用户名: 密码: 验证码:
潮流电站电力变换系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源日益紧缺和环境严重污染的今天,新能源的利用备受关注。目前的世界能源结构的主体是煤炭、石油、天然气等化石能源。而化石能源是不可再生资源,经过长期使用最终将会枯竭,而且在使用化石能源的过程中会排放大量的污染物,破坏人类赖以生存的生态环境。为了能够得到稳定持久的能源供应,减少人类对生态环境的破坏,必须减少化石能源的使用,大力开发新能源和可再生能源等洁净能源。本文所论述的就是一种新能源——潮流能的开发与利用。
     本文论述了潮流电站电力变换系统的相关研究情况,阐述了该系统的具体实施方案。就潮流电站电力变换领域的关键技术,从理论到实践进行了较为全面的深入研究,同时对具有广泛潜在应用前景的数字式系统也进行了详尽地理论分析,并把两者有机地结合起来,为今后进一步的深入研究奠定了理论基础。
     本文研究了潮流发电系统的主电路结构,针对潮流发电的特点,主要完成了逆变装置和储能装置的设计,以及直流升压电路的仿真研究。重点讨论了以交直交为主回路的潮流发电控制系统,主要完成逆变电路的控制、蓄电池充电控制和Boost升压电路控制三大功能,实现一个恒频恒压系统,保证无论潮流如何变化,我们都可以使用户得到稳定的交流电。
     本文采用基于ARM的全数字化SVPWM三相逆变闭环系统作为潮流电站的逆变环节,设计了逆变器主电路和逆变器的数字控制系统软硬件,并对其进行仿真和实验分析,实现了恒频恒压输出,保证用户得到稳定的交流电。以SVPWM逆变控制为理论基础,研究了潮流发电系统的主回路结构,并且根据方案进行了MATLAB软件仿真。在MATLAB软件仿真里,简要的介绍了潮流发电中各个模块,最后搭建了潮流发电模型,进行仿真,仿真结果证明这种方法是可行的。在控制器的设计方面,本文采用了嵌入式微处理器STM32F103ZE,研究了芯片的硬件结构,根据系统需求,结合其内部的PWM波发生器实现对逆变电路的控制。
     储能装置作为潮流电站电力变换系统可靠运行的核心,是本文研究的另一个重点。合理的蓄电池管理和控制是延长蓄电池使用寿命的重要手段。本文首先对蓄电池的充电技术进行了探讨,选择先主充后浮充的方式对蓄电池充电。同时,充电系统还具有自动主、浮充转换功能。本文设计了直流变换电路作为蓄电池充电电路,对其进行了仿真和实验分析,证明了设计的合理性和可行性。
With the rapid development of economic,increase of population and progress of science and technology,more and more traditional energy will be on demand,under which it is more and more important to speed up the progress of new energy usage.This paper is about of a new energy——tidal energy's exploiture.
     There is something about research in tidal plant's power transforming and grid-connected controlling in this paper, and has presented idiographic practical scheme.In the paper, research on tidal plant's power transforming system key technology has been done all-around from theory to practice.At the same time, the digital system which has great application foreground has been analyzed at large in theory.Their organic combination has established stability theoretical foundation for the following study.
     This paper has researched the structure,working principle and control strategy of stand-alone tidal power system.Aiming at the characters of tidal generation electricity,DC to AC control and the battery charge control are accomplished.And Boost DC to DC circuit is simulated.The paper mainly discusses the tidal generation control system with AC to DC to AC as main circuit in detail,which implements the DC to AC control,the battery charge control and the communication with PC.The system may keep constant frequency and voltage. The consumer gets steady voltage no matter how the tide changes.
     The tidal plant's inverter used digital three-phase SVPWM inverter closed-loop system based on ARM.This design scheme includes the design of inverter main circuit, and the software and hardware design of inverter digital control system.The simulation and experimentation results make it clear that the system is a constant frequency and voltage system that the consumer could get steady voltage when the tide changes as designed.This paper presents SVPWM solution to the tidal generation system.I research the composing of main circuit of the tidal generation electricity system.MATLAB software imitates the scheme. During imitation, I introduce the model of every module.The result which is gained by the model proves the scheme feasible.On the design of the controller, the paper adopts the embedded microprocessor STM32F103ZE and lucubrate its hardware frame. With the need of the system, the STM32F103ZE on the connection with PWM generator may realize the control of DC-AC circuit. The STM32F103ZE has a PWM generator, which achieves the battery charge.
     Charge device is the core of tidal plant's power transforming system. And it is also the core of the paper. The reasonable management and control of battery is an important means of prolonging their life. At first, in this paper battery charging technology was discussed,I choose this way of the main charging before the floating charging to recharge the battery.And, charging system also has the function that the main and the floating charging convert automatically. This paper designed DC to DC convertor to recharge the battery. The simulation and experimentation results prove that the design is reasonable and feasible.
引文
[1]张勇,崔蓓蓓,邱宇晨.潮流发电——一种开发潮汐能的新方法.能源技术.2009,30(4):223-227页
    [2]游亚戈.我国海洋能产业状况.高科技与产业化.2008,""(7):39-41页
    [3]王传崑.海洋能知识讲座(5)我国海洋能技术的发展.太阳能.2009,""(1):22-25页
    [4]杨国安.数字控制系统:分析、设计与实现.西安交通大学出版社,2008:3-4页
    [5]张选正,张金远.变频器应用技术与实践.中国电力出版社,2009:12页
    [6]冷欣.潮流发电嵌入式计算机控制系统研究.哈尔滨工程大学硕士学位论文.2006:10页
    [7]黄俊,王兆安.电力电子变流技术.第3版.机械工业出版社,2004:42页
    [8]洪乃刚.电力电子、电机控制系统的建模和仿真.机械工业出版社,2010:95页
    [9]林飞,杜欣.电力电子应用技术的MATLAB仿真.中国电力出版社.2009:106-107页
    [10]林渭勋.现代电力电子技术.机械工业出版社,2007:170,217-218,231,237-241页
    [11]刘贤兴,李众,李捷辉.新型智能开关电源技术.机械工业出版社,2003:30-37,64-67页
    [12]王家庆.智能型高频开关电源系统的原理使用和维护.人民邮电出版社,2000:30-33,98-104页
    [13]肖春燕.电压空间矢量脉宽调制技术的研究及其实现.南昌大学硕士学位论文.2005:8-9,32-36页
    [14]刘凤君.现代逆变技术及应用.电子工业出版社,2006:232页
    [15]马志云.电机瞬态分析.中国电力出版社,1998:78,19-21页
    [16]陈伯时.电力拖动自动控制系统——运动控制系统.第3版.机械工业出版社,2004:265-267页
    [17]王琦.基于DSP的SVPWM变频电源的研究.华中科技大学硕士学位论文.2007:20页
    [18]Shan Li, Huihui Xiao, Hongyan Chen. The research of SVPWM control technique of double three-phase induction machine. Proceedings of the Eighth International Conference on Volume 1.2005, Vol.1. pp:109-114
    [19]张崇巍,张兴.PWM整流器及其控制.机械工业出版社,2005:18-23,62-82,112-148页
    [20]熊健,张凯,康勇,陈坚.空间矢量脉宽调制的调制波分析.电气自动化.2002,24(3):7-11页
    [21]田亚菲,何继爱,黄智武.电压空间矢量脉宽调制(SVPWM)算法仿真实现及分析.电力系统及其自动化学报.2004,16(4):68-71页
    [22]张建生.电源技术教程.电子工业出版社,2007:145-146页
    [23]周志敏,周纪海,纪爱华.阀控式密封铅酸蓄电池实用技术.中国电力出版社,2004:17,48-53页
    [24]房泽平.独立运行小型风力发电系统功率控制技术研究.内蒙古工业大学硕士学位论文.2007:41页
    [25]姜南.变电站用智能直流供电系统研究.哈尔滨工程大学硕士学位论文.2007:30-31页
    [26]周志敏,周纪海,纪爱华.充电器电路设计与应用.人民邮电出版社.2005:44-46页
    [27]STMicroelectronics. RM0008 Reference manual. Rev 10.2009. pp:39-40
    [28]STMicroelectronics. STM32F103xC STM32F103xD STM32F103xE. Rev 7.2009. pp: 1
    [29]付洁.三相逆变电源数字控制技术研究.华中科技大学硕士学位论文.2006:18页
    [30]邓雯丹.基于电压空间矢量控制的三相数字化逆变器研究.华中科技大学硕士学位论文.2002:41页
    [31]陈涛.三相逆变电源并联技术的研究.西南交通大学硕士学位论文.2009:19-20页
    [32]孔雪娟,王荆江,彭力,康勇,陈坚.采用SVPWM的三相逆变电源的分散逻辑并联运行.中国电机工程学报.2003,23(6):81-86页
    [33]段善旭,刘邦银,康勇,陈坚.基于分散逻辑的UPS逆变电源并联控制技术.电力电子技术.2004,38(2):56-58页
    [34]Uffe Borup Jensen, Frede Blaabjerg, Prasad N.Enjeti. Sharing of Nonlinear Load in Parallel Connected Three-phase Converters. IEEE Transactions on Industry Applications.2001,37(6):1817-1823
    [35]胡寿松.自动控制原理.第四版.科学出版社.2001:120,226-236页
    [36]陈道炼.DC-AC逆变技术及其应用.机械工业出版社,2003:160-168页
    [37]陶永华,尹怡欣,葛芦生.新型PID控制及其应用.机械工业出版社.2000:5-7页
    [38]吕新刚,乔方利,赵昌,夏长水.海洋潮流能资源的数值估算——以胶州湾口为例.太阳能学报.2010,31(2):137-143页
    [39]李爱文,张承慧.现代逆变技术及其应用.科学出版社.2000:149-155页
    [40]D.A.J.Rand等主编,郭永榔等译.阀控式铅酸蓄电池.机械工业出版社,2007:206-217页
    [41]Jiao S, Patterson DJ, Camilleri S. Boost converter design for 20kw wind turbine generator. Australian Universities Power Engineering Conference (AUPEC) and Electric Energy Conference (EECON).1999
    [42]Astrom K.J, Hagglund et al. PID Controllers:Theory, Design, and Tuning. Instrument. Society of America.1995
    [43]李宁.基于MDK的STM32处理器开发应用.北京航空航天大学出版社.2008:39-46页
    [44]陈辉,杨喜军.开关函数法实现电压空间矢量逆变控制.嵌入式系统应用.2009,25(4-2):50-51,80页
    [45]K krer O. Deadbeat Control of a Three phase Inverter with an Output LC Filter. IEEE Trans. on Power Electronics.1996,11(1), pp:16-23
    [46]全恒立,张钢,陈杰,刘志刚.一种SVPWM过调制算法的数字化实现.电气传动.2010,40(5):44-48页
    [47]马丽梅,闵锐,黄颖,吴元亮SVPWM优化控制策略仿真研究.仪器仪表用户.2010,17(3):38-40页
    [48]定明芳,刘昌玉.基于DSP的数字化SVPWM三相逆变器闭环系统.电力自动化设备.2006,26(12):41-44页
    [49]易柳,黄辉先,苏浩.基于DSP控制的三相逆变电源设计.机电工程技术.2009,38(9):79-82页
    [50]吕耀文.蓄电池充电方法的研究.内蒙古科技与经济.2009,""(2):96,98页
    [51]石洪岩.蓄电池充电方法的研究.科技风.2010,""(8):242-243页
    [52]Jouanne A, Enjeti PN. Design considerations for an inverter output filter to mitigate the effects of long motor leads in ASD application. IEEE Trans on Ind Appl.1997,33(5), pp:1138-1145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700