用户名: 密码: 验证码:
基于废弃皮胶原改性的造纸施胶剂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国造纸行业的不断发展,施胶剂的消耗量正在逐年上升。生物质施胶剂由于其原料来源广泛、价格便宜、易于生物降解、可再生等优点,一直在造纸行业中长期占有较大的市场比例。因此,进一步研发新型生物质施胶剂产品或者拓展原有生物质施胶剂的改良产品具有重要的意义。本论文旨在以废弃皮胶原中提取的胶原蛋白为原材料,合成两种新型环保型造纸施胶剂,并对其结构和性能做了较为系统的研究,另外还研究了该类胶原蛋白基施胶剂在瓦楞原纸上的应用效果,这将为皮革行业固体废弃物的大宗资源化利用拓展一条新的途径,也为造纸行业开发新型的生物质施胶剂提供理论依据和支持。本论文的具体研究工作包括以下几个方面:
     第一方面,采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法(简称SDS电泳)、凝胶渗透色谱仪(GPC)和氨基酸分析仪对海宁德邦化工有限公司提供的胶原蛋白的相对分子质量分布、氨基酸种类和含量进行了测定,结果表明:该胶原蛋白的相对分子质量分布范围在600-80000Da,主要集中在低相对分子质量范围内,数均分子量为1123Da,重均分子量为3609Da;含有16种氨基酸,其中Pro和Gly含量最高,分别为17.84%和17.15%。总氨基酸含量为65.73%,纯度较低,但是其具备改性的结构要求,可作为生物质材料加以利用。第二方面,以该胶原蛋白作为接枝主链,以丙烯酸丁酯(BA)和苯乙烯(St)分别作为柔性侧链和刚性侧链,以过硫酸钾/亚硫酸氢钠为氧化还原引发体系,通过自由基聚合法制备一种综合施胶性能优异的接枝改性胶原蛋白(GMC)造纸施胶剂。以GMC产物的接枝率和沉淀率作为参考指标,设计单因素实验并确定其较优的制备条件为:m(胶原蛋白):m(总单体)为1:1,m(BA):m(St)为1:1.5,引发剂用量为单体总量的3%,反应时间为4h,GMC产物外观为泛蓝光白色乳液,固含量14.3%,粘度为30mPa·S,耐电解质和耐酸碱性好,且具有较好的储存稳定性。将最优条件下制备的产物提纯后,采用傅里叶红外光谱仪(FT-IR)对其结构进行表征,结果证明:接枝改性后胶原蛋白的酰胺Ⅰ、Ⅱ和Ⅲ带的特征吸收峰均发生了红移,结合饱和脂肪族中C=O和C-C(C=O)-O特征峰的出现以及苯环中5个H的特征吸收峰的出现,证明合成反应按照预期设计路线进行,得到了预期产物。
     采用扫描电镜(SEM)、透射电镜(TEM)和激光粒度分析仪对胶原蛋白接枝改性前后的形貌、接枝改性后的乳液形貌、粒径大小及分布进行测试,结果表明接枝改性破坏了胶原蛋白的颗粒结构的规整性,表面变得粗糙,白色部分为乙烯基类单体聚合物;接枝改性后乳液微观形貌为大小均一的球形结构,平均粒径约为117nm。
     采用X-射线衍射分析仪(XRD)、能量分散能谱分析仪(EDS)和差示扫描量热仪(DSC)对接枝改性前后胶原蛋白的结晶性、元素含量及其热稳定性进行表征,结果表明:接枝改性使得产物的结晶度降低,热稳定性提高;由于原材料提取过程中脱铬不完全,所以接枝改性产物中仍然含有微量铬,但并没有超过欧盟条约的限量,符合环保要求。
     以瓦楞原纸作为施胶对象,将合成的环保型GMC乳液用于其表面施胶,实验结果表明:其对瓦楞原纸的环压强度、抗张强度和抗水性均有大幅度提高,与工厂施胶纸张性能相当,其中环压指数为7.11N·m/g和抗张指数2.38KN/m,分别比原纸提高2.6和1.8倍,且获得了很强的抗水性;通过SEM观察了施胶前后纸张截面和表面的纤维形态,结果表明:用GMC乳液施胶后纸张截面和表面的纤维变得紧实、有序、光滑,证明GMC施胶乳液与纸张纤维之间存在相互作用,且起到了一定的施胶效果。
     将GMC乳液分别与两种常用的合成类施胶剂烷基烯酮二聚体(AKD)和苯乙烯-丙烯酸酯共聚物(SAE)复配使用,研究其协同施胶性能,实验结果表明:本实验制备的GMC乳液与商品SAE之间具有很明显的协同作用,两者复配施胶后纸张的环压强度和抗张指数都远远优于其他产品的施胶效果,环压指数和抗张指数比原纸分别提高了3.3和2.7倍;通过水接触角测定仪研究了不同施胶纸样的抗水性,结果表明:GMC乳液与商品SAE复配施胶的纸张抗水性最强,静态水接触角达到137.6°,与60s吸水值分析结果一致。
     第三方面,以胶原蛋白为原材料,以环氧氯丙烷(ECH)作为交联剂,对其进行交联改性;然后再以BA聚合物作为疏水链,以过硫酸钾/亚硫酸氢钠作为引发剂,对交联胶原蛋白(CLMC)进行接枝改性,得到一种交联-接枝改性胶原蛋白(CL-GMC)造纸施胶剂。以CLMC涂布纸张的60s吸水值作为参考指标,通过单因素实验确定交联反应的较优条件为:交联温度为50℃,体系pH为10,反应时间为3h,胶原蛋白质量浓度为20%,交联剂即ECH用量为胶原蛋白用量的6%;以CL-GMC乳液接枝率作为参考指标,通过单因素实验优化出接枝反应的较优条件为:m(BA):m(胶原蛋白)为1:2,引发剂用量为BA用量的4.5%,反应温度80℃,反应时间为3h;CL-GMC产物外观为泛蓝光白色乳液,固含量22.3%,粘度为45mPa·S,耐电解质和耐酸碱性好,且具有较好的储存稳定性。
     采用FT-IR和拉曼光谱仪对胶原蛋白、CLMC和CL-GMC的结构进行了表征,结合改性前后发生变化的红外特征吸收峰和拉曼特征谱带,证明用ECH和BA对胶原蛋白的交联改性和接枝改性均按照预期路线成功进行,合成出预期改性产物;通过激光粒度仪对CL-GMC乳液粒径大小和分布进行了表征,结果表明:其乳液粒径大小均一,平均粒径约为164.2nm。通过XRD、扫描电镜/能量分散能谱分析仪(SEM/EDS)、热重分析仪(TG)和DSC对交联-接枝改性前后产物的结晶性、形貌、元素含量和热性能进行了分析,测试结果表明:交联-接枝双重改性方法使得产物的结晶趋势明显降低,且胶原蛋白颗粒的规整结构被破坏,交联-接枝改性产物中仍含有微量铬,但并不会影响其应用。单纯GMC的热分解温度为240℃,而CL-GMC的热分解温度达到380℃,说明交联-接枝改性方法可更大幅度的提高胶原蛋白的热稳定性能。
     将CL-GMC乳液用于瓦楞原纸的表面施胶,通过SEM、TG和DSC对施胶前后的纸张性能进行了表征,结果发现施胶后纸张表面纤维明显变得紧实、有序、光滑,且纸张的热稳定性大幅度提高;以纸张的环压指数、抗张指数和60s吸水值作为考察指标,研究不同施胶纸样的施胶性能,结果表明:CL-GMC施胶纸张的环压指数和抗张指数都优于单纯GMC以及商品SAE与GMC复配施胶纸张的。将CL-GMC与商品SAE复配施胶后,施胶效果更好,纸张环压指数和抗张指数分别可达到10.82N·m/g和6.14KN/m,是单纯GMC施胶纸张环压指数的1.52和2.58倍。但CL-GMC施胶纸张的抗水性却低于GMC的施胶纸张,将其与商品SAE复配施胶后,纸张的60s吸水值可得到大幅度提升,均超过了其他三种施胶剂的抗水性。
     借助于水接触角测定仪分析不同施胶纸张的抗水性,结果与60s吸水值实验结果是一致的,CL-GMC施胶纸张的水接触角为111.1°,说明其抗水性能弱于GMC(123.7°)和SAE与GMC复配施胶纸张的(137.6°)。但是将CL-GMC与商品SAE复配施胶后,纸张的静态水接触角可达到155.7°,超过了商品SAE与GMC的复配施胶的纸张抗水性。将CL-GMC乳液单独作为纸张表面施胶剂或者与其他合成类施胶剂复配使用,均具有较好的综合性能,具有一定的工业化可行性。本文为新型环保型造纸施胶剂、板材黏合剂或其他领域的涂饰材料的开发提供了重要的理论依据及指导,并为皮革行业废弃胶原的资源化利用拓展了新的途径。
With the continuous development of papermaking industry in ourcountry, the consumption of the sizing agentsis yearly on the increase.Biomass sizing agent has chronically taken up the larger market share inthe papermaking industry, owing to its extensive sources for rawmaterial, cheap cost, easily biodegradable and renewable. Therefore, itis very important to develop the novel biomass sizing agent product orexpand the modified products of the original biomass sizing agents.This paper aims to prepare two novel and environmental friendly papersizing agents with the collagen extracted from the reclaimed leatherwaste. Their structure and performance were studied systematically. Inaddition, their sizing effect was also studied by coating their on thecorrugated paper. It will expand a new way to largely recycling use ofleather waste for the leather industry, as well as provide a theoreticalbasis and support to develop new biomass for the paper industry. Mainstudied contents are as follows:
     The first, the relative molecular mass distribution, type and contentof amino acids of collagen from the Debang chemical Co. Ltd. inHaining are determined by the Sodium dodecyl sulphate-polyacrylamidegel electrophoresis (SDS electrophoresis), Gel permeationchromatograph(GPC) and Amino acid analyzer. The determined resultsshow that the relative molecular mass distribution of collagen is at600~80000and mainly concentrates in the low relative molecular massrange. Its number average molecular weight is1123Da and the heavymolecular weight is3609Da. It contains16types of amino acids. And the most content contains proline (Pro) and glycine (Gly), and theircontents are respectively17.84%and17.15%. The total content ofamino acids is65.73%and the purity of collagen is low. Being used asthe biomass material, the molecular chain of collagen still has the basicpropertiesof the natural collagen and its structure is in line with therequirements for the modification.
     The second, the grafting modified collagen(GMC) sizing agentwith excellent comprehensive sizing performance is prepared by freeradical polymerization, with collagen as the grafted main chain, Butylacrylate(BA) and Styrene(St) as the flexible and rigid side chains,potassium persulphate/sodium bisulfite as redox initiator system. Thegrafting modified collagen(GMC) with the excellent sizing performanceis prepared by the free radical polymerization method. With the graftingrate and precipitation rateof GMC product as the reference index, theprepared conditions are optimized by single factor experiment. Asfollows, m(collagen): m(monomers) is1:1, m(BA): m(St) is1:1.5, thedosage of initiator is3%of the total monomers, the reaction time is4h.The GMC product appears the white emulsion with blue light. Its solidcontent is14.3%and the viscosity is30mPa·s. The performance ofelectrolyte, acid and alkaliresistance and the storage stability are allexcellent. After purifying to GMC in the optimal prepared condition, itsstructure is characterized by Fourier transform infraredspectroscopy(FT-IR). Result explains the amideⅠ, Ⅱ, Ⅲ of collagenare slightly shifted to higher wavenumber and the characteristicabsorption peaks of C=O and C-C(C=O)-O from the saturated aliphaticand5H from the benzene ring are present, after grafting modification. Itproves that the synthesis reaction carry out in accordance with theexpected design route and the expected product is obtained.
     The morphology, particle size anddistribution of the collagen andGMC are determined by Scanning electron microscopy(SEM),Transmission electron microscopy(TEM) and Laser particle sizeanalyzer. Results show that the structure regularity of the collagengranule is destroyed by the grafting modification and its surface changes into roughness. These white parts belongs to the polymer ofvinyl monomers. The morphology of GMC emulsion is sphericalstructure with size uniformity and its mean particle size is117nm.
     The crystalline degree, element content and thermostability of thecollagen and GMC are characterized by X-raydiffractionanalyzer(XRD),Energy-dispersive spectrum analyzer(EDS) and Differential scanningcalorimeter(DSC). Results suggest crystalline degree declines andthermostability increases, after grafting modification. There is traces ofchromium in the GMC product,because the removal of chromium of thecollagen extracted from leather shavings was incomplete. But theamount of chromium in the product is less than limited that in the EUdirectives and meet the requirements of environmental safety.
     With corrugated base paper as the sizing object, GMC emulsion iscoated on its surface. Result of sizing experimental shows the ring crushstrength, the tensile strength and the water-resistance performance ofpaper sized by the GMC are improved significantly, which is nearly thesame as the factory sized papers. The ring crush index and tensile indexare respectively7.11N·m/g and2.38KN/m, being2.6and1.8timesmore than that of base paper. The water resistance performanceenhances greatly. The morphology of fibers in cross-section and surfaceof paper sized before and after is observed by SEM. Results indicatethat fibers of the sized paper are tight,orderly and smooth. It proves thatthe GMC sizing agent emulsion interacts with paper fiber and producesthe sizing effect.
     The synergistic sizing effect between GMC sizing agent and thecommercial synthetic sizing agents such as alkyl ketene dimers(AKD)and styrene-acrylate copolymer(SAE) is studied. The experimentalresults suggest that the synergy between GMC and SAE is prominent.The ring crush strength and tensile strength of sized paper by the mixedsizing liquid are much better than that of others. The ring crush indexand tensile index are respectively3.3and2.7times more than that ofbase paper. The water resistance performance of the different sized papers is determined by the water contact angle meter. Results showthat the water resistance performance of sized paper by the mixture ofGMC and SAE is strongest and the static water contact angle gets to137.6°. It is consistent with the determined results of value of waterabsorbing for60s.
     The third, cross-linking modified by the epichlorohydrin(ECH) asthe cross-linked agent and grafting modified by BA as the hydrophobicchain and potassium persulphate/sodium bisulfite as the initiator, thecross-linking/grafting modified collagen(CL-GMC) sizing agent isprepared. The separated and purified product is characterized by thesemodern instrumental analysis methods. With the value of waterabsorbing of sized paper by the cross-linking modified collagen(CLMC)liquid as the reference index, the cross-linking reaction conditions areoptimized by single factor experiment. As follows, the cross-linkingtemperature is50℃, pH is10, the reaction time is3h, the massconcentration of collagen is20%, the dosage of ECH is6%of that ofcollagen. With the grafting rate of CL-GMC as the reference index, thegrafting reaction conditions are optimized by single factor experiment.As follows, m(BA):m(collagen) is1:2, the dosage of initiator is4.5%ofthat of BA, the reaction temperature is80℃, the reaction time is3h.The CL-GMC sizing agent also appears a white emulsion with blue light.The solid content is22.3%and the viscosity is45mPa· s. Theperformance of electrolyte, acid and alkaliresistance and the storagestability are also excellent.
     The structure of collagen and CL-GMC product is characterized byFT-IR and Raman spectrometer. Results imply that cross-linked/graftedmodified to collagen by the ECH and BA successfully carry outaccording to the expected route, combining characteristic absorptionpeak of FT-IR and Raman. And the expected modified product is gotten.The particle size anddistribution of the CL-GMC emulsion isdetermined by the Laser particle size analyzer. Results show that theparticle size of CL-GMC emulsion is uniform and the mean particle sizeis164.2nm.
     The crystalline degree, morphology, element content andthermostability of collagen modified before and after are characterizedand analyzed by XRD, SEM/EDS, TG and DSC. Results suggest that thecrystalline trend of the CL-GMC product declines obviously and thestructure regularity of the collagen granule is destroyed by thecross-linking/grafting modification. Although there is traces ofchromium in the CL-GMC product, it would not affect their application.The thermal decomposition temperature of GMC is240℃. It increasesto380℃by the cross-linking/grafting modification. It suggests that theimprovement of thermostability for CL-GMC is more significant thanthat ofthe GMC.
     Coating CL-GMC emulsion on surface of the corrugated basepaper, the performance of paper sized before and after is characterizedby SEM, TG and DSC. The result shows that the paper fiber is tight,orderly and smooth, and thermal stability of the sized paper alsoimproves. With the ring crush index, the tensile index and the value ofwater absorbing as the review indicators, the sizing performance of thedifferent sized papers is studied. Results states that the ring crush indexand the tensile index of the paper sized by CL-GMC are superior to thatof paper sized by GMC and the mixture of SAE and GMC. Mixed theCL-GMC with SAE as the sizing agent, the sizing effect is better. Thering crush index and the tensile index respectively get to10.82N·m/gand6.14KN/m, and are1.52and2.58times more than that of the sizedpaper by the GMC. But the water resistance performance of the sizedpaper by CL-GMC is inferior to that of the sized paper by GMC. Thevalue of water absorbing improves drastically and surpasses to the othersized papers, mixing CL-GMC with SAE as the sizing agent.
     The water resistance performance of the different sized papers isanalyzed by the water contact angle meter. Result is consistent with thatof the value of water absorbing. The static water contact angle of thesized paper by CL-GMC is111.1°. Its water resistance performance isinferior to that of the sized paper by the GMC(123.7°) and the mixtureof SAE and GMC(137.6°). The static water contact angle of the sized paper by the mixture of CL-GMC and SAE gets to155.7°. Thecomprehensive sizing performance of the sized papers is good, withCL-GMC or the mixture of CL-GMC and other synthetic sizing agentsas surface sizing agent. It has a certain feasibility for industrialization.
     In this paper, it not only provides the important theory basis andguidance for developing the novel paper sizing agent, board bindingagent or other coating material, but also opens up the reliable way forrecyclinguse of the chromewaste collagen in the leather industry.
引文
[1]蒋挺大.胶原与胶原蛋白[M].北京,化学工业出版社:2006:28-200.
    [2]Clark G, Parker E, Schaad J,et al. New measurements of previously unknownlarge interplanar natural materials[J]. Journal of the American ChemicalSociety,1935,57:1509.
    [3]Wyckoff R, Corey R, Biscoe J. X-ray reflections of long spacing from tendon[J].Science,1935,82:175-176.
    [4] Bornstein P, Piez K. A biochemical study of human skin collagen and therelation between intra-and intermolecular cross-linking[J].Journal of ClinicalInvestigation,1964,43:1812-1823.
    [5]Francis G, Thomas J. Isolation and chemical characterization of collagen inbovine pulmonary tissues[J]. Biochemical Journal,1975,145:287-97.
    [6] Liu D, Lin Y, Chen M. Optimum conditions of extracting collagen fromchicken feet and its characteristics[J]. Asian Australasian Journal of AnimalSciences,2001,14:1638-1644.
    [7]Ramachandran G, Kartha G. Structure of collagen[J]. Nature,1954,174:269-270.
    [8] Rich A, Crick F. The structure of collagen[J]. Nature,1955,176:915-916.
    [9] Ramachandran G. The structure of collagen[J]. Nature,1956,177:710-711.
    [10]Cliche S, Amiot J, Avezard C, et al. Extraction and characterization ofcollagen with or without telopeptides from chicken skin[J]. Poultry Science,2003,82:503-509.
    [11]Beriso R, Vitagliano L, Mazzarella L, et al. Crystal structure of the collagentriple helix model [(Pro-Pro-Gly)10]3[J]. Protein Science,2002,11:262-270.
    [12]Ali Yorgancioglu, Eser Eke Bayramoglu. Productionof cosmetic purpose collagen containing antimicrobial emulsion with certainessential oils[J]. Industrial Crops and Products,2013,44:378-382.
    [13]TM Nsouli, RRothenberg, CSchluckebier, et al. Autoimmune sensitizationafter SQ injection of collagen for cosmetic surgery[J]. Journal of Allergy andClinical Immunology,2005,115(2):S17.
    [14]WKLee, JStewart, JBell, et al. The binding of native and oxidized low densitylipoproteins (LDL) to collagen[J]. Maillard Reactions in Chemistry, Foodand Health,2005:380-385.
    [15]Yasutaka Shigemura, Saeko Akaba, Eriko Kawashima, et al. Identification of anovel food-derived collagen peptide, hydroxyprolyl-glycine, in humanperipheral blood by pre-column derivatisation with phenyl isothiocyanate [J].Food Chemistry,2011,129(3):1019-1024.
    [16]Aewsiri, T, Benjakul, S, Visessanguan, W. Functional properties of gelatinfrom cuttlefish (Sepia pharaonis) skin as affected by bleaching usinghydrogen peroxide[J]. Food Chemistry,2009,115(1):243-249.
    [17]Asghar, RLHenrickson. Chemical, biochemical, functional, and nutritionalcharacteristics of collagen in food systems[J]. Advances in FoodResearch,1982,28:231-372.
    [18]Ana Marina Ferreira, Piergiorgio Gentile, Valeria Chiono, et al. Collagen forbone tissue regeneration[J]. Acta Biomaterialia,2012,8(9):3191-3200.
    [19]William VArnold, Andrzej Fertala. Skeletal diseases caused by mutations thataffect collagen structure and function[J]. The International Journal ofBiochemistry&Cell Biology,2013,45(8):1556-1567.
    [20]Alessio Gizzi, Marcello Vasta, Anna Pandolfi. Modeling collagen recruitmentin hyperelastic bio-material models with statistical distribution of the fiberorientation[J]. International Journal of Engineering Science,2014,78:48-60.
    [21]Yi Liu, Mingsheng Chen, Xiaomei Yao, et al. Enhancement indentin collagen's biological stability after proanthocyanidins treatment inclinically relevant time periods[J]. Dental Materials,2013,29(4):485-492.
    [22]Jingan Li, Kun Zhang, Huiqing Chen, et al. A novel coating of typeIV collagen and hyaluronic acid on stent material-titanium for promotingsmooth muscle cell contractile phenotype[J]. Materials Science andEngineering: C,2014,38:235-243.
    [23]Stegemann J, Kaszuba S, Rowe S. Review: advances in vascular tissueengineering using protein-based biomaterials[J]. Tissue Engineering,2007,13:2601-2613.
    [24]Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering[J].Biopolymers,2008,89:338-344.
    [25]Badylak S, Freytes D, Gilbert T. Extracellular matrix as a biological scaffoldmaterial: Structure and function[J]. Acta Biomater,2009,5:1-13.
    [26]Song J, Ott H.Organ engineering based on decellularized matrix scaffolds[J].Trends in Molecular Medicine,2011,17:424-32.
    [27]Ferreira A, Gentile P, Chiono V, et al. Collagen for bone tissue regeneration[J].Acta Biomaterials,2012,8:3191-3200.
    [28]Morimoto Y, Tanaka R, Takeuchi S. Construction of3D, layered skin,microsized tissues by using cell beads for cellular function analysis[J].Advanced Healthcare Materials,2013,2:261-265.
    [29]Cheng H, Luk K, Cheung K, et al. In vitro generation of an osteochondralinterface from mesenchymal stem cell-collagen microspheres[J]. Biomaterials,2011,32:1526-1536.
    [30]Yan L, Wang Y, Ren L, et al. Genipin-cross-linked collagen/chitosanbiomimetic scaffolds for articular cartilage tissueengineering applications[J].Journal of Biomedical Materials Research Part A,2010,95:465-475.
    [31]Wang L, Stegemann J.Glyoxal crosslinking of cell-seeded chitosan/collagenhydrogels for bone regeneration[J]. Acta Biomaterials,2011,7:2410-2417.
    [32]Yuanmei Cheng, Xia Sun, Xuepin Liao, et al. Adsorptive recovery of uraniumfrom nuclear fuel industrial wastewater by titanium loaded collagen fiber[J].Chinese Journal of Chemical Engineering,2011,19(4):592-597.
    [33]Selvam Sangeetha, Usha Ramamoorthy, Kalarical Janardhanan Sreeram, et al.Enhancing collagen stability through nanostructures containing chromium(III)oxide[J]. Colloids and Surfaces B: Biointerfaces,2012,100:36-41.
    [34]汪建根,张新强,杨奎.胶原蛋白改性及其应用研究的进展[J].中国皮革,2007,36(5):52-55.
    [35]GislaineSilveira Simoes,Expedito Tadeu Facco Silveira,SimoneRaymundodeOliveira, etal. Optimum conditions for extracting collagen fromthe tunica albuginea of immunologically castrated pig testes and thefunctionalproperties of the isolated collagen[J].Meat Science,2014,96(4):1460-1468.
    [36]Liqing Chen, Liang Ma, Mengrou Zhou, et al.Effects of pressure ongelatinizationofcollagen and properties ofextracted gelatins[J].FoodHydrocolloids,2014,36:316-322.
    [37]Yan Song, Mingyi Zhang, Lina Zhao, et al. Regulation onmechanical properties of collagen: Enhanced bioactivities ofmetallofullerol[J]. Nanomedicine: Nanotechnology, Biology and Medicine,InPress, Corrected Proof,2013.
    [38]Julio ADeiber, Marta BPeirotti, Mariel LOttone. Rheological characterizationof edible films made from collagen colloidal particle suspensions[J]. FoodHydrocolloids,2011,25(5):1382-1392.
    [39]Weeraphat Pon-On, Narattaphol Charoenphandhu, JarinthornTeerapornpuntakit, et al. Mechanical properties, biological activity andprotein controlled release by poly(vinylalcohol)-bioglass/chitosan-collagencomposite scaffolds: A bone tissueengineering applications[J]. Materials Science and Engineering: C,2014,38:63-72.
    [40]CRCarlisle, CCoulais,MGuthold.The mechanical stress-strain properties ofsingleelectrospun collagen typeI nanofibers[J].Acta Biomaterialia,2010,6(8):2997-3003.
    [41]Carlo Knupp, Sepideh Z Amin, Peter MG Munro, et al. Collagen VIassemblies in age-related macular degeneration[J].Journal of StructuralBiology,2002,139(3):181-189.
    [42]T Aigner, J Stove. Collagens-major component of the physiological cartilagematrix, major target of cartilage degeneration, major tool in cartilagerepair[J]. Advanced Drug Delivery Reviews,2003,55(12):1569-1593.
    [43]马兆国,丁志文,庞晓燕.胶原蛋白的化学改性方法研究新进展[J].西部皮革,2009,31(9):11-14.
    [44]文俊来,黄明智,缪进康.明胶的接枝共聚反应及其产物的应用[J].明胶科学与技术,1996,16(1):1-13.
    [45]Figueiro SD, Goes JC, MoreiraRA, et al. On the physico-chemical anddielectric properties of glutaraldehyde cross-linked galactomannan-collagenfilms[J]. Carbohydrate Polymers,2004,56(3),313-320.
    [46]DongQZ, GuLX. Synthesis of AN-g-casein copolymer in concentrated aqueoussolution of sodium thiocyanate and AN-g-casein fiber’s structure andproperty[J].European Polymer Journal,2002,38(3),511-519.
    [47]公维菊,李国英.胶原交联改性的研究现状.皮革化工,2007,24(5):21-30.
    [48]薛新顺,罗发兴,罗志刚,等.胶原的化学交联改性技术研究进展[J].皮革科学与工程,2006,16(6):55-59.
    [49]冯桂龙,王松,朱鹤孙.丝素改性胶原膜的肝素化及其体外抗凝血性能评价[J].功能材料,2005,36(1):150-152.
    [50]ZhangGH, LiuLJ, Wang, F. Study on preparing gelatin graft copolymeremulsion as sizing agent[J].China Adhesives,2002,20(4):26-30.
    [51]李国英.胶原的生物学性质[J].中国皮革,2002,(21):20-21.
    [52]陈旭,李国英.胶原透明质酸共混体系的相容性及相互作用研究[J].功能材料,2013,8(44):1136-1140.
    [53]曹正国,李成章.常用蛋白交联方法及其对胶原的影响[J].国外医学生物医学工程手册,2001,24(4):187-191.
    [54]崔运利.胶原蛋白化学交联技术的研究进展[J].重庆医学,2010,39(20):2790-2792.
    [55]马兆国,丁志文,庞晓燕.胶原蛋白的化学改性方法研究新进展[J].西部皮革,2009,31(19):11-14.
    [56]Nishtar Nishad Fathima, et al. Interaction of aldehydes with collagen: effecton thermal, enzymatic and conformational stability[J]. BiologicalMacromolecules,2004,34:241-247.
    [57]R Usha, T Ramasami. Structure and conformation of intramolecularlycross-linked collagen[J]. Colloids and Surfaces B,2005,41:21-24.
    [58]Thomposn J I, Czernuszka J T. The effect of two types of cross-linking onsome mechanical properties of collagen[J].Biomedical Materials andEngineering,1995,5(1):37-48.
    [59]Petite H, Duval J L, Frei V, et al. Cytocompatibility of calf pericardiumtreated by glutaraldehyde and by the acylazide methods in an organotypicculture model[J]. Biomaterials,1995,16(13):1003-1008.
    [60]李成章,樊明文.冻干交联胶原膜的制备和特性分析Ⅱ:小鼠皮下和人牙周袋置入观察[J].口腔医学纵横杂志,1997,13(2):67-69.
    [61]Olde Damink, L H H, DijkstraP J, et al. Crosslinking of dermal sheep collagenusing hexamethylene diisocyanate[J]. Journal of Materials Science: Materialsin Medicine,1995,(6):429-434.
    [62]Bigi A, CojazziG, Panzavolta S, et al. Stabilization of gelatin films bycrosslinking with genipin[J]. Biomaterials,2002,23(24):4827-4832.
    [63]丁克毅.京尼平与皮胶原反应性研究[J].中国皮革,2007,(5):9-16.
    [64]刘玲蓉,张立海,马东瑞,等.碳化二亚胺交联的胶原-硫酸软骨素支架材料构建人工真皮的研究[J].中国修复重建外科杂志,2003,17(2):83-88.
    [64]Sung H W, Shih J S, Hsu C S. Cross-linking characteristics of porcine tendons:effects of fixation with glutaraldehyde orepoxy[J]. Journal of BiomedicalMaterials Research,1996,30(3):361-367.
    [65]Xiuling Lu, Yuhong Xu. Ethylene glycol diglycidylether as a proteincrosslinking of hemoglobin[J]. Journal of Chemical Technology andBiotechnology,2006,81:767-775.
    [66]Wada Y.Advanced analytical methods for hemoglobin variants[J].Journal ofChromatography B,2002,781:291-301.
    [67]Raymond Zeeman, Pieter J. Successive epoxy and carbodiimide crosslinkingof dermal sheep collagen[J].Biomaterials,1999,(20):921-931.
    [68]R Zeeman, P J Dijkstra, P B Wachem, et al. Cross-linking and modification ofdermal sheep collagen using1,4-butanediol diglycidyl ether[J].Wiley,1999:424-433.
    [69]Nicolas F L, Gagnieu C H. Denatured thiolated collagen I. Synthesis andcharacterization[J]. Biomaterials,1997,18(11):807-813.
    [70]周磊.胶原蛋白硫代改性方法的研究[J].皮革科学与工程,2005(13):12-19.
    [71]Roche S, Ronziere M C, Herbage D, et al. Native and DPPA crosslinkedcollagen sponges seeded with fetal bovine epiphyseal chondrocytes used forcartilage tissue engineering[J]. Biomaterials,2001,22(1):9-18.
    [72]李闻欣,程凤侠,俞从正,等.一种改性胶原蛋白复鞣剂的研制及应用[J].皮革化工,2002,1(19):9-12.
    [73]李国英,罗怡,张铭让.乙醛酸与胶原的作用机理研究[J].皮革科学与工程,2000,10(2):13-16.
    [74]Thomas JKoob, Daniel J Hernandez. Material properties of polymerizedNDGA-collagen composite fibers: development of biologically based tendonconstructs[J]. Biomaterials,2002,23:203-212.
    [75] Sung H W, Chang Y, Chiu C T, et al. Crosslinking characteristics andmechanical properties of a bovine pericardium fixed with a naturallyoccurring crosslinking agent[J]. Journal of Biomedical Material Research,1999,47(2):116-126.
    [76]赵宏霞,黄才欢.交联对胶原降解速率的影响[J].上海生物医学工程,2003,24(4):26-18.
    [77]Park Si-Nae, Park Jong-Chul, Kim Hea-Ok, et al. Characterization of porouscollagen/hyaluronic acid scaffold modified by1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking[J].Biomaterials,2002(23):1205-1212.
    [78]苏德强,王坤余,陈晓威,等.胶原多肽与丙烯酸类单体接枝共聚反应的研究[J].中国皮革,2009,38(5):21-26.
    [79]魏德卿,罗孝君,邓萍.壳多糖与丙烯酸丁醋的乳液接枝共聚研究[J].高分子学报,1995(4):427-433.
    [80]方露,常亮,郭文静,等.环境友好型胶合板用胶黏剂及其改性技术的研究进展[J].2012,26(5):22-31.
    [81]卓仁禧,黄龙,祝志峰.乙烯基类单体结构与淀粉接枝共聚物的接枝效率[J].武汉大学学报(自然科学版),1998,44(2):163-166.
    [82]金勇,苗青,董阳,等.丙烯酸-丁烯醛共聚物与皮革相互作用的研究[J].中国皮革,2007,9(5):26-29.
    [83]贾鹏翔,汤克勇.胶原蛋白改性丙烯酸类复鞣剂的制备[J].精细化工,2006,(8):801-805.
    [84]单云,周钰明,曹勇.胶原-丙烯酸丁酯接枝共聚物/氧化铝核壳型符合纳米粒子的制备及其红外发射率研究[J].南京晓庄学院学报,2006,(06):26-29.
    [85]丁志文.胶原蛋白复合纤维及其制作方法[P].中国专利:02145941.X,2004-4-28.
    [86]丁志文.一种胶原蛋白-聚丙烯腈复合纤维及其制备方法权[P].中国专利:03156292.2,2005-3-9.
    [87]Ding Zhiwen, Li Li, Jia Jizhang, et al. Research on collagen protein compositefiber[C].The6thAsia International Conference of Leather Science andTechnology, Himeji,Japan,2004,205-209.
    [88]庞晓燕,丁志文,马兆国.聚氨酯改性胶原蛋白的机理及应用研究(1)-氨基酸与甲苯二异氰酸酯的反应[J].中国皮革,2008,37(21):32-42.
    [89]李伟,秦树法,郑学晶,等.胶原蛋白改性聚氨酯皮革涂饰剂[J].高分子材料科学与工程,2008,24(5):150-154.
    [90]Meehling D E, Bachinger Hp. The collagen-like peptide(GER) GPCCG formspH-dependent covalently linked triple helical trimers[J]. Journal ofBiological Chemistry,2000,275(19):14532-14536.
    [91]范代娣,段明瑞,米钰,等.重组E.coli工程菌高密度培养生产人源型胶原蛋白[J].化工学报,2002,53(7):752-754.
    [92]Cabeza L F, Taylor M M,DiMaio G L, et al. Processing of leather waste: pilotscale studies on chrome shavings. Isolation of potentially valuable proteinproducts and chromium[J]. Waste Manage,1998,18:211-218.
    [93]张铭让,林炜.绿色化学和技术与皮革工业的可持续发展[J].中国皮革,2001,1(1):5-12.
    [94]Berry F J, Costantini N, Smart LE.Synthesis ofchromium-containingpigmentsfromchromiumrecoveredfromleatherwaste[J].WasteManage,2002,22:761-772.
    [95]RaoJR, Thanikaivelan P, SreeramK J, et al. Greenroute for the utilization ofchrome shavings (chromium-containing solid waste) intanningindustry[J].Environmental Science&Technology,2002,36:1372-1376.
    [96]穆畅道,林炜,王坤余,等.皮革固体废弃物的高值转化[J].化学通报,2002,(1):29-35.
    [97]王小龙,王志杰.造纸污泥与皮革废弃物混合抄造瓦楞原纸的研究[J].中国造纸,2011,30(11):22-23.
    [98]Stephen AJShivas. The effects of trivalent chromium from tannery wastes onEarthworms[J]. The American Leather Chemists Association,1984,79(5):207-215.
    [99]BrownE M, TaylorMM, MarmerWN. Production and potential uses ofco-productsfrom solid tannery waste[J]. JALCA,1996,91(10):270-276.
    [100]Hernandez-BaladaE, TaylorMM. Properties of biopolymers produced bytransglutaminase treatment of whey protein isolate and gelatin[J].Bioresource Technology,2009,100(14):3638-3643.
    [101]刘兵,瞿明仁,张学峰,等.微量元素铬在动物营养的应用与研究[J].江西饲料,2006(4):7-18.
    [102]Giusy Lofrano, Sureyya Meri, Gvlsvm Emel Zengin, et al. Chemical andbiological treatment technologies for leather tannery chemicals andwastewaters: A review [J]. Science of The Total Environment,2013,461-462:265-281.
    [103]OlcayTvnay,Isik Kabdasli,Derin Orhon,et al.Characterizationand pollution profile of leather tanning industry in Turkey[J].Water Scienceand Technology,1995,32(12):1-9.
    [104]MAlves DosReis,VBeleza. Utilization of leather waste: Animal feed stufffrom chrome shavings, Part1[J].Society of LeatherTechnologists andChemists,1991,75(2):15-19.
    [105]Taylor. Enzymatic processing of materials containing chromium andprotein[P]. US:5271912,1993.
    [106]Alexander KTW, Corning DR, Cory NJ, eta1. Environmental and safetyissue-cleantechnology and environmental auditing[J].Society ofLeatherTechnologists and Chemists,1992,76(1):17-23.
    [107]MAlves DosReis, VBeleza.Utilization of leather waste: Animal feed stufffrom chrome shavings, Part11[J].Society of LeatherTechnologists andChemists,1991.75(2):45-47.
    [108]寇柏权.用制革厂下脚料胶原制造肠衣的研究[J].皮革科技,1989,(10):38-39.
    [109]高世理.如何利用制革下脚料介绍几种产品及生产方法[J].北京皮革,1994,(3):1-6.
    [110]王威,张绍志,陈光明.功率超声波在食品工艺中的应用[J].包装与食品机械,2001,19(5):12-16.
    [111]Reynolds J B, Anderson D B, Sehmidt G R,et al. Effeets of ultrasonictreatment on binding strength in cured ham rolls[J]. Journal of Food Science,1978,43(3):866-868.
    [112]Vimini R J, Kemp J D, Fox J D. Effects of low frequency ultrasound onProperties of restructured beef rolls[J]. Journal of Food Science,1983,48(5):1572-1574.
    [113]Koohmaraie M. Biochemieal factors regulating the toughening andtenderization Processes of meat[J]. Meat Science,1996,43:5193-5201.
    [114]Tarrant P V. Some recent advances and future Priorities in research for themeat industry[J].Meat Science,1998,49:S1-S16.
    [115]Koohmaraie M. Muscle proteinases and meat aging[J].Meat Science,1994,36(1-2):93-104.
    [116]Hwang I H, Devine C E, HoPkins D L. The biochemical and Physical effeetsof electrical stimulation on beef and sheep meat tenderness[J].Meat Science,2003,65(2):677-691.
    [117]Eilers J D, Morgan J B, Martin A M, et al. Evaluation of calcium chlorideand lactic acid injection on chemical, microbiological and descriptiveattributes of mature cow beef[J].Meat Science,1994,38(3):443-451.
    [118]Miller, Albert T.Collagen sausage casing[P].US:4388331,1983-6-14.
    [119]Grevasse Gary A, Gammon David L, Sullivan Michael J. Method andapparatus for forming netted meat products wrapped in an edible collagenfilm[P].US:4716713,1988-01-05.
    [120]Farouk M M. Effect of edible collagen film over wrap on exudation and lipidoxidation in beef round steak[J].Journal of Food Science,1990,55(6):1510-1512.
    [121]Takeshi Nagai, Nobutaka Suzuki. Preparation and partial characterization ofcollagen from paper nautilus outer skin[J]. Food Chemistry,2002,76:149-153.
    [122]Kemp P D. Tissue engineering and cell populated collagen matrices[J]. InStreuli C Giant M(Eds) Methods Mole Biology,2000,139:287-293.
    [123]Friess W. Collagen-biomaterial for drug delivery[J].European Journal ofPharmaceutics and Biopharmaceutics,1998,45(2):113-136.
    [124]王永胜,侯春林,陈爱民,等.胶原海绵止血功能的实验研究[J].中国修复重建外科杂志,2001,15(3):140-143.
    [125]顾其胜,严凯.胶原蛋白在组织工程及临床中的应用[J].上海生物医学工程,1999,20(3):35-38.
    [126]Wakitani S, Goto T, Young RG, et al. Repair of large full-thickness articularcartilage defects with allograft articular chondrocytes embedded in acollagen gel[J]. Tissue Engineering,1998,4(4):429-444.
    [127] Orwin EJ, Hubel A. In vitro culture characteristics of corneal epithelial,endothelial and keratocyte cells in a native collagen matrix[J]. TissueEngineering,2000,6(4):307-319.
    [128] Award H, Butler DL, Boivin GP, et al. Autologous mesenchymal stemcell-mediated repair of tendon[J]. Tissue Engineering,1999,5(3):267-277.
    [129] Lee C H, Shngla A, Lee Y. Biomedical application of collagen[J].International Journal of Pharmaceutics,2001,221(12):1-22.
    [130]王玉丽,陈小平.胶原在生物医学中的应用[J].国外医学药学分册,2002,29(2):113-116.
    [131]任俊莉,付丽红,邱化玉.胶原蛋白的应用及其发展前景[J].中国皮革,2004,33(1):36-38.
    [132]谢天宏,黄兴玉,贺元杰.地塞米松联合医用胶原蛋白海绵在鼻内镜手术后复查中的应用[J].遵义医学院学报,2014,37(1):103-105.
    [133]谢辉.胶原蛋白在医学方面的应用[J].辽宁化工,2009,38(1):56-58.
    [134]杜文义.开发动物下脚料前景广阔[J].四川农业科技,2004,(3):10-15.
    [135]欧秀琼,钟正泽,黄健,等.水解胶原蛋白粉在生长肥育猪日粮中的应用研究[J].四川畜牧兽医,2000,27(5):26-27.
    [136]冷向军,王冠,闫大伟,等.胶原蛋白部分替代鱼粉饲养异育银鲫的试验[J].水产科学,2005,24(5):31-33.
    [137]王坤余,潘志娟,尹洪雷.蛋白鞣剂的研制与应用[J].皮革科学与工程,2001,11(3):12-17
    [138]张伟,于淑贤,丁志文,等.利用废旧皮革胶原多肽制备KFC蛋白复鞣填充剂[J].中国皮革,2006,35(17):25-29
    [139]范浩军,石碧,段镇基.蛋白质-无机纳米杂化制备新型胶原蛋白材料[J].功能材料,2004,3(35):373-382.
    [140]吕凌云,马兴元,蒋坤,等.从皮革废弃物中提取胶原蛋白及其高值化应用的研究进展[J].西部皮革,2010,32(15):46-51.
    [141]安华瑞,王学川.胶原的资源化利用[J].西部皮革,2002,23(1):66-69.
    [142]张美云,刘鎏,申前锋,等.胶原蛋白/羧甲基纤维素(CMC)膜的制备及其力学性能研究[J].中国皮革,2006,35(13):9-12.
    [143]蒋挺大,张春萍.胶原蛋白[M].北京:化学工业出版社,2001.
    [144]沈一丁.造纸化学品的制备和作用机理[M].北京:中国轻工业出版社,2001.
    [145]杨宁,高凤娟.明胶的化学处理及在铸涂纸中的应用[J].中国造纸,2000(6):26-29.
    [146]华莉.胶原纤维用于纸张增强的研究[D].咸阳:陕西科技大学,2003.
    [147]彭立新,王志杰.胶原蛋白的提取及在造纸中的应用[J].中国皮革,2007,36(5):49-51.
    [148]王学川,张莎,周亮,等.一种基于胶原蛋白改性的阳离子絮凝剂的制备及表征[J].功能材料,12(42):2221-2224.
    [149]张晓峰.阳离子胶原蛋白共聚物的合成、表征与应用研究[D].西安:陕西科技大学,2014.
    [150]卢谦和.造纸原理与工程[M].北京:中国轻工业出版社,2010.
    [151]Maha MIbrahim, Fardous Mobarak, Ehab ISalah El-Din, et al. ModifiedEgyptian talcas internal sizing agent for papermaking[J]. CarbohydratePolymers,2009,75(1):130-134.
    [152]Pengxiang Ding, Wenxia Liu, Zhenhuan Zhao. Roles of short amine inpreparation and sizing performance of partly hydrolyzed ASA emulsionstabilized by Laponite particles[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,384(1-3):150-156.
    [153]Yuhua Guo, Jianjun Guo, Hui Miao,et al. Properties andpaper sizing application of waterborne polyurethane emulsions synthesizedwith isophorone diisocyanate[J]. Progress in Organic Coatings,2014,77(5):988-996.
    [154]Yuhua Guo, Jianjun Guo, Shucai Li,et al.Properties andpaper sizing application of waterborne polyurethane emulsions synthesizedwith TDI and IPDI[J].Colloids and Surfaces A: Physicochemical andEngineering Aspects,2013,427:53-61.
    [155]Haojie Yuan, Shouchun Zhang, Chunxiang Lu, et al. Improved interfacialadhesion in carbon fiber/polyether sulfone composites through an organicsolvent-free polyamic acid[J]. Applied Surface Science,2013,279:279-284.
    [156]安郁琴,刘忠.纸浆造纸助剂[M].北京:中国请工业出版社,2007,235-236.
    [157]ChoB U, GarnierG.Effect of the paper structure and composition on thesurface sizing pick-up[J].TAPPI Journal,2002,83(12):60-62.
    [158]Kjellgren, H, Gallstedt, M, Engstrom G, et al.Barrier and surface propertiesof chitosan-coated greaseproof paper[J]. Carbohydrate Polymers,2006,65(4):453-460.
    [159]滕铭辉,赵传山.表面施胶剂在造纸工业中的应用新进展[J].天津造纸,2008,(2):31-41.
    [160]Anderson, Kevin R, Garlie, et al. Hydroxyethyl starch composition and usein paper products[P].US:6855198,2005-02-15.
    [161]Tian CJ, Li BP, Li R.R&D and application of cationic compound surfacesizing agent of vegetable gum polymer and AKD emulsion[J].PaperChemicals,24(4):24-27.
    [162]Lina Ejenstam, Louise Ovaskainen, Irene Rodriguez-Meizoso, et al. Theeffect of superhydrophobic wetting state on corrosionprotection-the AKD example[J]. Journal of Colloid and InterfaceScience,2013,412:56-64.
    [163]Xiaoming Song, Fushan Chen, Fusheng Liu. Preparation and characterizationof alkyl ketene dimer (AKD) modified cellulose composite membrane[J].Carbohydrate Polymers,2012,88(2):417-421.
    [164]Kaifeng Qian, Wenxia Liu, Jie Zhang, et al. Using urea to improvestability, sizing performance and hydrolysis resistance of ASA emulsionstabilized by Laponite[J].Colloids and Surfaces A: Physicochemical andEngineering Aspects,2013,421:125-134.
    [165]Pengxiang Ding, Wenxia Liu, Zhenhuan Zhao. Roles of short amine inpreparation and sizing performance of partly hydrolyzed ASA emulsionstabilized by Laponite particles[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,201,384(1-3):150-156.
    [166]Huili Wang, Wenxia Liu, Xiaofan Zhou,et al. Stabilization of ASA-in-wateremulsions by Laponite modified with alanine[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,436:294-301.
    [167]AshoriA, RavertyWD, Vanderhoek N, et al. Surface topography of kenaf(Hibiscus cannabinus) sized papers[J]. Bioresource Technology,2008,99(2):404-410.
    [168]Zhifeng Zhu. Starch mono-phosphorylation for enhancing the stability ofstarch/PVA blend pastes for warp sizing[J]. Carbohydrate Polymers,2003,54(1):115-118.
    [169]Stanssens D, Den AbbeeleHV, Vonck, L, et al.Creating water-repellentandsuper-hydrophobic cellulose substrates by deposition of organicnanoparticles[J]. Materials Letters,2011,65(12):1781-1784.
    [170]张国运,杨军胜. SMA型表面施胶剂的概况及应用[J].西南造纸,2005,34(3):20-23.
    [171]白立坤,徐建峰.新型SMA化学品在纸和纸板表面施胶中的应用[J].造纸化学品,2009,21(3):54-56.
    [172]戴红旗,冀萍,李忠正.SMA在麦草浆AKD施胶纸上的应用[J].中国造纸学报,2001,16:130-133.
    [173]戴红旗,冀萍,黎珊.SAA合成表面施胶剂的应用研究[J].上海造纸,2004,34(3):40-42.
    [174]刘向辉,胡惠仁. SAE聚合物表面施胶剂的制备及应用[J].天津造纸,2009,(4):8-16.
    [175]徐建峰,胡惠仁.以松香为功能单体的苯乙烯丙烯酸酯乳液(SAE)表面施胶剂的制备及表征[J].高分子材料科学与工程,2012,28(2):132-136.
    [176]Koji I.Paper preventing curl and method for producing[P].US:2002307927,2002-10-23.
    [177]李建文.苯丙共聚物无皂乳液表面施胶剂的合成、性能及应用研究[D].广州:华南理工大学,2007.
    [178]Reiner E. Synthesis and application of polymer sizing agents[J]. PaperTechnology,2002,(7):45-49.
    [179]Donnelly S, Stockwell J R.Aqueous polymeric emulsion compositions andtheir use for the sizing of paper[P]. US:6802939B1,2004-10-12.
    [180]Carlos F,Luz C, Luis J. Synthesis and characterization of styrene-butylacrylate polymers[J].Journalof Applied Polymer Science,2007,103:3964-3971.
    [181]Yuhua Guo, Jianjun Guo, Hui Miao, et al. Properties andpaper sizing application of waterborne polyurethane emulsions synthesizedwith isophorone diisocyanate[J]. Progress in Organic Coatings,2014,77(5):988-996.
    [182]Yuhua Guo, Jianjun Guo, Shucai Li. Properties and paper sizing applicationof waterborne polyurethane emulsions synthesized with TDI and IPDI[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,427:53-61.
    [183]杜伟民,编译.纸和纸板施胶剂的研究进展[J].造纸化学品,2009,21(3):34-39.
    [184]李淑君,王振洪,宋湛谦.阳离子松香施胶剂的研究综述[J].世界林业研究,2002,15(6):32-36.
    [185]Fei Wang, Takuya Kitaoka, Hiroo Tanaka. Supramolecular structure andsizing performance of rosin-based emulsion size microparticles[J]. Colloidsand Surfaces A: Physicochem. Eng.Aspects,2003,221:19-28.
    [186]关铿,林强恒.一种阳离子松香施胶剂的制备与应用[J].造纸科学与技术,2011,30(6):81-83.
    [187]Yahya Hamzeh, Mohammad Hassan Ekhtera. Effects of process variables onpoly-aluminum chloride (PAC)-rosin sizing performance under neutralpapermaking conditions[J]. Industrial&Engineering Chemistry Research,2008,47(13):4307.
    [188]程治国,温玉全,金韶华.松香系列施胶剂的施胶机理及发展趋势分析[J].造纸化学品,2005(1):25-28.
    [189]MoutinhoIMT, FerreiraPJT, FigueiredoFML.Paper surface chemistry as a toolto improve inkjet printing quality[J].BioResources,2011,6(4):4259-4270.
    [190]P Tomasik, C H Schilling.Chemical modification of starch[J].Advances inCarbohydrate Chemistry Biochemistry,2004(59):175-403.
    [191]M W Meshram, V V Patil, S T Mhaske. Graft copolymers of starch and itsapplication in textiles [J]. Carbohydrate Polymers,2009(75):71-78.
    [192]童国林,张晓丽,景宜.淀粉酶酶解处理改善表面施胶性能的研究[J].中华纸业,2007,28(12):57-59.
    [193]逄锦江,王晶晶.淀粉及其衍生物在造纸工业中的应用[J].江苏造纸,2009(2):35-37.
    [194]José A.F. Gamelas, Ana F. Louren o, Marco Xavier, et al. Modification ofprecipitatedcalcium carbonate with cellulose esters and use asfillerin papermaking[J]. ChemicalEngineering Research and Design, In Press,Corrected Proof, Available online,2014.
    [195]Pedram Fatehi, Rattana Kititerakun, Yonghao Ni, et al. Synergy of CMC andmodifiedchitosan on strength properties of cellulosic fiber network[J].Carbohydrate Polymers,80(1):208-214.
    [196]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.
    [197]刘苇.壳聚糖对红麻纸张表面性能的影响[J].造纸化学品,2008,20(4):53-56.
    [198]崔文研,刘忠.壳聚糖作为表面施胶剂在胶版印刷纸中的应用[J].国际造纸,2005,24(4):10-15.
    [199]Narendra Reddy, Lihong Chen, Yue Zhang,et al. Reducing environmentalpollution ofthe textile industry using keratin as alternative sizing agent topoly(vinyl alcohol)[J]. Journalof Cleaner Production,2014,65(15):561-567.
    [200]Brown, Eleanor M, Taylor, Maryann M, Marmer, William N.Production andpotential uses of co-products from solid tannery waste[J]. Journal of theAmerican Leather Chemists Association,1996,91:270.
    [201]Alexander K T W, Corning D R, Cory N J, et a1. Environmental and safetyissue-cleantechnology and environmental auditing[J]. Journal of the Societyof Leather Technologists and Chemistry,1992,76(1):17-23.
    [202]Feng Guilong, Wang Song, Zhu Hesun. Immoblization of heparin tosilkfibroinlcollagen blend films and in vitro antithrombogenicityassessment[J]. Journal of FunctionalMaterials,2005,36(1):150-152.
    [203]Timothy Barrett, Cynthia Mosier. The role of gelatin in paper permanency[J].TheAmerican Institute for Conservation,1994,13:58-63.
    [204]A-L Dupont. Study of the degradation of gelatin in paper upon aging usingaqueoussize-exclusion chromatography[J]. Journal of Chromatography,2002,950:113-124.
    [205]赵艳娜,沈一丁.自交联苯乙烯丙烯酸酯树脂用于二次纤维的表面施胶[J].功能材料,2012,2(43):156-158
    [206]刘永顺,王保,庄耀礼,等.改性壳聚糖类表面施胶剂在轻型胶版纸中的应[J].造纸化学品,2009,12(1):40-42.
    [207]李滨,徐文辉,周楠生.物质资源及其利用技术[J].机电产品开发与创新,2011,24(1):21-23.
    [208]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020)[EB/OL].http://news.sohu.com/20060209/n241746564.shtml,2011.
    [209]吴翔娇.乳液型施胶剂的制备及其对印刷适应性影响的研究[D].济南:山东轻工业学院,2012.
    [210]Zhang, G H, Liu, LJ, Wang, F. Study on preparing gelatin graft copolymeremulsionas sizing agent[J].China Adhesives,2011,20(4):26-30.
    [211]Kittiphattanabawon P, Benjakul S, Visessanguan W, et al. Isolation andproperties of acid-and pepsin-soluble collagen from the skin of blacktipshark[J]. European Food Research and Technology,2010,230:475-83.
    [212]Nalinanon S, Benjakul S, Kishimura Visessanguan W. Use of pepsin forcollagen extraction from the skin of bigeye[J]. Food Chemistry,2007,104:593-601.
    [213]Sykes B, Puddle B, Francis M, et al. The estimation of two collagens fromhuman dermis by interrupted gel electrophoresis[J].Biochemical andBiophysical Research Communications,1976,72:1472.
    [214]Cohen A S,Karger B L.High-performance sodium dodecylsulfatepolyacrylamide gel capillary electrophoresis of peptides and proteins[J].Journal of Chromatography A,1987,397:409-417.
    [215]Sebenik A, Kavcic M, Osredkar U, et al. Grafting of some vinyl monomerson leather by cerium ammonium nitrate[J]. Hemijska Industrija,1984,38(7):198-200.
    [216]钟朝辉,李春美,顾海峰.温度对鱼鳞胶原蛋白二级结构的影响[J].光谱学与光谱分析,2007,27(10):1970-1976.
    [217]廖隆理.制革化学与工艺学(上册)[M].北京:科学出版社,2004:126.
    [218]Teresa Velez-Pages, JoseMiguel Martin-Martinez. Application ofone-component primer to avoid the roughening of leather and increase itsadhesion to polyurethane adhesive[J]. International Journal of Adhesion andAdhesives,2005,25(4):320-328.
    [219]Marta Safandowska, Krystyna Pietrucha. Effect of fish collagen modificationon its thermal and rheological properties[J]. International Journal ofBiological Macromolecules,2013,53:32-37.
    [220] Stegemann JP, Nerem RM. Altered response of vascular smooth muscle cellsto exogenous biochemical stimulation in two-and three-dimensionalculture[J]. Experimental Cell Research,2003,283:146–155.
    [221]Cucos A, Budrugeac P, Miu L, et al.Dynamic mechanical analysis (DMA) ofnew and historical parchments and leathers: Correlations with DSC andXRD[J].Thermochimica Acta,2011,516(1-2),19–28.
    [222]Cornelis R, CamaraC, Ebdon L, et al. The EU network on trace elementspeciation in full swing[J].Analytical Chemistry,2000,19(2+3):210-214.
    [223]王芳,陈港,方志强.表面施胶淀粉与合成表面施胶剂协同作用的研究[J].造纸科学与技术,2009,28(6):56-60.
    [224]詹新岭,朱勇强,严丽君,等.合成聚合物表面施胶剂的最新研究进展[J].上海造纸,2006,37(5):43
    [225]Hu HR, Xu JF. Modification of styrene acrylate emulsion (SAE) and itsapplication in paper surface sizing[J].China Pulp&Paper,130(12),11-16.
    [226]Wang F., Chen G, Fang Z. Q. Study on Synergistic Effect of Surface SizingStarch and Synthesized Surface Sizing Agent[J].Paper Science&Technology,2009,128(6):56-60.
    [227]Raub C, Suresh V, Krasieva T, et al. Noninvasive assessment of collagen gelmicrostructure and mechanics[J]. Biophysical Journal,2007,92:2212–2222.
    [228]Achilli M, Mantovani D. Tailoring mechanical properties of collagen-basedscaffolds for vascular tissue engineering: the effects of pH, temperature andionic strength on gelation[J].Polymers,2010,2:664-680.
    [229]Megan EMcgann, Craig MBonitsky, Timothy COvaert, et al. The effectof collagen crosslinkingon the biphasic poroviscoelasticcartilage properties determined from a semi-automated microindentationprotocol for stress relaxation[J]. Journal of the Mechanical Behavior ofBiomedical Materials,2014,34:264-272.
    [230]Woodley D, Yamauchi M, Wynn K, et al. Collagen telopeptides(cross-linking sites) play a role in collagen gel lattice contraction[J]. Journalof Investigative Dermatology,1991,97:580585.
    [231]Walton R, Brand D, Czernuszka J. Influence of telopeptides, fibrils andcrosslinking on physicochemical properties of type I collagen films[J].Journal of Materials Science: Materials Medicine,2010,21:451-61.
    [232]李季,张铮,杨学民,等.城市生活垃圾热解特性的TG-DSC分析[J].化工学报,2002,53(7):79-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700