用户名: 密码: 验证码:
典型含硼功能材料的第一性原理高压研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼在元素周期表中处于金属与非金属的分界线上,并且是第三主族唯一的非金属元素。它最外层拥有三个价电子,电子排布为:[He]2s22p1。由于硼的价电子比价轨道(s,px,py,pz)少,所以有人称它为缺电子材料。由于特殊的电子结构以及在元素周期表中的特殊位置,使得硼及其化合物拥有着独特的结构与性质。它既能形成团簇或笼状结构,并以离子键结合形成离子型化合物,又能与碳、氮、氧结合形成空间共价网络结构。这种结构特点往往会给材料带来优良的机械性能,使其广泛应用于工业生产中。例如立方氮化硼作为磨料被广泛应用于切割、打磨工具表面;通过物理或化学气相沉积法,许多金属硼化物往往被用来制作涂层工具的保护层以提高其机械强度;通过离子注入或者离子束沉积,在金属或合金中加入硼原子可以使金属表面强度和显微硬度都得到显著提高,从而替代金刚石用来制作涂层刀具;硼与塑料或铝合金结合,是有效的中子屏蔽材料;硼钢在反应堆中可以用作控制棒;硼纤维经常被用于制造复合材料。因此,硼及其化合物长期以来一直是科学研究领域的热点之一。
     另外,由于硼的缺电子特性,使得它在有供电子元素存在的化合物中能够与氢结合,形成稳定的含氢化合物,并在合适的温度和压力条件下,吸放氢分子。因此,它还是构成新型固态储氢材料的重要元素之一。例如,把Ca(BH_4)_2加热到800K时,可以放出9.0wt%的氢气,并形成CaH_2和CaB_6,而它们在623K和10MPa的氢压下添加催化剂,又可以得到将近57%的Ca(BH_4)_2。又例如,氨硼烷(NH_3BH_3)拥有高达19.6wt%的含氢质量百分比,远远超出美国能源部提出的9wt%的2015年预期目标。当温度升高到773K时,氨硼烷可以放出所有的氢,并生成六角氮化硼,可以说是目前最具前景的固态储氢材料之一。此外,还有许多轻金属硼氢化物(例如,LiBH_4,NaBH_4,Mg(BH_4)_2,Ca(BH_4)_2等等)都具有较高的质量和体积储氢密度。例如,LiBH_4的质量储氢密度高达18.4wt%,体积储氢密度也达到了121kg H_2/m~3;NaBH_4也具有10.6wt%质量储氢密度,它们都是潜在的固态储氢材料。
     虽然硼化物结构多样且性质优良,但是仍然有许多物理问题没有弄清楚。例如,结构与物性之间,结构、物性与外界环境之间的关系问题都是长期困扰我们,并且一直没有很好解决的重要物理问题,同时也是当前功能型含硼化合物的研究中亟待解决的物理问题。本文以两类典型的含硼功能材料(超硬MnB_2和高含氢Mg(BH_4)_2)为研究对象,采用第一性原理赝势平面波方法,对其高压行为以及合成条件做了深入系统的探讨。本论文的研究结果不仅对这两种材料的实验合成具有指导意义,而且对同类型的含硼功能材料研究也具有借鉴意义。
     本文的第一个研究课题是超硬MnB_2的合成条件及其与内部原子振动特性关系的研究。2009年,S. Aydin等人的理论计算发现,ReB_2结构MnB_2的结合能低于已经合成的AlB_2结构的MnB_2,是其常温常压下的基态结构。而且,用A. im ek的理论模型估计的维氏硬度达到了43.9GPa,可能是潜在的超硬材料。但是,在至今大约三年的时间内,无论是用电弧熔融法还是高温高压法,都没有合成出这种超硬的MnB_2相。因此,为了得到其合成条件,我们应用基于简谐近似的第一性原理晶格动力学方法计算了ReB_2型和AlB_2型MnB_2的两相相图。我们的计算结果表明,常压下,ReB_2结构的MnB_2只有在1020K以下才能够被合成出来,当温度高于这个温度时,它就会转变成AlB_2结构的MnB_2。并且压力效应会使这个转变温度降低,当压强高于38GPa时,就只有AlB_2结构的MnB_2可以被合成了。而早先实验的合成温度都高于1020K,这时合成出来的MnB_2都只能落于亚稳的AlB_2结构相中,所以都只有AlB_2结构的MnB_2被合成。因此,要想合成ReB_2结构的MnB_2,就必须要合理控制温度,同时,降低合成压力。进一步分析表明,MnB_2高温下的热力学稳定性很大程度上由Mn的振动频率决定。ReB_2结构的MnB_2中较强的B-Mn相互作用导致其Mn的振动频率较AlB_2结构高,进而抬高其吉布斯自由能,这是导致ReB_2结构MnB_2高温下热力学不稳定的重要原因。因此,在高于1020K的温度下,没有ReB_2结构的MnB_2被合成。
     本文的另一个研究课题是高含氢Mg(BH_4)_2的高压行为与压缩特性的研究。在众多轻金属硼氢化物中,Mg(BH_4)_2拥有14.8wt%理论质量储氢密度,是很有希望的轻金属固态储氢材料。但是,H. W. Li等人2007年的实验结果显示,Mg(BH_4)_2的放氢反应动力学性能很差,其放氢温度很高,而且放氢过程是不可逆的,这都限制了其在储氢方面的应用。为了克服这个困难,人们尝试在Mg(BH_4)_2中添加Ti等催化剂以提高其吸氢和放氢性能。球磨技术是在氢化物中添加催化剂的常用方法。但是在球磨过程中,其局域压强会达到几万大气压,这样高的压力往往使这些氢化物发生结构相变,使实验结果不可控。另一方面,由于材料在压缩过程中往往伴随着不可逆的体积坍缩,所以高压方法是合成高体积储氢密度(Volumetric Hydrogen Density, VHD)材料的有效手段之一。这激发起了人们研究Mg(BH_4)_2高压下物理特性(例如,结构相变、压缩特性以及成键方式等等)的兴趣。2009年,L. George等人的实验结果显示,Mg(BH_4)_2在2.5GPa和14.4GPa分别发生了两次结构相变。其中第一次相变是不可逆的,这表明相变后的结构可以保持到常压。高压相变往往会伴随着高体积储氢密度结构的出现。因此,Mg(BH_4)_2的这个不可逆的结构相变让人们看到了合成高体积储氢密度Mg(BH_4)_2并在常压下应用的可能性。但是,他们并没有给出相变后Mg(BH_4)_2的晶体结构以及与相变相关的高压行为。
     为了深刻理解Mg(BH_4)_2的高压行为,本文采用第一性原理平面波赝势方法,在0~10GPa的压强范围内,对前人提出的晶体结构、成键特征、压缩特性做了系统的高压研究。我们发现理论上认为的常压下亚稳的I4_1/amd结构和不稳定的P-3m1结构在高压下却能稳定存在。焓差曲线的计算表明,基态的F222结构在0.7GPa的时候会转变成I4_1/amd结构,然后在6.3GPa的时候又会转变成P-3m1结构。而实验上已经合成的P6_122结构(α相)转变到I4_1/amd结构的转变压力为1.2GPa。进一步分析表明,I4_1/amd结构和P-3m1结构都是常压下的高含氢相。他们常压下的体积储氢密度分别为146.4kg H_2/m~3和134.0kg H_2/m~3。声子谱的计算表明,I4_1/amd结构的动力学稳定的压强范围为0~4GPa;而P-3m1结构在高于1GPa的压强下都满足晶格动力学稳定条件。因此,我们认为I4_1/amd结构可以通过高压方法得到,然后保持到常压;而P-3m1结构就只能以高压相形式存在。能带结构的计算表明,这两个结构在此压强区间内一直是离子晶体,并且是拥有5eV带隙的绝缘体。另外,我们还发现,这两个结构都具有各向异性的压缩特性,它们的c轴都很容易被压缩,特别是P-3m1结构的c轴和体积。这表明,可以通过采用沿c轴压缩的办法来提高他们的体积含氢量。另一方面,我们还发现这两种结构的压缩各向异性是由其内部静电场的各向异性所造成的。通过旋转[BH_4]ˉ基团,计算得到的静电势垒值印证了这一观点。
Boron locates on the boundary between metal and nonmetal in periodic table ofelements. In addition, it is the only nonmetal element in group IIIA elements. It hasthree valence electrons and its electronic configuration shells are [He]2s22p1.Some people call boron as electron-deficient material, because it has fewer valenceelectrons (2s22p1) than the number of stable orbitals (s, px, py, pz) in the valenceshell. Due to the special electronic configuration and special location in periodictable of elements, boron and borides usually have novel structures and properties.They can form cluster or cage structures combined by ionic bonds, and also theycan combine with C, N or O to form space covalent net structure which alwaysaccompany with excellent mechanical properties and be widely used in industryproductions. For examples, cubic boron nitride powders are widely used asabrasives; metal borides are used for coating tools through chemical vapordeposition or physical vapor deposition; implantation of boron ions into metals andalloys, through ion implantation or ion beam deposition, results in a spectacularincrease in surface resistance and micro-hardness, and these borides are analternative to diamond coated tools, and their surfaces have similar properties tothose of the bulk boride; boron combined with plastic or aluminum alloy is a goodkind of neutron shielding material; boron steel can be used as control bars in nuclearreactors; boron fiber is always used in production of composite materials. Therefore,studies of boron and borides are one of the hot areas of the researches in a long time.
     On the other hand, due to the electron-deficient property, boron can combinewith hydrogen in the compound with electron-donor elements, and form stablehydrides which can absorb/desorb hydrogen under appropriate temperature andpressure conditions. Thus, it is one of the important elements composing the newtype solid hydrogen storage materials. For examples, experimentally, Ca(BH_4)_2canapproximately release9.0mass%of hydrogen, when it is heated to800K, andforms CaH_2and CaB_6. Adversely, with additives, approximately57%of theCa(BH_4)_2is obtained by rehydrogenation at623K in a hydrogen pressure of10MPa. Ammonia borane (NH_3BH_3) is also an important kind of potential hydrogenstorage material, which contains19.6wt%hydrogen and access the exceed morethan twice of the DOE’s (U.S. Department of Energy)2015target. Ammoniaborane can dehydrogenate absolutely and form h-BN, when temperature is higherthan773K. Moreover, many other light metal borohydrides (e.g. LiBH_4, NaBH_4,Mg(BH_4)_2and Ca(BH_4)_2) are also attractive most interests due to their highgravimetric and volumetric hydrogen densities compared to other complex hydrides.LiBH_4has a gravimetric hydrogen density of18.4wt%and a volumetric hydrogendensity of121kg H_2/m~3; Sodium borohydride (NaBH_4) is also a potential hydrogenstorage material and has a theoretical hydrogen storage capacity of10.6wt%. All ofthem are potential solid hydrogen storage materials.
     Though borides have novel structures and excellent properties, there are stillmany unsolved scientific problems about this kind of materials. For example, therelationship between structures and physical properties or between structures,physical properties and synthesis condition have both puzzled people for a long timeand haven’t been solved completely. So, both of them are also the urgent problemsto be solved in the area of boron-containing functional materials. In this thesis, wedeeply and systematically studied the high pressure behaviors and synthesis conditions of two types of boron-containing functional materials (superhard MnB_2and high hydrogen-containing Mg(BH_4)_2) by means of first-principles plane wavepseudopotential method. These calculated results not only have guiding significancefor synthesis of these two materials, but also can be used for reference in researchesof other kinds of boron-containing functional materials.
     First part of this thesis is the study of synthesis condition of superhard MnB_2and its relationship with lattice vibrations. In2009, a superhard MnB_2withReB_2-type structure has been predicted as the ground state because of the lower freeenergy than the synthesized AlB_2-type structure. By using the A. im ek’stheroretical hardness model, the predicted hardness of ReB_2-type structure reachesto43.9GPa. However, it has not been synthesized successfully for about two yearsno matter by high temperature and high pressure (HTHP) method or by arc-meltingmethod. To obtain the accurate synthesis condition, the P-T phase boundarybetween AlB_2-type and ReB_2-type MnB_2has been completed by first-principleslattice dynamics calculations within quasi-harmonic approximation (QHA). Ourresults show that the ReB_2-type MnB_2can be synthesized only below1020K atambient pressure. Pressure effect makes their transition temperature decrease. Ifpressure is higher than38GPa, only AlB_2-type MnB_2can be obtained. Thesynthesis temperatures of previous experiments (either HTHP or arc-meltingmethod) are all above1020K, so that only AlB_2-type MnB_2can be synthesized.Therefore, it is essential to control the temperature accurately for synthesizing theReB_2-type MnB_2. On another hand, pressure should be controlled as low as possible.Further analyses show that the thermodynamic stability of MnB_2at hightemperature mostly depends on the vibration frequency of Mn atoms. The strongerinteractions between Mn and B in the ReB_2-type MnB_2induce the vibrationfrequencies of Mn atoms shift to higher and increasing of the Gibbs free energy,causing the thermodynamics instability of ReB_2-type MnB_2at high temperature. Therefore, there is no ReB_2-type MnB_2synthesized at the temperature higher than1020K.
     The other part of this thesis is the study of high pressure behaviors andcompression properties of high hydrogen-containing Mg(BH_4)_2. Among hydrides,Mg(BH_4)_2is a promising lightweight solid-state hydrogen storage material with atheoretical hydrogen capacity of14.8wt%. However, in2007, Li et al’s experimentsuggested that Mg(BH_4)_2desorbed hydrogen at extraordinarily high temperature andwas actually irreversible. These limitations are due to its poor kinetic property. Thus,to improve the hydrogenation and dehydrogenation properties of Mg(BH_4)_2, catalystsuch as Ti are explored. Ball-milling is often used for adding catalyst into the hydrideto enhance the dehydrogenation. The local stresses can exceed several gigapascals(GPa) in this process, which may induce structural transitions of the hydrides and theuncontrolled experimental results. On the other hand, high pressure experiment is aneffective method of synthesizing hydrogen storage materials with high volumetrichydrogen densities (VHDs), because compressions on materials are usuallyaccompanied by irreversible volume collapse. These all attract people’s interestsabout exploring the important physical properties (e.g. structural phase transition,compressibility and bond characterization et. al.) of Mg(BH_4)_2under high pressure. In2009, L. George et al found that Mg(BH_4)_2has two high pressure phase transitionswhile compress to2.5GPa and14.4GPa and the first phase transition is irreversible.It means that people can synthesize a kind of Mg(BH_4)_2with high VHDs by usingthis phase transition. But many aspects of phase transition in Mg(BH_4)_2are stillunknown and need to be solved for better understanding of its high pressurebehaviors.
     For understanding high pressure behaviors of Mg(BH_4)_2, the previously proposedtheoretical and experimental structures, bond characterization and compressibility ofMg(BH_4)_2in a pressure range from0to10GPa are studied by ab initio density-functional calculations. It is found that the ambient pressure phases ofmeta-stable I4_1/amd and unstable P-3m1proposed recently are extra stable andcannot decompose under high pressure. Enthalpy calculation indicates that the groundstate of F222structure will transfer to I4_1/amd at0.7GPa, and then to P-3m1structure at6.3GPa. And the experimental P6_122structure (α-phase) transfers toI4_1/amd at1.2GPa. Furthermore, both I4_1/amd and P-3m1can exist as highvolumetric hydrogen density phases at ambient pressure. Their theoretical volumetrichydrogen densities reach146.351and134.028g H_2/L at ambient pressurerespectively. The calculated phonon dispersion curve shows that the I4_1/amd phase isdynamically stable in a pressure range from0to4GPa and the P-3m1phase is stableat pressures higher than1GPa. So the I4_1/amd phase may be synthesized under highpressure and retained to ambient pressure. Energy band structures show that both ofthem are always ionic crystalline and insulating with a band gap of about5eV in thispressure range. In addition, they each have an anisotropic compressibility. The c-axisof these structures is easy to compress. Especially, the c axis and volume of P-3m1phase are extraordinarily compressible, showing that compressing alone c axis canincrease the volumetric hydrogen content for both I4_1/amd and P-3m1structures. Onthe other hand, it is found that the anisotropic compressibility of these two phases isthe resuls of their anisotropic inner electrostatic fields. The calculated electrostaticpotential barrier of [BH_4]ˉrotation can support these views.
引文
[1] PETRYANOV-SOKOLOV I V. Popular Library of the Chemical Elements[M].Moscow:Nauka,1983.
    [2] DOUGLAS B. E., HO S M. Structure and Chemistry of Crystalline Solids[M].Springer,2006.
    [3] OGANOV A R, CHEN J H, GOTTI CARLO, et al. Ionic high-pressure form ofelemental boron[J]. Nature,2009,475:863-867.
    [4] SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al. UltimateMetastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5[J]. Phys. Rev. Lett.,2009,102(1):015506.
    [5] NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Superconductivity at39K in magnesium diboride[J]. Nature,2001,410:63.
    [6] DONG B W, TIAN F B, DUAN D F, et al. Superconductive superhard phase ofBC7: Predicted via ab initio calculations[M]. Diam. Relat. Mater.,2011,20(3):454-457.
    [7] ODZIANA Z, VEGGE T. Structural Stability of Complex Hydrides: LiBH4Revisited[J]. Phys. Rev. Lett.,2004,93(14):145501.
    [8] ZüTTEL A, RENTSCH S, FISCHER P, et al. Hydrogen storage properties ofLiBH4[J]. J. Alloys Compd.,2003,356:515-520.
    [9] SHAFIROVICH E, DIAKOV V, VARMA A. Combustion-assisted hydrolysisof sodium borohydride for hydrogen generation[J]. Int. J. Hydrogen Energy,2007,32(2):207-211.
    [10] KUMAR R S, CORNELIUS A L. Structural transitions in NaBH4underpressure[J]. Appl. Phys. Lett.,2005,87(26):261916.
    [11] BRAZHKIN V, DUBROVINSKAIA N, NICOL M, et al. From ourreaders: What does 'harder than diamond' mean?[J] Nat. Mater.,2004,3:576-577.
    [12] KANER R B, GILMAN J J, TOLBERT S H. Designing Superhard Materials[J].Science,2005,308(5726):1268-1269.
    [13] GILMAN J J, CUMBERLAND R W, KANER R B. Design of hard crystals[J].Int. J. Refract. Met. Hard Mater.,2006,24(1-2):1-5.
    [14] WANG X L, BAO K, TIAN F B, et al. Cubic gauche-CN: A superhard metalliccompound predicted via first-principles calculations[J]. J. Chem. Phys.,2010,133(4):044512.
    [15] TIAN F B, WANG J H, HE Z, et al. Superhard semiconducting C3N2compounds predicted via first-principles calculations[J]. Phys. Rev. B,2008,78(23):235431.
    [16] WANG H B, LI Q, WANG H, et al. Design of superhard ternary compoundsunder high pressure: SiC2N4and Si2CN4[J] J. Phys. Chem. C,2010,114(18):8609-8613.
    [17] GU Q F, KRAUSS G, STEURER W. Transition Metal Borides: Superhardversus Ultra-incompressible[J]. Adv. Mater.,2008,20(19):3620-3626.
    [18] KNAPPSCHNEIDER A, LITTERSCHEID C, KURZMAN J. Crystal StructureRefinement and Bonding Patterns of CrB4: A Boron-Rich Boride with aFramework of Tetrahedrally Coordinated B Atoms[J]. Inorg. Chem.,2011,50(21):10540-10542.
    [19] MOHAMMADI R, LECH A T, XIE M, et al. Tungsten tetraboride, aninexpensive superhard material[J]. Proc. Natl. Acad. Sci. USA,2011,108(27):10958-10962.
    [20] ZHANG R F, LEGUT D, LIN Z J, et al. Stability and Strength ofTransition-Metal Tetraborides and Triborides[J]. Phys. Rev. Lett.,2012,108(25):255502.
    [21] FIELD J E. The properties of natural and synthetic diamond[M]. London:Academic,1992.
    [22] PAN Z, SUN H, ZHANG Y, et al. Harder than Diamond: Superior IndentationStrength of Wurtzite BN and Lonsdaleite[J]. Phys. Rev. Lett.,2009,102(5):055503.
    [23] LI Q, MA Y M, OGANOV A R, et al. Superhard Monoclinic Polymorph ofCarbon[J]. Phys. Rev. Lett.,2009,102(17):175506.
    [24] LI D, BAO K, TIAN F B, et al. Lowest enthalpy polymorph ofcold-compressed graphite phase[J]. Phys. Chem. Chem. Phys.,2012,14:4347-4350.
    [25] UMEMOTO K, WENTZCOVITCH R M, SAITO S, et al. Body-CenteredTetragonal C4: A Viable sp3Carbon Allotrope[J]. Phys. Rev. Lett.,2010,104(12):125504.
    [26] WANG J T, CHEN C F, KAWAZOE Y. Low-Temperature PhaseTransformation from Graphite to sp3Orthorhombic Carbon[J]. Phys. Rev. Lett.,2011,106(7):075501.
    [27] SELLI D, BABURIN I A, MARTO áK R, et al. Superhard sp3carbonallotropes with odd and even ring topologies[J]. Phys. Rev. B,2011,84(16):161411.
    [28] ZHAO Z, XU B, ZHOU X F, et al. Novel Superhard Carbon: C-CenteredOrthorhombic C8. Phys. Rev. Lett.,2011,107(21):215502.
    [29] WANG Y J, PANZIK J E, KIEFER B, et al. Crystal structure of graphite underroom-temperature compression and decompression[J]. Sci. Rep.,2012,2:520.
    [30] BOULFELFEL S E, OGANOV A R, LEONI S. Understanding the nature ofsuperhard graphite[J]. Sci. Rep.,2012,2:471.
    [31] ZHU Q, ZENG Q, OGANOV A R. Systematic search for low-enthalpy sp3carbon allotropes using evolutionary metadynamics[J]. Phys. Rev. B,2012,85(20):201407.
    [32] AMSLER M, FLORES-LIVAS J A, LEHTOVAARA L, et al. Crystal Structureof Cold Compressed Graphite[J]. Phys. Rev. Lett.,2012,108(6):065501.
    [33] GAO F M. Theoretical model of intrinsic hardness[J]. Phys. Rev. Lett.,2006,73(13):132104.
    [34] WANG L, LIU B B, LI H, et al. Long-Range Ordered Carbon Clusters: ACrystalline Material with Amorphous Building Blocks[J]. Science,2012,337(6096):825-828.
    [35] LIU D D, YAO M G, LI Q J, et al. In situ Raman and photoluminescence studyon pressure-induced phase transition in C60nanotubes[J]. J. Raman Spectrosc.,2012,43(6):737-740.
    [36] YANG H, YU M L, JING H X, et al. Isolation of Three Isomers of Sm@C84and X-ray Crystallographic Characterization of Sm@D3d(19)-C84andSm@C2(13)-C84[J]. J. Am. Chem. Soc.,2012,134(11):5331-5338.
    [37] CUI W, YAO M G, LIU D D, et al. Reversible polymerization in doped fulleridesunder pressure: the case of C60(Fe(C5H5)2)2[J]. J. Phys. Chem. B,2012,116(9):2643-2650.
    [38] TETER D M. MRS Bull.,1998,23:22.
    [39] SOLOZHENKO L, KURAKEVYCH O O, ANDRAULT D, et al. UltimateMetastable Solubility of Boron in Diamond: Synthesis of SuperhardDiamondlike BC5[J]. Phys. Rev. Lett.,2009,102(1):015506.
    [40] KURAKEVYCH O O. Superhard phases of simple substances and binarycompounds of the B-C-N-O system: from diamond to the latest results (aReview)[J]. J. Superhard. Mater.,2009,31(3):139-157.
    [41] MATAR S F, BETRANHANDY E, NAKHL M, et al. Structural geomimetism:A conceptual framework for devising new materials from first principles[J].Progr. Solid. State. Chem.,2006,34(1):21-66.
    [42] SURI A K, SUBRAMANIAN C, SONBER J K, et al. Synthesis andconsolidation of boron carbide: a review[J]. Int. Mater. Rev.,2010,55(1):4-40.
    [43] GILMAN J J, CUMBERLAND R W, KANER R B. Design of hard crystals[J].Int. J. Refract. Met. Hard Mater.,2006,24(1):1-5.
    [44] LEVINE J B, TOLBERT S H, KANER R B. Advancements in the Search forSuperhard Ultra-Incompressible Metal Borides[J]. Adv. Funct. Mater.,2009,19(22):3519-3533.
    [45] KENICHI T. Bulk modulus of osmium: High-pressure powder x-ray diffractionexperiments under quasihydrostatic conditions[J]. Phys. Rev. B,2004,70(1):012101.
    [46] CYNN H, KLEPEIS J E, YOO C S, et al. Osmium has the LowestExperimentally Determined Compressibility[J]. Phys. Rev. Lett.,2002,88(13):135701.
    [47] DUBROVINSKY L S, DUBROVINSKAIA N A, SWAMY V, et al. Materialsscience: The hardest known oxide[J]. Nature,2001,410:653-654.
    [48] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al. Synthesis ofUltra-Incompressible Superhard Rhenium Diboride at Ambient Pressure[J].Science,2007,316(5823):436-439.
    [49] QIN J Q, HE D W, WANG J H, et al. Is Rhenium Diboride a SuperhardMaterial?[J] Adv. Mater.,2008,20(24):4780-4783.
    [50] HAO X F, XU Y H, WU Z J, et al. Low-compressibility and hard materialsReB2and WB2: Prediction from first-principles study[J]. Phys. Rev. B,2006,74(22):224112.
    [51] FRIEDRICH A, WINKLER B, BAYARJARGAL L,et al. Novel RheniumNitrides[J]. Phys. Rev. Lett.,2010,105(8):085504.
    [52] SCHLAPBACH L, ZüTTEL A. Hydrogen-storage materials for mobileapplications[J]. Nature,2001,414:353-358.
    [53] NAKAMORI Y, ORIMO S. Borohydrides as hydrogen storage materials. InSolid-State Hydrogen Storage[M]; WALKER G, Ed.; Woodhead PublishingLimited: Cambridge, UK,2008; pp.420-449.
    [54] VAJEESTON P, RAVINDRAN P, KJEKSHUS A, et al. Structrual Stability ofAlkali Boron Tetrahydrides ABH4(A=Li, Na, K, Rb, Cs) From First PrincipleCalculation[J]. J. Alloys Compd.,2005,387(1-2):97-104.
    [55] ORGAZ E, MEMBRILLO A, CASTA EDA R, et al. Electronic Structure ofTernary Hydrides Based on Light Elements[J]. J. Alloys Compd.,2005,404-406:176-180.
    [56] ZüTTEL A, WENGER P, RENTSCH S, et al. LiBH4A New Hydrogen StorageMaterial[J]. J. Power Sources,2003,118(1-2):1-7.
    [57] ORIMO S, NAKAMORI Y, KITAHARA G, et al. Dehydriding and RehydridingReactions of LiBH4[J]. J. Alloys Compd.,2005,404-406:427-430.
    [58] ZüTTEL A, BORGSCHULTE A, ORIMO S. Tetrahydroborates as NewHydrogen Storage Materials[J]. Scripta Mater.,2007,56(10):823-828.
    [59] ORIMO S, NAKAMORI Y, OHBA N, et al. Experimental Studies onIntermediate Compound of LiBH4[J]. Appl. Phys. Lett.,2006,89(2):021920.
    [60] HWANG S J, BOWMAN R C J, REITER J W, et al. NMR Confirmation forFormation of [B12H12]2Complexes during Hydrogen Desorption from MetalBorohydrides[J]. J. Phys. Chem. C,2008,112(9):3164-3169.
    [61] OZOLIN V, MAJZOUB E H, WOLVERTON C. First-Principles Predition ofThermodynamically Reversible Hydrogen Storage Reactions in theLi-Mg-Ca-B-H System[J]. J. Am. Chem. Soc.,2009,131(1):230-237.
    [62] FRIEDRICHS O, REMHOF A, HWANG S J, et al. Role of Li2B12H12for theFormation and Decomposition of LiBH4[J]. Chem. Mater.,2009,22(10):3265-3268.
    [63] FRANKCOMBE, T J, KROES G J. Quasiharmonic Approximation Applied toLiBH4and Its Decomposition Products[J]. Phys. Rev. B,2006,73(17):174302.
    [64] BORGSCHULTE A, ZüTTEL A, HUG P, et al. Hydrogen-DeuteriumExchange in Bulk LiBH4[J]. J. Phys. Chem. A,2008,112(21):4749-4753.
    [65] REMHOF A, LODZIANA Z, MARTELLI P, et al. Rotational Motion of BH4Units in MBH4(M=Li, Na, K) from Quasielastic Neutron Scattering andDensity Functional Calculations[J]. Phys. Rev. B,2010,81(21):214304.
    [66] REMHOF A, FRIEDRICHS O, BUCHTER F, et al. Solid-State Synthesis ofLiBD4Observed by In Situ Neutron Diffraction[J]. Phys. Chem. Chem. Phys.,2008,10(38):5859-5862.
    [67] MATSUNAGA T, BUCHTER F, MAURON P, et al. Hydrogen StorageProperties of Mg(BH4)2[J]. J. Alloys Compd.,2008,459(1-2):583-588.
    [68] LI H W, KIKUCHI K, NAKAMORI Y, et al. Dehydriding and RehydridingProcesses of Well-Crystallized Mg(BH4)2ccompanying with Formation ofIntermediate Compounds[J]. Acta Mater.,2008,56(6):1342-1347.
    [69] LI H W, YAN Y, ORIMO S, et al. Recent Progress in Metal Borohydrides forHydrogen Storage[J]. Energies,2011,4(1):185-214.
    [70] LI H W, MIWA K, OHBA N, et al. Formation of Intermediate Compound withB12H12Cluster: Experimental and Theoretical Studies on MagnesiumBorohydride Mg(BH4)2[J]. Nanotechnology,2009,20(20):204013.
    [71] NEWHOUSE R J, STAVILA V, HWANG S J, et al. Reversibility andImproved Hydrogen Release of Magnesium Borohydride[J]. J. Phys. Chem. C,2010,114(11):5224-5232.
    [72] LI H W, MATSUNAGA T, YAN Y, et al. Nanostructure-inducedhydrogenation of layered compound MgB2[J]. J. Alloys Compd.,2010,505(2):654-656.
    [73] CHONG M, KARKAMKAR A, AUTREY T, et al. Reversibledehydrogenation of magnesium borohydride to magnesium triborane in thesolid state under moderate conditions[J]. Chem. Commun.,2011,47(4):1330-1332.
    [74] MIWA K, AOKI M, NORITAKE T, et al. Thermodynamical Stability ofCalcium Borohydride Ca(BH4)2[J]. Phys. Rev. B,2006,74(15):155122.
    [75] AOKI M, MIWA K, NORITAKE T, et al. Structural and DehydridingProperties of Ca(BH4)2[J]. Appl. Phys. A,2008,92(3):601-605.
    [76] RIKTOR M D, S RBY M H, CHOPEK K, et al. The Identification of aHitherto Unknown Intermediate Phase CaB2Hxfrom Decomposition ofCa(BH4)2[J]. J. Mater. Chem.,2009,19(18):2754-2759.
    [77] FRANKCOMBE T J. Calcium Borohydride for Hydrogen Storage: AComputational Study of Ca(BH4)2Crystal Structures and the CaB2HxIntermediate[J]. J. Phys. Chem. C,2010,114(20):9503-9509.
    [78] WANG L L, GRAHAM D D, ROBERTSON I M, et al. On the Reversibility ofHydrogen-Storage Reactions in Ca(BH4)2: Characterization via Experimentand Theory[J]. J. Phys. Chem. C,2009,113(46):20088-20096.
    [79] STAVILA V, HER J H, ZHOU W, et al. Probingthe structure, stability andhydrogen storage properties of calcium dodecahydro-closo-dodecaborate[J]. J.Solid State Chem.,2010,183(5):1133-1140.
    [80] KIM J H, SHIM J H, CHO Y W. On the Reversibility of Hydrogen Storage inTi-and Nb-catalyzed Ca(BH4)2[J]. J. Power Sources.,2008,181(1):140-143.
    [81] YAN Y, LI H W, SATO T, et al. Dehydriding and rehydriding properties ofyttrium borohydride Y(BH4)3prepared by liquid-phase synthesis[J]. Int. J.Hydrogen Energy,2009,34(14):5732-5736.
    [82] GENNARI F C, ESQUIVEL M R. Synthesis and Dehydriding Process ofCrystalline Ce(BH4)3[J]. J. Alloys Compd.,2009,485(1-2):L47-L51.
    [83] SRINIVASAN S, ESCOBAR D, JURCZYK M, et al. Nanocatalyst Doping ofZn(BH4)2[J]. J. Alloys. Compd.,2008,462(1-2):294-302.
    [84] FANG Z Z, MA L P, KANG X D, et al. In situ Formation and RapidDecomposition of Ti(BH4)3by Mechanical Milling LiBH4with TiF3[J]. Appl.Phys. Lett.,2009,94(4):044104.
    [85] GENNARI F C, ALBANESI L F, RIOS I J. Synthesis and Thermal Stability ofZr(BH4)4and Zr(BD4)4Produced by Mechanochemical Processing[J]. Inorg.Chim. Acta.,2009,362(10):3731-3737.
    [86] ERNY R, PENIN N, HAGEMANN H, et al. The First Crystallographic andSpectroscopic Characterization of a3d-Metal Borohydride: Mn(BH4)2[J]. J.Phys. Chem. C,2009,113(20):9003-9007.
    [1] KOHN W. Nobel Lecture: Electronic structure of matter—wave functions anddensity functional[J]. Rev. Mod. Phys.,1999,71(5):1253-1266.
    [2]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [3] BORN M, OPPENHEIMER J R. Zur Quantentheorie der Molekeln[J]. Annalender Physik,1927,389(20):457–484.
    [4] HARTREE D R. The wave mechanics of an atom with a non-Coulomb centralfield[J]. Proc. Cam. Phil. Soc.,1928,24(1):89-111.
    [5] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136(3B):864-871.
    [6] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange andCorrelation Effects[J]. Phys. Rev.,1965,140(4A):1133-1138.
    [7] THOMAS H. The calculation of atomic fields[J]. Proc. Camb. Phil. Soc.,1927,23(5):542-548.
    [8] FERMI E. Un metodo statistico per la determinazione di alcune proprieta dell’atome[J]. Rend. Accad. Naz. Lincei,1927,6:602-607.
    [9] CEPERLEY D M, ALDER B L. Ground State of the Electron Gas by aStochastic Method[J]. Phys. Rev. Lett.,1980,45(7):566-569.
    [10] PERDEW J P, ZUNGER A. Self-interaction correction to density-functionalapproximations for many-electron systems[J]. Phys. Rev. B,1981,23(10):5048-5079.
    [11] PERDEW J P, WANG Y. Accurate and simple density functional for theelectronic exchange energy: Generalized gradient approximation[J]. Phys. Rev.B,1986,33(12):8800-8802.
    [12] PERDEW J P, WANG Y. Erratum: Accurate and simple density functional forthe electronic exchange energy: Generalized gradient approximation[J]. Phys.Rev. B,1989,40(5):3399-3399.
    [13] LANGRETH D C, PERDEW J P. Theory of nonuniform electronic systems. I.Analysis of the gradient approximation and a generalization that works[J].Phys. Rev. B,1980,21(12):5469-5493.
    [14] LANGRETH D C, MEHL M J. Beyond the local-density approximation incalculations of ground-state electronic properties[J]. Phys. Rev. B,1983,28(4):1809-1834.
    [15] HU C D, LANGRETH D C. A Spin Dependent Version of the Langreth-MehlExchange-Correlation Functional[J]. Phys. Scr.,1985,32(4):391-396.
    [16] HU C D, LANGRETH D C. Beyond the random-phase approximation innonlocal-density-functional theory[J]. Phys. Rev. B,1986,33(2):943-959.
    [17] PERDEW J P. Density-functional approximation for the correlation energy ofthe inhomogeneous electron gas[J]. Phys. Rev. B,1986,33(12):8822-8824.
    [18] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids,and surfaces: Applications of the generalized gradient approximation forexchange and correlation[J]. Phys. Rev. B,1992,46(11):6671–6687.
    [19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized GradientApproximation Made Simple[J]. Phys. Rev. Lett.,1996,77(18):3865–3868.
    [20] HAMMER B, HANSEN L B, N RSKOV J K. Improved adsorption energeticswithin density-functional theory using revised Perdew-Burke-Ernzerhoffunctional[J]. Phys. Rev. B,1999,59(11):7413–7421.
    [21] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimizationtechniques for ab initio total-energy calculations: molecular dynamics andconjugate gradients[J]. Rev. Mod. Phys.,1992,64(4):1045-1097.
    [22] IHM J, ZUNGER A, COHEN L. Momentum-space formalism for the totalenergy of solids[J]. J. Phys. C: Solid State Phys.,1979,12(21):4409-4422.
    [23] SJ STEDT E, NORDSTR M L, SINGH D J. An alternative way oflinearizing the augmented plane-wave method[J]. Solid State Commun.,2000,114(1):15-20.
    [24] MADSEN G K H, BLAHA P, SCHWARZ K, et al. Efficient linearization ofthe augmented plane-wave method[J]. Phys. Rev. B,2001,64,195134.
    [25] HUHEEY J E, KEITER E A, KEITER R L. Inorganic Chemistry: Principles ofStructure and Reactivity[M].4th ed. New Jersey: Prentice Hall,1997.
    [26]张跃,谷景华,尚家香,等.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    [27] BL CH F. über die Quantenmechanik der Elektronen in Kristallgittern[J]. Z.Physik,1928,52(7-8):555-600.
    [28]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1998.
    [29] COHEN M L, HEINE V. The Fitting of Pseudopotentials to Experimental Dataand their. Subsequent Application[J]. Solid State Phys.,1970,24:37-248.
    [30] HERRING C. A New Method for Calculating Wave Functions in Crystals[J].Phys. Rev.,1940,57(12):1169-1177.
    [31] HERRING C, HILL A G. The Theoretical Constitution of Metallic Beryllium[J].Phys. Rev.,1940,58(2):132-162.
    [32] PARMENTER R H. Electronic Energy Bands in Crystals[J]. Phys. Rev.,1952,86(4):552-560.
    [33] HERMAN F. Calculation of the Energy Band Structures of the Diamond andGermanium Crystals by the Method of Orthogonalized Plane Waves[J]. Phys.Rev.,1950,93(6):1214-1225.
    [34] HERMAN F. Speculations on the Energy Band Structure of Ge—Si Alloys[J].Phys. Rev.,1954,95(3):847-848.
    [35] WOODRUFF T O. Application of the Orthogonalized Plane-Wave Method toSilicon Crystal[J]. Phys. Rev.,1956,103(5):1159-1166.
    [36] HAMANN D R, SCHLüTER M, CHIANG C. Norm-ConservingPseudopotentials[J]. Phys. Rev. Lett.,1979,43(20):1494-1497.
    [37] BACHELET G B, HAMANN D R, SCHLIITER M. Pseudopotentials thatwork: From H to Pu[J]. Phys. Rev. B,1982,26(8):4199-4228.
    [38] VANDERBILT D. Soft self-consistent pseudopotentials in a generalizedeigenvalue formalism[J]. Phys. Rev. B,1990,41(11):7892-7895.
    [39] BL CH P E. Generalized separable potentials for electronic-structurecalculations[J]. Phys. Rev. B,1990,41(8):5414-5416.
    [40] BL CH P E. Projector augmented-wave method[J]. Phys. Rev. B,1994,50(24):17953-17979.
    [41] HOLZWARTH N A W, MATTHEWS G E, DUNNING R B, et al.Comparison of the projector augmented-wave, pseudopotential, and linearizedaugmented-plane-wave formalisms for density-functional calculations ofsolids[J]. Phys. Rev. B,1997,55(4):2005-2017.
    [42] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projectoraugmented-wave method[J]. Phys. Rev. B,1999,59(3):1758-1775.
    [43] SLATER J C. An Augmented Plane Wave Method for the Periodic PotentialProblem[J]. Phys. Rev.,1953,92(3):603-608.
    [44] JEPSEN O, ANDERSEN O K. The electronic structure of h.c.p. Ytterbium[J].Solid State Commun.,1971,9(20):1763-1767.
    [45] LEHMANN G, TAUT M. On the Numerical Calculation of the Density ofStates and Related Properties[J]. Phys. Status Solidi B,1972,54(2):469-477.
    [46] BALDERESCHI A. Mean-Value Point in the Brillouin Zone[J]. Phys. Rev.,1973,7(12):5212-5215.
    [47] CHADI D J, COHEN M L. Special Points in the Brillouin Zone[J]. Phys. Rev.,1973,8(12):5747-5753.
    [48] BL CH P E, JEPSEN O, ANDERSEN O K. Improved tetrahedron methodfor Brillouin-zone integrations[J]. Phys. Rev. B,1994,49(23):16223-16233.
    [49] METHFESSEL M, PAXTON A T. High-precision sampling for Brillouin-zoneintegration in metals[J]. Phys. Rev. B,1989,40(6):3616-3621.
    [50] MONKHORST H J, PACK J D. Special points for Brillouin-zoneintegrations[J]. Phys. Rev.,1976,13(12):5188-5192.
    [51] CHADI D J. Special points for Brillouin-zone integrations[J]. Phys. Rev. B,1977,16(4):1746-1747.
    [52] PACK J D, MONKHORST H J.“Special points for Brillouin-zoneintegrations”-a reply[J]. Phys. Rev. B,1977,16(4):1748-1749.
    [53] http://en.wikipedia.org/wiki/Voigt_notation
    [54]陈纲,廖理几,郝伟.晶体物理学基础[M].北京:科学出版社,2007.
    [55] MüLLIKEN R S. Electronic Population Analysis on LCAO-MO MolecularWave Functions. I[J]. J. Chem. Phys.,1955,23(10):1833-1840.
    [1] BRAZHKIN V, DUBROVINSKAIA N, NICOL M, et al. From ourreaders: What does 'harder than diamond' mean?[J] Nat. Mater.,2004,3:576-577.
    [2] KANER R B, GILMAN J J, TOLBERT S H. Designing Superhard Materials[J].Science,2005,308(5726):1268-1269.
    [3] GILMAN J J, CUMBERLAND R W, KANER R B. Design of hard crystals[J]. Int.J. Refract. Met. Hard Mater.,2006,24(1-2):1-5.
    [4] DONG B W, TIAN F B, DUAN D F, et al. Superconductive superhard phase ofBC7: Predicted via ab initio calculations[J]. Diamond Relat. Mater.,2011,20(3):454-457.
    [5] WANG X L, BAO K, TIAN F B, et al. Cubic gauche-CN: A superhard metalliccompound predicted via first-principles calculations[J]. J. Chem. Phys.,2010,133(4):044512.
    [6] TIAN F B, WANG J H, HE Z, et al. Superhard semiconducting C3N2compounds predicted via first-principles calculations[J]. Phys. Rev. B,2008,78(23):235431.
    [7] GILMAN J J, Electronic Basis of the Strength of Materials[M]. Cambridge:Cambridge University Press,2003.
    [8] IVANOVSKII A L, Mechanical and electronic properties of diborides oftransition3d–5d metals from first principles: Toward search of novelultra-incompressible and superhard materials[J]. Prog. Mater. Sci.,2012,57:184-228.
    [9] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al. Synthesis ofUltra-Incompressible Superhard Rhenium Diboride at Ambient Pressure [J].Science,2007,316(5823):436-439.
    [10] YANG J, SUN H, CHEN C F, et al. Is Osmium Diboride An Ultra-HardMaterial?[J] J. Am. Chem. Soc.,2008,130(23):7200-7201.
    [11] CHEN Z Y, XIANG H J, YANG J, et al. Structural and electronic properties ofOsB2: A hard metallic material[J]. Phys. Rev. B,2006,74(1):012102.
    [12] VAJEESTON P, RAVINDRAN P, RAVI C, et al. Electronic structure,bonding, and ground-state properties of AlB2-type transition-metal diborides[J].Phys. Rev. B,2001,63(4):045115.
    [13] KHMELEVSKYI S, MOHN P. Magnetic ordering in MnB2: an ab-initio study[J].Solid State Commun.,2000,113(9):509-512.
    [14] BINDER I, POST B. Manganese diboride[J]. Acta Crystallogr.,1960,13:356.
    [15] ARONSSON B. A note on the compositions and crystal structures of MnB2,Mn3Si, Mn5Si3and FeSi2[J]. Acta Chem. Scand.,1960,14:1414-1418.
    [16] KHMELEVSKYI S, MOHN P. Covalent magnetism, exchange interactions andanisotropy of the high temperature layered antiferromagnet MnB2[J]. J. Phys.:Condens. Matter,2012,24(1):016001.
    [17] AYDIN S, SIMSEK M. First-principles calculations of MnB2, TcB2, and ReB2within the ReB2-type structure[J]. Phys. Rev. B,2009,80(13):134107.
    [18] MENG X X, BAO K, ZHU P W, et al. Manganese borides synthesized at highpressure and high temperature[J]. J. Appl. Phys.2012,111(11):112616.
    [19] FAN J, BAO K, JIN X L, et al. How to get superhard MnB2: a first-principlesstudy[J]. J. Mater. Chem.,2012,22(34):17630-17635.
    [20] KRESSE G, J. HAFNER. Ab-initio molecular dynamics for liquid metals[J].Phys. Rev. B,1993,47(1):558-561.
    [21] KRESSE G, J. HAFNER. Ab initio molecular-dynamics simulation of theliquid-metal-amorphous-semiconductor transition in germanium[J]. Phys. Rev.B,1994,49(20):14251-14269.
    [22] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab-initiototal-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54(16):11169-11186.
    [23] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energycalculations for metals and semiconductors using a plane-wave basis set[J].Comput. Mater. Sci.,1996,6(1),15-50.
    [24] DOVE M T. Introduction to Lattice Dynamics[M]. Cambridge: CambridgeUniversity Press,1993.
    [25] WANG Y, LIU Z K, CHEN L Q. Thermodynamic properties of Al, Ni, NiAl,and Ni3Al from first-principles calculations[J]. Acta Mater.,2004,52(9):2665-2671.
    [26] OGANOV A R, GILLAN M J, PRICE G D. Structural stability of silica at highpressures and temperatures[J]. Phys. Rev. B,2005,71(6):64104.
    [27] TANAKA I, TOGO A, SEKO A, et al. Thermodynamics and structures of oxidecrystals by a systematic set of first principles calculations[J]. J. Mater. Chem.,2010,20(46):10335-10344.
    [28] TOGO A, KROLL P. First-principles lattice dynamics calculations of the phaseboundary between β-Si3N4and γ-Si3N4at elevated temperatures andpressures[J]. J. Comput. Chem.,2008,29(13):2255-2259.
    [29] PRESS W H, FLANNERY B P, TEUKOLSKY S A, et al. NumericalRecipes[M]. New York: Cambridge University Press,1986.
    [30] MURNAGHAN F D. The Compressibility of Media under ExtremePressures[J]. Proc. Natl. Acad. Sci. USA,1944,30(9):244-247.
    [31] TOGO A, PHONOPY: a tool to compute phonon band structures and thermalproperties of solids. Available at http://phonopy.sourceforge.net/
    [32] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principlessimulation: ideas, illustrations and the CASTEP code[J]. J. Phys.: Condens.Matter,2002,14(11):2717-2744.
    [33] SEGALL M D, PICKARD C J, SHAH R, et al. Population Analysis in PlaneWave Electronic Structure Calculations[J]. Mol. Phys.,1996,89(2):571-577.
    [34] SEGALL M D, SHAH R, PICKARD C J, et al. Population analysis ofplane-wave electronic structure calculations of bulk materials[J]. Phys. Rev. B,1996,54(23):16317-16320.
    [35] MüLLIKEN R S. Electronic Population Analysis on LCAO-MO MolecularWave Functions. I[J]. J. Chem. Phys.,1955,23(10):1833-1840.
    [36] SUN W H, DU Y, LIU S H, et al. Thermodynamic Assessment of the Mn-BSystem[J]. J. Phase Equilib. Diff.,2010,31(4):357-364.
    [37] LIAO P K, SPEAR K E. The B-Mn (Boron-Manganese) System[J]. Bull. AlloyPhase Diag.,1986,7(6):543-549.
    [38] OKAMOTO H, B-Mn (boron-manganese)[J]. J. Phase Equilib.,1993,14(1):121-122.
    [1] SCHLAPBACH L, ZüTTEL A. Hydrogen-storage materials for mobileapplications[J]. Nature,2001,414:353-358.
    [2] DAVID E. An overview of advanced materials for hydrogen storage[J]. J. Mater.Process. Technol.,2005,162:169-177.
    [3] LODZIANA Z, VEGGE T. Structural Stability of Complex Hydrides: LiBH4Revisited[J]. Phys. Rev. Lett.,2004,93(14):145501.
    [4] RAVINDRAN P, VAJEESTON P, FJELLV G H, et al. Chemical-bonding andHigh-pressure Studies on Hydrogen-storage Materials. Comput. Mater. Sci.,2004,30:349-357.
    [5] VAJEESTON P, RAVINDRAN P, VIDYA R, et al. A pressure-induced phaseof NaAlH4: A potential candidate for hydrogen storage?[J] Appl. Phys. Lett.,2003,82(14):2257-2259.
    [6] VAJEESTON P, RAVINDRAN P, VIDYA R, et al. Huge-pressure-inducedvolume collapse in LiAlH4and its implications to hydrogen storage[J]. Phys.Rev. B,2003,68(21):212101.
    [7] TALYZIN A V, SUNDQVIST B. Reversible phase transition in LiAlH4underhigh-pressure conditions[J]. Phys. Rev. B,2004,70(18):180101.
    [8] HER J H, STEPHENS P W, GAO Y, et al. Structure of unsolvated magnesiumborohydride Mg(BH4)2[J]. Acta Crystallogr. Sect. B,2007,63(4):561-568.
    [9] CER Y R, FILINCHUK Y, HAGEMANN H, et al. Magnesium Borohydride:Synthesis and Crystal Structure[J]. Angew. Chem.,2007,119(30):5867-5869.
    [10] NAKAMORI Y, MIWA K, NINOMIYA A, et al. Correlation betweenthermodynamical stabilities of metal borohydrides and cationelectronegativites: First-principles calculations and experiments[J]. Phys. Rev.B,2006,74(4):045126.
    [11] VAJEESTON P, RAVINDRAN P, KJEKSHUS A, et al. High hydrogencontent complex hydrides: A density-functional study[J]. Appl. Phys. Lett.,2006,89(7):071906.
    [12] OZOLINS V, MAJZOUB E H, WOLVERTON C. First-Principles Predictionof a Ground State Crystal Structure of Magnesium Borohydride[J]. Phys. Rev.Lett.,2008,100(13):135501.
    [13] VOSS J, HUMMELSH J J S, ODZIANA Z, et al. Structural stability anddecomposition of Mg(BH4)2isomorphs—an ab initio free energy study[J]. J.Phys.: Condens. Matter,2009,21(1):012203.
    [14] ZHOU X F, QIAN Q R, ZHOU J, et al. Crystal structure and stability ofmagnesium borohydride from first principles[J]. Phys. Rev. B,2009,79(21):212102.
    [15] DAI B, SHOLL D S, JOHNSON J K. First-Principles Study of Experimentaland Hypothetical Mg(BH4)2Crystal Structures[J]. J. Phys. Chem. C,2008,112(11):4391-4395.
    [16] CAPUTO R, TEKIN A, SIKORA W, et al. First-principles determination ofthe ground-state structure of Mg(BH4)2[J]. Chem. Phys. Lett.,2009,480(4-6):203-209.
    [17] LI H W, KIKUCHI K, NAKAMORI Y, et al. Effects of ball milling andadditives on dehydriding behaviors of well-crystallized Mg(BH4)2[J]. Scr.Mater.,2007,57(8):679-682.
    [18] CHLOPEK K, FROMMEN C, LEON A, et al. Synthesis and properties ofmagnesium tetrahydroborate, Mg(BH4)2[J]. J. Mater. Chem.,2007,17(33):3496-3503.
    [19] CHELLAPPA R S, CHANDRA D, GRAMSCH S A, et al. Pressure-InducedPhase Transformations in LiAlH4. J. Phys. Chem. B,2006,110(23):11088-11097.
    [20] CHELLAPPA R S, CHANDRA D, SOMAYAZULU M, et al.Pressure-Induced Phase Transitions in LiNH2. J. Phys. Chem. B,2007,111(36):10785-10789.
    [21] GEORGE L, DROZD V, SAXENA S K. Structural Phase Transitions ofMg(BH4)2under Pressure. J. Phys. Chem. C,2009,113(1):486-492.
    [22] FISCHER T H, ALMLOF J. General methods for geometry and wave functionoptimization[J]. J. Phys. Chem.,1992,96(24):9768-9774.
    [23] Computer code PHONON, Kraków, Poland,2004.
    [24] PARLINSKI K, LI Z Q, KAWAZOE Y. First-Principles Determination of theSoft Mode in Cubic ZrO2[J]. Phys. Rev. Lett.,1997,78(21):4063-4066.
    [25] RIKTOR M D, S RBY M H, CH OPEK K, et al. In situ synchrotrondiffraction studies of phase transitions and thermal decomposition of Mg(BH4)2and Ca(BH4)2[J]. J. Mater. Chem.,2007,17(47):4939-4942.
    [26] MIWA K, AOKI M, NORITAKE T, et al. Thermodynamical stability of calciumborohydride Ca(BH4)2[J]. Phys. Rev. B,2006,74(15):155122.
    [27] KIM E, KUMAR R, WECK P F, et al. Pressure-Driven Phase Transitions inNaBH4: Theory and Experiments[J]. J. Phys. Chem. B,2007,111(50):13873-13876.
    [28] MATSUNAGA T, BUCHTER F, MAURON P, et al[J]. Hydrogen storageproperties of Mg[BH4]2[J]. J. Alloys Compd.,2008,459(1-2):583-588.
    [29] HANADA N, CH OPEK K, FROMMEN C, et al. Thermal decomposition ofMg(BH4)2under He flow and H2pressure[J]. J. Mater. Chem.,2008,18:2611-2614.
    [30] HWANG S J, BOWMAN R C, REITER J W, et al. NMR Confirmation forFormation of [B12H12]2-Complexes during Hydrogen Desorption from MetalBorohydrides[J]. J. Phys. Chem. C,2008,112(9):3164-3169.
    [31] LI H W, KIKUCHI K, NAKAMORI Y, et al. Dehydriding and rehydridingprocesses of well-crystallized Mg(BH4)2accompanying with formation ofintermediate compounds[J]. Acta Mater.,2008,56(6):1342-1347.
    [32] LI H W, MIWA K, OHBA N, et al. Formation of an intermediate compoundwith a B12H12cluster: experimental and theoretical studies on magnesiumborohydride Mg(BH4)2[J]. Nanotechnology,2009,20(20):204013.
    [33] LI H W, KIKUCHI K, SATO T, et al. Synthesis and Hydrogen StorageProperties of a Single-Phase Magnesium Borohydride Mg(BH4)2[J]. Mater.Trans.,2008,49(10):2224-2228.
    [34] OZOLINS V, MAJZOUB E H, WOLVERTON C. First-Principles Prediction ofThermodynamically Reversible Hydrogen Storage Reactions in theLi-Mg-Ca-B-H System[J]. J. Am. Chem. Soc.,2009,131(1):230-237.
    [35] SOLOVEICHIK G L, GAO Y, RIJSSENBEEK J, et al. Magnesiumborohydride as a hydrogen storage material: Properties and dehydrogenationpathway of unsolvated Mg(BH4)2[J]. Int. J. Hydrogen Energy,2009,34(2):916-928.
    [36] WILL G, KIEFER B. Electron Deformation Density in Rhombohedralα-Boron[J]. Z. Anorg. Allg. Chem.,2001,627(9):2100-2104.
    [37] OGANOV A R, CHEN J H, GATTI C, et al. Ionic high-pressure form ofelemental boron[J]. Nature,2009,457:863-867.
    [38] MORIWAKI T, AKAHAMA Y, KAWAMURA H. Structural Phase Transitionof Rutile-Type MgH2at High Pressures[J]. J. Phys. Soc. Jpn.,2006,75(7):074603.
    [39] HüEBSCHLE C B, MESSERSCHMIDT M, LENTZ D, et al. Neubestimmungder Ladungsdichte und topologische Analyse von β-Diboran bei94K[J]. Z.Anorg. Allg. Chem.,2004,630(8-9):1313-1316.
    [40] PICKARD C J, NEEDS R J. Structure of phase III of solid hydrogen[J]. NaturePhysics,2007,3:473-476.
    [41] BORN M,HUANG K. Dynamical Theory of Crystal Lattices[M]. Clarendon:Oxford University Press,1956.
    [42] LINES M E, GLASS A M. Principles and Applications of Ferroelectricsand Related Materials[M]. Clarendon: Oxford University Press,1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700