydrogen can become an alkali metalunder extreme compression. Furthermore, the metal hydrogen was recognized as aroom temperature superconductor, which may get rid of the low-temperaturelimitations in practical application. However, the alkali metal has not achieved in theexperiment so far. Owing to the ultrahigh pressure in pressurizing pure hydrogendirectly, it is proposed that the role of chemical pre-compression in the hydrogen-richmaterials could lower the pressure of metallization. Therefore, researching thebehavior of hydrogen atom in the hydrogen-rich materials under high pressureprovides a shortcut in hydrogen metallization. On the other hand, the hydrogen gas isthe elemental form of hydrogen, which is composed of a diatomic molecule withextremely high energy. Hydrogen gas is viewed as a new energy source vital to thefuture economy because of its high energy density and pollution-free combustionproduct. It is expected to reduce the dependence of our economy on fossil fuels andalleviate the ever-worsening CO2pollution that threatens our environment. Apart fromthe traditional fossil fuel consisted of C and H elements, the compounds composed ofN and H elements have attracted extensive interest because of its good properties.Firstly, the complete combustion products of these materials are N2and H2O, which isno pollution to environment. Furthermore, both the NN and HH bonds energy isrelatively high, the polynitrogen and hydrogen-rich compounds have been researchedand applied extensively. The new materials based on the N and H atoms would have higher energy density. In addition, the hydrogen-bond is vital to the structure andproperty of hydrogen-bonding materials under pressure. The hydrogen-bondsymmetrization has been obsvred in the hydrides with O, F, Cl and Br. However, it isnot clear in the hydride with N atom, which has similar electronegativity with thementioned atoms above. The research on such hydrogen-bond would give a deeperunderstanding on the basic interaction between atoms.
     We have focused on the typical hydrogen-rich molecules hydrazine (N2H4) andhydrazine salts (N2H4H2O, N2H4HCl and N2H4HBr) as the main objects. Thehigh-pressure structure, hydrogen-bond and stability of hydrazine and hydrazine saltshave been firstly researched by the in situ high pressure experiment, space groupanalysis and first principles calculation. The results give a deep understanding of thehigh-pressure behavior in such materials, and show a series of phenomenons ofcoupling between vibrations, hydrogen-bond symmetrization and so on, which have acertain reference on hydrogen metallization and hydrogenation of hydrogen-richmolecules. The obtained results are as follows:
     (1) The study of pressure-induced phase transitions and hydrogen-bond insolid N2H4
     The hydrazine (N2H4) contains as high as12.6wt%of hydrogen and hence it isused as a component with liquid hydrogen in jet fuels because it produces a largeamount of heat when burned. The previous studies on solid hydrazine are mostlyfocused on low-temperature structures, but the high-pressure structure is unclear. Wehave performed the high pressure study of hydrazine by in situ Raman spectroscopyand synchrotron X-ray diffraction experiments up to46.5and33.0GPa, respectively.It is found that the liquid hydrazine solidifies into phase I at about1.2GPa. Thesymmetry of phase I is confirmed to be space group P21by the peak assignment,group theory analysis and Rietveld refinement of XRD patterns. A solid-solidtransition from phase I to II is observed in both Raman spectroscopy and XRDexperiments at about2.4GPa, which is ascribed to the formation of newhydrogen-bonds between hydrazine molecules. At18.4GPa, an isostructuraltransition from phase II to the final phase III is observed. The pressure-inducedadjustment of bifurcated hydrogen-bond is firstly researched and regarded as theorigin of the isostructural transition. Above20.6GPa, a clear softening behavioroccurs in the NH2symmetric stretching mode. The coupling of optical vibrationsderived from enhancement of the hydrogen-bond is proposed as a crucial role in this softening process. This change in Raman spectra is recorded as a typical feature in theprocess of hydrogen-bond symmetrization. By the analysis with DMP theory, it issuggested that the N-H…N hydrogen-bond may symmetries at around60GPa.
     (2) The high pressure study of solid N2H4H2O
     The high pressure behavior of hydrazine monohydrate (N2H4H2O) has beeninvestigated by in situ Raman spectroscopy and synchrotron X-ray diffractionexperiments. It is found that the liquid N2H4H2O solidifies into phase I at3.2GPa.The Raman spectra indicate that the NH3+group forms by the strong attraction to Hcation in phase I. Further solid-solid transition from phase I to II occurs at7.2GPa. Itis attributed to the contortion of N2H4molecules. The first Raman spectralmeasurement performs up to36.0GPa, the spectra show that the OH stretching peaksgradually disappear above20GPa, which is regarded as the typical soft behavior inthe stretching mode during the hydrogen-bond symmetrization. In the process ofcompression, no peak of solid hydrazine and water has been collected. We thusspeculate that the pressure-induced crystal of mixed liquid is pure hydrazinemonohydrate. Upon decompression, the spectra changes a lot at2.3GPa, it issuggested that the sample has resolved. The decomposer is recognized as purehydrazine by comparision of Raman spectra and peak assignment. The second Ramanspectral measurement was performed up to13.3GPa. The result shows that thesample has resolved at around1.9GPa upon decompression, which is agree with thefirst experimental result. The XRD patterns indicate that the sample decomposesabove40.4GPa, which has not changed to1.5GPa upon decompression.
     (3) The structure and hydrogen-bond study in N2H4HCl under pressure
     The first high pressure study of solid hydrazinium monochloride has beenperformed by in situ Raman spectroscopy and synchrotron X-ray diffraction (XRD)experiments in diamond anvil cell (DAC) up to39.5and24.6GPa, respectively. Thestructure of phase I at room temperature is confirmed to be space group C2/c by thePawley refinement of the XRD pattern. The staggered N2H5+ions are connected bythe N-H…N bond in phase I. A structural transition from phase I to II is observed at7.3GPa. The N-H…Cl hydrogen-bond has formed in phase II and causes obvriousFermi resonance between the softing NH stretching mode and lattice anddeformational modes. The pressure shifts of NH stretching peaks are really small,which is attributed to the compensating effects caused of the strong hydrogen-bond to the pressure. Above19.8GPa, the structure further transiforms into phase III. TheFermi resonance disappears completely, indicating that the N-H…Cl hydrogen-bondsymmetrization achieves in phase III. In additation, we observed that the shift of NH2deformational peak show diverse rates in the three phases, which is also the evidencesof phase transitions.
     (4) The hydrogen-bond symmetrization study in N2H4HBr under pressure
     The solid hydrazine monohydrobromide (N2H4HBr) has been first investigatedby in situ Raman spectroscopy, IR and synchrotron X-ray diffraction (XRD)measurements under pressure up to65.4,23.9and27.0GPa, respectively. At ambientconditions, the space group of phase I is confirmed to be C2/c by the peak assignmentof the Raman peaks and Rietveld refinement of XRD patterns. The first solid-solidphase transition from phase I to II is observed at6.6GPa. The Br-ion has formedN-H…Br hydrogen-bond in phase II, and the structure of phase II is confirmed to beP1. At12.7GPa, the structure further transforms into phase III. The obvrious Fermiresonance starts at12.7GPa and completes at24.5GPa. Above34.5GPa, thestructure finally transforms into phase IV with numbers of peaks disappearing in thespectra. It is suggested that the hydrogen-bond symmetrization achieves in phase IV.The phase IV persists up to65.4GPa and the structure returns to phase I at0GPaafter pressure release.
引文
[1]HAZEN R M, MAO H K, FINGER L W, et al. Single-crystal x-ray diffraction ofn-H2at high pressure [J]. Physical Review B,1987,36(7):3944-3947.
    [2]WIGNER E, HUNTINGTON H B. On the Possibility of a Metallic Modification ofHydrogen [J]. The Journal of Chemical Physics,1935,3:764-770.
    [3]ASHCROFT N W. Metallic Hydrogen: A High-Temperature Superconductor?[J].Physical Review Letters,1968,21(26):1748-1749.
    [4]ZHA C S, LIU Z X, HEMLEY R J. Synchrotron infrared measurements of densehydrogen to360GPa [J]. Physical Review Letters,2012,108:146402.
    [5]ASHCROFT N W. Hydrogen dominant metallic alloys: high temperaturesuperconductors?[J]. Physical Review Letters,2004,92(18):187002.
    [6]FENG J, GROCHALA W, JARON T, et al. Structures and PotentialSuperconductivity in SiH4at High Pressure: En Route to “Metallic Hydrogen”[J]. Physical Review Letters,2006,96:017006.
    [7]MARTINEZ-CANALES M, OGANOV A R, Ma Y M, et al. Novel Structures andSuperconductivity of Silane under Pressure [J]. Physical Review Letters,2009,102:087005.
    [8]TSE J S, YAO Y, TANAKA K. Novel Superconductivity in Metallic SnH4underHigh Pressure [J]. Physical Review Letters,2007,98:117004.
    [9]GONCHARENKO I, EREMETS M I, HANFLAND M, et al. Pressure-InducedHydrogen-Dominant Metallic State in Aluminum Hydride [J]. Physical ReviewLetters,2008,100:045504.
    [10]UMEGAKI T, YAN J M, ZHANG X B, et al. Boron-and nitrogen-basedchemical hydrogen storage materials [J]. International Journal of HydrogenEnergy,2009,34(5):2303–2311
    [11]ZHAO M, GIMARC B M. Strain Energies of (NH), Rings, n=3-8[J]. TheJournal of Physical Chemistry,1994,98,(31):7497-7503.
    [12]GLUKHOVTSEV M N, BACH R D, LAITER S. High-level computational studyon the thermochemistry of saturated and unsaturated three-and four-memberednitrogen and phosphorus rings [J]. International Journal of Quantum Chemistry,1997,62(4):373-384.
    [13]DAVID W B. High-level ab initio calculations on hydrogen-nitrogen compounds.Thermochemistry of tetrazetidine, N4H4[J]. Journal of Molecular Structure:THEOCHEM,2002,619(1-3):37-43.
    [14]MAO S; PU X M, LI L C, et al. Theoretical study on the structure and property ofN6H6[J]. Acta Chimca Sinica,2006,64(14):1429-1436.
    [15]ZHANG L C, VAN DUIN A C T, ZYBIN S V, et al. Thermal Decomposition ofHydrazines from Reactive Dynamics Using the ReaxFF Reactive Force Field [J].The Journal of Physical Chemistry B,2009,113(31):10770-10778.
    [16]GRAY P, HOLLAND S. The Effect of Isotopic Substitution on theDecomposition Flame of Hydrazine [J]. Combustion and Flame,1970,14(2):203-215.
    [17]KONNOV A A, RUYCK J D. Kinetic Modeling of the Decomposition andFlames of Hydrazine [J]. Combustion and Flame,2001,124(1-2):106-126.
    [18]KNYAZEV V D, KOROBEINICHEV O P. Thermal Decomposition of HN3[J].The Journal of Physical Chemistry A,2010,114(2):839-846.
    [19]PAIL K W, HURLEY M M, IRIKURA K K. Unimolecular decomposition of5-aminotetrazole and its tautomer5-iminotetrazole: new insight from isopotentialsearching [J]. The Journal of Physical Chemistry A,2009,113(11):2483-2490.
    [20]ZHANG J G, FENG L N, ZHANG S W, et al. The mechanism and kinetics ofdecomposition of5-aminotetrazole [J]. Journal of Molecular Modeling,2008,14(5):403-408.
    [21]WILLIAMS G K, PALOPOLI S F, BRILL T B. Thermal decomposition ofenergetic materials65. Conversion of insensitive explosives (NTO, ANTA) andrelated compounds to polymeric melon-like cyclic azine burn-rate suppressants[J]. Combustion and Flame,1994,98(3):197-204.
    [22]FRIED L E, MANAA M R, PAGORIA P F, et al. DESIGN AND SYNTHESISOF ENERGETIC MATERIALS [J]. Annual Review of Materials Research,2001.31:291–321.
    [23]CHRISTE K O, WILSON W W, SHEEHY J A, et al. N5+: A Novel HomolepticPolynitrogen Ion as a High Energy Density Material [J]. ANGEWANDTECHEMIE,1999,111,2180-2184.
    [24]VIJ A, WILSON W W, VIJ V, et al. Polynitrogen Chemistry. Synthesis,Characterization, and Crystal Structure of Surprisingly Stable FluoroantimonateSalts of N5+[J]. Journal of the American Chemical Society,2001,123,6308-6313.
    [25]CHENG L P, LI Q S. Theoretical Study of Nitrogen-Rich BeN4Compounds [J].The Journal of Physical Chemistry A,2004,108(4):665-670.
    [26]HAMMERL A, KLAPOTKE T M, N TH H, et al.[N2H5]+2[N4C-N=N-CN4]2-:A New High-Nitrogen High-Energetic Material [J]. Inorganic chemistry,2001,40(14):3570-3575.
    [27]MANAA M R. Toward new energy-rich molecular systems: from N10to N60[J].Chemical Physics Letters,2000,331(2-4):262-268.
    [28]SUN L L, YI W, WANG L, et al. X-ray diffraction studies and equation of state ofmethane at202GPa [J]. Chemical Physics Letters,2009,473(1-3):72-74.
    [29]LI F F, DUAN D F, LI M, et al. Elastic properties study of single crystal NH3upto26GPa[J]. Journal of Raman Spectroscopy,2012,43(4):526-531.
    [30]HERMANN A, ASHCROFT N W, HOFFMANNA R. High pressure ices [J]. Proc.Natl. Acad. Sci. U. S. A.,2012,109(3):745-750.
    [31]DUAN D F, TIAN F B, HE Z, et al. Hydrogen bond symmetrization andsuperconducting phase of HBr and HCl under high pressure: An ab initio study[J]. The Journal of Chemical Physics,2010,133(7):074509.
    [32]SAN X J, MA Y M, CUI T, et al. Pressure-induced magnetic transition in metallicnickel hydrides by ab initio pseudopotential plane-wave calculations [J].Physical Review B,2006,74:052405.
    [33]JIN X L, MENG X, HE Z, et al. Superconducting high-pressure phases of disilane[J]. Proc. Natl. Acad. Sci. U.S.A.,2010,107(22):9969-9973.
    [34]HUANG X L, LI D, LI F F, et al. Large Volume Collapse duringPressure-Induced Phase Transition in Lithium Amide [J]. The Journal of PhysicalChemistry C,2012,116(17):9744-9749.
    [35]WANG L C, BAO K, MENG X, et al. Structural and dynamical properties ofsolid ammonia borane under high Pressure [J]. The Journal of Chemical Physics,2011,134(2):024517.
    [36]CHEN C B, TIAN F B, WANG L C, et al. New high-pressure phase of BaH2predicted by ab initio studies [J]. Journal of Physics: Condensed Matter,2010,22(22):225401.
    [37]GOLI L, LAZARINI F. über die Struktur des Hydrazinium-Monofluorids [J].Monatshefte für Chemie,1969,100(5):1477-1478.
    [38]GLAVI P, HAD R D. The infrared spectrum of hydrazinium (l+) fluoride [J].Spectrochimica Acta Part A: Molecular Spectroscopy,1972,28(10):1963-1967.
    [39]WANG L C, BAO K, MENG X, et al. Structural and dynamical properties ofsolid ammonia borane under high pressure [J]. The Journal of Chemical Physics,2011,134(2):024517.
    [40]XIE S T, SONG Y, LIU Z X. In situ high-pressure study of ammonia borane byRaman and IR spectrocpy [J]. Canadian Journal of Chemistry,2009,87(9):1235-1247.
    [41]BOEDEN M, AUTREY T. Characterization and mechanistic studies of thedehydrogenation of NHxBHxmaterials [J]. Current Opinion in Solid State andMaterials Science,2011,15(2):73-79.
    [42]TRUDEL S, GILSON D F R. High-Pressure Raman Spectroscopic Study of theAmmonia-Borane Complex. Evidence for the Dihydrogen Bond [J]. InorganicChemistry,2003,42(8):2814-2816.
    [43]SONG M, YAMAWAKI H, FUJIHISA H, et al. Infrared absorption study ofFermi resonance and hydrogen-bond symmetrization of ice up to141GPa [J].Physical Review B,1999,60(18):12644-12650.
    [44]SUGIMURA E, IITAKA T, HIROSE K, et al. Compression of H2O ice to126GPa and implications for hydrogen-bond symmetrization: Synchrotron x-raydiffraction measurements and density-functional calculations [J]. PhysicalReview B,2008,77:214103.
    [45]CARACAS R. Dynamical Instabilities of Ice X [J]. Physical Review Letters,2008,101:085502.
    [46]HIRSCH K R, HOLZAPFEL W B. Effect of high pressure on the Raman spectraof ice VIII and evidence for ice X [J]. The Journal of chemical physics,1986,84(5):2771-2775.
    [47]LU X Z, ZHANG Y, ZHAO P, et al. Vibrational Analysis of the Hydrogen-BondSymmetrization in Ice [J]. The Journal of Physical Chemistry B,2011,115(1):71-74.
    [48]KATOH E, YAMAWAKI H, FUJIHISA H, et al. Raman and infrared study ofphase transitions in solid HBr under pressure [J]. Physical Review B,1999,59(17):11244-11250.
    [49]AOKI K, KATOH E, YAMAWAKI H, et al. Hydrogen-bond symmetrization andmolecular dissociation in hydrogen halids [J]. Physica B: Condensed Matter,1999,265(1-4):83-86.
    [50]ZHANG L J, WANG Y C, ZHANG X X, et al. High-pressure phase transitions ofsolid HF, HCl, and HBr: An ab initio evolutionary study [J]. Physical Review B,2010,82:014108.
    [51]ASHCROFT N W. Condensed Matter at Higher Densities in High PressurePhenomena, IOS Press,(2002)1.
    [52]RUOFF A L, LUO H, VOHRA Y K. The closing diamond anvil optical windowin multimegabar research [J]. Journal of Applied Physics,1991,69(9):6413-6416.
    [53]RUOFF A L, XIA H, XIA Q. The effect of a tapered aperture on x-ray diffractionfrom a sample with a pressure gradient: Studies on three samples with amaximum pressure of560GPa [J]. Review of Scientific Instruments,1992,63(10):4342-4348.
    [54]Mao H K, HEMLEY R J. The high-pressure dimension in earth and planetaryscience [J]. Proc. Natl. Acad. Sci. U.S.A.,2007,104(22):9114-9115.
    [55]NAGAO H, NAKAMURA K, KONDO K, et al. Hugoniot measurement ofdiamond under laser shock compression up to2TPa [J]. Physics of plasmas,2006,13(5):052705.
    [56]EGGERT J H, HICKS D G, CELLIERS P M, et al. Melting temperature ofdiamond at ultrahigh pressure [J]. Nature Physics,2010,6(1):40-43.
    [57]GAO G Y, OGANOV A R, BERGARA A, et al. Superconducting High PressurePhase of Germane [J]. Physical Review Letters,2008,101(10):107002.
    [58]BALL P. Superconductivity hots up. news nature,2001.
    [59]KIM E, CHAN M H W. Supersolid helium at high pressure [J]. Physical ReviewLetters,2006,97(11):115302.
    [60]MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J].Nature,2009,458(7235):182-185.
    [61]AKAISHI M, KANDA H, YAMAOKA S. Phosphorus: An Elemental Catalyst forDiamond Synthesis and Growth [J]. Science,1993,259(5101):1592-1593.
    [62]CHEPUROV A I, YELISSEYEV A P, ZHIMULEV E I, et al. High-Pressure,High-Temperature Processing of Low-Nitrogen Boron-Doped Diamond [J].Inorganic Materials,2008,44(4):377-381.
    [63]LV S J, HONG S M, YUAN C S, et al. Selenium and tellurium: Elementalcatalysts for conversion of graphite to diamond under high pressure andtemperature [J]. Applied Physics Letters,2009,95(24):242105.
    [64]LIU X B, MA H A, ZHANG Z F, et al. Effects of zinc additive on the HPHTsynthesis of diamond in Fe-Ni-C and Fe-C systems [J]. Diamond and RelatedMaterials,2011,20(4):468-474.
    [65]CHEN P, XIONG Z, LUO J, et al. Interaction of hydrogen with metal nitrides andimides [J]. Nature,2002,420:302-304.
    [66]LENG H Y, ICHIKAWA T, HINO S, et al. Investigation of reaction betweenLiNH2and H2[J]. Journal of Alloys and Compounds,2008,463(1-2):462–465.
    [67]LENG H Y, T. ICHIKAWA T, HINO S, et al. New Metal N H System Composedof Mg(NH2)2and LiH for Hydrogen Storage [J]. The Journal of PhysicalChemistry B,2004,108(26):8763-8765.
    [68]WANG S, MAO H K, CHEN X J, et al. High pressure chemistry in the H2-SiH4system [J]. Proc. Natl. Acad. Sci. U.S.A.,2009,106(35):14763-14767.
    [69]MAO W L, MAO H K. Hydrogen storage in molecular compounds [J]. Proc. Natl.Acad. Sci. U.S.A.,2004,101(3):708-710.
    [70]LIN Y, MAO W L, MAO H K. Storage of molecular hydrogen in an ammoniaborane compound at high pressure [J]. Proc. Natl. Acad. Sci. U.S.A.,2009,106(20):8113-8116.
    [71]LOUBEYRE P, LETOULLCC R, PINCEAUX J P. Compression of Ar(H2)2up to175GPa: A New Path for the Dissociation of Molecular Hydrogen?[J]. PhysicalReview Letters,1994,72(9):1360-1363.
    [72]LI Y W, GAO G Y, LI Q, et al. Orientationally disordered H2in the high-pressurevan der Waals compound SiH4(H2)2[J]. Physical Review B,2010,82:064104.
    [73]JAIN S R. Hydrazine rocket fuels [J]. J. Indian Inst. Sci.,1989,69:175-191.
    [74]MACHADO F B C, ROBERTO-NETO O. An ab initio study of the equilibriumgeometry and vibrational frequencies of hydrazine [J]. Chemical Physics Letters,2002,352(1-2):120-126.
    [75]KAMSHINA Y. J. Molecular Structure and Molecular Motion of Solid Hydrazine[J]. Journal of Magnetic Resonance,1975,20(2):388-393.
    [76]COLLIN L R, LIPSCOMB W N. The Crystal Structure of Hydrazine [J]. ActaCrystallographica,1951,4:10-14.
    [77]BUSING W R, ZOCCHI M, LEVY H A. Progrunt of the Annuul Meeting of theAmerican Crystullogruphic Association.1961, Paper N-3.
    [78]BAGLIN F G, BUSH S F, DURIG J R. Far-Infrared Spectra and Space Group ofCrystalline Hydrazine and Hydrazine-d4[J]. The Journal of Chemical Physics,1967,47(6):2104-2109.
    [79]GUAY M, SAVOIE R. Spectres Raman de N2H4et N2D4à l'état cristallin [J].Canadian Journal of Chemistry,1969,47:201-208.
    [80]PRAVICA M, BAI L G, LIU Y. Hydrazine at high pressure [J]. Chemical PhysicsLetters,2013,555(3):115-118.
    [81]BRIDGMAN P W. The Physics of High Pressure Dover. New York (1970)Reprint of1930.
    [82]BRIDGMAN P W. Water, in the Liquid and Five Solid Forms, under Pressure [J].Proceedings of the American Academy of Arts and Sciences,1912,47(13):441-558.
    [83]BRIDGMAN P W. The Compressibility of Thirty Metals as a Function ofPressureand Temperature [J]. Proceedings of the American Academy of Arts andSciences,1923,58(5):165-242.
    [84]LAWSON A W, TANG T Y. A Diamond Bomb for Obtaining Powder Pictures atHigh Pressures [J]. Review of Scientific instruments,1950,21(9):815-816.
    [85]JAMIESON J C, LAWSON A W, NACHTRIEB N D. New Device for ObtainingX-Ray Diffraction Patterns from Substances Exposed to High Pressure [J].Review of Scientific instruments,1959,30(11):1016-1019.
    [86]WEIR C E, LIPPINCOTT E R, VALKENBURG A V, et al. Studies in the1to15micron region to30000atmospheres [J]. J. Res. Natl. Bur. Stand., Sec. A,1959,63(1):55-62.
    [87]Mao H K, Bell P M. High-pressure physics: sustained static generation to1.36to1.72megabars [J]. Science,1978,200(4346):1145-1147.
    [88]JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics,1983,55(1):65-108.
    [89]ZOU G T, MA Y Z, Mao H K, et al. A diamond gasket for the laser-heateddiamond anvil cell [J]. Review of Scientific Instruments,2001,72(2):1298-1301.
    [90]ASAUMI K, RUOFF A. Nature of the state of stress produced by xenon and somealkali iodides when used as pressure media [J]. Physical Review B,1986,33(8):5633-5636.
    [91]MILLS R, LIEBENBERG D, BRONSON J, et al. Procedure for loading diamondcells with high-pressure gas [J]. Review of Scientific Instruments,1980,51(7):891-895.
    [92]YOUNG D A, MCMAHAN A K, ROSS M. Equation of state and melting curveof helium to very high pressure [J]. Physical Review B,1981,24(9):5119-5127.
    [93]CHOU I, BLANK J G, GONCHAROV A F, et al. In Situ Observations of aHigh-Pressure Phase of H2O Ice [J]. Science,1998,281(5378):809-812.
    [94]ANDERSON O L, ISAAK D G, YAMAMOTO S. Anharmonicity and theequation of state for gold [J]. Journal of Applied Physics,1989,65(4):1534-1543.
    [95]ZHA C S, MIBE K, BASSETT W A, et al. P-V-T equation of state of platinum to80GPa and1900K from internal resistive heating/x-ray diffractionmeasurements [J]. Journal of Applied Physics,2008,103(5):054908.
    [96]DEWAELE A, LOUBEYRE P, MEZOUAR M. Equations of state of six metalsabove94GPa [J]. Physical Review B,2004,70:094112.
    [97]FORMAN R A, PIERMARINI G J, BARNETT J D, et al. Pressure measurementmade by the utilization of Ruby sharp-line luminescence [J]. Science,1972,176(4032):284-285.
    [98]PIERMARINI G J, BLOCK S, BARNETT J D, et al. Calibration of the pressuredependence of the R1ruby fluorescence line to195kbar [J]. Journal of AppliedPhysics,1975,46(6):2774-2780.
    [99]MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to800kbarunder quasi-hydrostatic conditions [J]. Journal of Geophysical Research,1986,91:4673-4676.
    [100]MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements ofCu, Mo, Pd, and Ag and calibration of the ruby R1fluorescence pressure gaugefrom0.06to1Mbar [J]. Journal of Applied Physics,1978,49(6):3276-3283.
    [101]RAMAN C V. A Change of Wave-length in Light Scattering [J]. Nature,1928,121(3051):619-619.
    [102]MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to800kbarunder quasi-hydrostatic conditions [J]. Journal of Geophysical Research,1986,91,4673-4676.
    [103]HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al.Two-dimensional detector software: From real detector to idealised image ortwo-theta scan [J]. High Pressure Research,1996,14(4-6):235-248.
    [104]TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wavecalculations [J]. Physical Review B,1991,43(3):1993-2006.
    [105]PFROMMER B G, COTE M, LOUIE S G, et al. Relaxation of Crystals with theQuasi-Newton Method [J]. Journal of Computational Physics,1997,131(1):233-240.
    [106]CEPERLEY D M, ALDER B J. Ground State of the Electron Gas by aStochastic Method [J]. Physical Review Letters,1980,45:566-569.
    [107]PERDEW J P, ZUNGER A. Self-interaction correction to density-functionalapproximations for many-electron systems [J]. Physical Review B,1981,23(10):5048-5079.
    [108]MONKHORST H J, JAMES D P. Special points for Brillouin-zone integrations[J]. Physical Review B,1976,13(11):5188-5192.
    [109]NINET S, DATCHI F, SAITTA A, et al. Raman spectrum of ammonia IV [J].Physical Review B,2006,74:104101.
    [110]NINET S, DATCHI F, KLOTZ S, et al. Hydrogen bonding in ND3probed byneutron diffraction to24GPa [J]. Physical Review B,2009,79:100101.
    [111]JOHANNSEN P G. Vibrational states and optical transitions in hydrogen bonds[J]. Journal of Physics: Condensed Matter,1998,10(10):2241-2260.
    [112]SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principlessimulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics:Condensed Matter,2002,14(11):2717-2744.
    [113]ISABEL R, IBON A, JOSE E. Bifurcated Hydrogen Bonds: Three-CenteredInteractions [J]. The Journal of Physical Chemistry A,1998,102(48):9925-9932.
    [114]ISABEL R. On the nature of hydrogen bonds: an overview on computationalstudies and a word about patterns [J]. Phys. Chem. Chem. Phys.,2007,9:2782-2790.
    [115]MOHR P H, AUDRIETH L F. The Hydrazine-Water System [J]. The Journal ofPhysical Chemistry,1949,53(6):901-906.
    [116]MCMILLAN J A, LOS S C. Hydrazine-Water System. I. Phase-EquilibriaDiagram [J]. The Journal of Chemical Physics,1965,42(1):160-161.
    [117]MCMILLAN J A, LOS S C. Hydrazine-Water System. II. Nonequilibrium PhaseTransformations [J]. The Journal of Chemical Physics,1965,42(3):829-834.
    [118]ZOCCHI M, BUSING W R, ELLISON R D, et al. An X-Ray Study ofHydrazine Hydrate, N2H4.H2O [J]. Acta Crystallographica,1962,15:803-804.
    [119]LIMINOA R, Olovsson I. The Crystal Structure of Hydrazine Monohydrate [J].Acta Crystallographica,1964,17:1523-1528.
    [120]SAKURAI K, TOMIIE Y. The crystal structure of hydrazinium chloride, N2H5Cl[J]. Acta Crystallographica,1952,5:293-294.
    [121]DECIUS J C, PEARSON D P. The Infrared Absorption of Crystalline andLiquid Hydrazine Monochloride and Monobromide1-3[J]. Journal of theAmerican Chemical Society,1953,75(10):2436-2439.
    [122]SCHETTINO V, SALOMON R E. Infrared and Raman spectra of crystallinehydrazinium monochloride [J]. Spectrochimica Acta Part A: MolecularSpectroscopy,1974,30(7):1445-1450.
    [123]VILLEPIN J D, NOVAK A. Spectres Infrarouge et Raman des Cristaux deChlorure et Bromure d'Hydrazinium à Basse Température: I.—VibrationsInternes [J]. Molecular Crystals and Liquid Crystals,1974,27(3-4):391-415.
    [124]VILLEPIN J D, NOVAK A. Spectres Infrarouge et Raman des Cristaux deChlorure et Bromure d'Hydrazinium a Basse Temperature-II-VibrationsExternes [J]. Molecular Crystals and Liquid Crystals,1974,28(1-2):21-36.
    [125]JIANG S Q, HUANG X L, DUAN D F, et al. Hydrogen Bond in CompressedSolid Hydrazine [J]. The Journal of Physical chemistry C,2014,118(6):3236-3243.
    [126]REEDA J, WILLIAMS Q, Solid State Communications [J].2006,140,202–207.
    [127]SAKUBAI K, TOMIIE Y. The crystal structure of hydrazinium bromide,N2H5Br [J]. Acta Crystallographica,1952,5:289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700