用户名: 密码: 验证码:
大跨度连续刚构拱组合桥结合部受力行为与锚固区局部应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期桥梁多是简单的梁、柱、拱、索之类桥式体系,受力明确、造型清晰。但随着科学技术的发展,生产力水平空前提高,桥梁的发展无论从跨越能力提高的速度、结构形式的组合化趋势,还是各种新型材料的应用和合理配置等多方面都有了充分的展现。连续刚构拱组合体系桥充分利用了梁、拱各自桥式的受力优势,优化了结构的受力,节省了工程量,创新了桥梁的外观,是大型公路、铁路桥梁中值得应用与研究的桥式结构。目前有关于连续刚构拱组合桥梁的文献尚不多见,也没有相关文献对其梁拱墩结合部受力行为和锚固区局部应力作过系统深入的分析研究。鉴于以上情况,以宜昌长江大桥为研究背景,系统地开展了大跨度连续刚构拱组合桥结合部受力行为与锚固区局部应力的专项研究。内容主要包括五个部分:
     1、在收集国内外相关资料和深入分析国内外研究成果的基础上,对大跨度连续刚构拱组合桥的发展与受力特点进行了初步分析,并讨论了其在受力行为研究中存在的问题。以宜万铁路宜昌-万州段新建工程宜昌长江大桥为工程背景,提出了进行大跨度连续刚构拱组合桥结合部受力行为与锚固区局部应力研究的课题。
     2、提出了大跨度连续刚构拱组合桥名义刚度的概念,分析了结构参数对名义刚度的影响,推导出名义刚度理论公式。针对拱梁刚度比的选取及其对结构内力分配的影响进行讨论,分析其对结构内力的影响规律,并得出刚拱柔梁与柔拱刚梁的界定值,为设计人员选取构造参数提供指导。
     3、基于结构试验模型相似理论,进行静力相似原则的分析和推导,确定模型的相似比,采用模型的基本设计原则,设计并完成了边主墩和中主墩梁拱墩结合块模型试验。同时对模型的材料特性进行力学性能测试,给数值分析提供正确的材料参数。通过计算分析确定加载工况,在切实可行的加载方法下,制定加载程序。最后确定测试内容、方法和测点布置方案。
     4、介绍了空间静力分析理论,在选定混凝上、钢筋和钢绞线单元的基础上,结合已有的研究成果,建立了梁拱墩结合块三维有限元分析模型,得到数值分析结果,将数值计算结果与试验结果进行对比分析,得出了顶底板、腹板、拱脚和墩顶混凝土应力分布规律,深入研究了梁拱墩结合块的复杂受力行为。
     5、建立了锚下混凝上局部承压的基本理论,包括对局部受压区的应力状态、局部受压的破坏特征、锚下混凝上局部承压的剪切破坏机理以及局部受压承载力的分析研究,然后对顶底板锚下混凝土应力分布情况进行数值分析。结合宜昌长江大桥的设计,对锚固区局部应力进行了模型试验研究。通过对混凝土应力测试结果的研究以及与数值计算结果的对比分析,得出了锚固区局部应力传递规律,归纳出锚固区裂缝产生的原因,为设计提供依据,对同类型的桥梁设计有一定的参考价值。
Most of the bridges in early stage are simple bridge systems of beam, column, arch, cable, etc. The characteristics of this kind of bridge are stressing definitely and clearly modeled. However, as the development of technology and the unprecedented improvement of productivity level, the bridges have fully developed in the speed of span ability improvement, the trend of structure form combination and the application and rational allocation of diversity updated materials. It is worthy applying and researching continuous rigid frame composite arch bridge in large highway and railway bridges because it makes full use of each superiority of beam and arch, optimizes structural force bearing conditions, saves engineering quantity, and innovates the appearance of bridges. At present, there are still few documents in continuous rigid frame composite arch bridge and it is not found any relative documents doing systematic research in the mechanical behaviors of beam, arch and pier combination area and local stress distribution in anchorage zones of the bridges. Considering the situations mentioned above, based on Yi Chang Yangtze River Bridge, the author carries out systematic researches on the mechanical behaviors of combination area and local stress distribution in anchorage zones for long-span continuous rigid frame composite arch bridge. The dissertation includes five parts mainly:
     1. Based on collecting and learning correlative knowledge at home and abroad, the author preliminarily analyzes the development and mechanical characteristics of long-span continuous rigid frame composite arch bridge. The existing problems in the research of mechanical behavior are discussed. Researched on Yi-Wan Railway Yichang-Wanzhou segment newly built engineering Yi Chang Yangtze River Bridge, the author proposes the subject of mechanical behaviors of combination area and local stress distribution in anchorage zones for long-span continuous rigid frame composite arch bridge.
     2. The author proposes the definition of nominal rigidity of long-span continuous rigid frame composite arch bridge, analyzes the effects of structural parameters on nominal rigidity and derives the theoretical equation of nominal rigidity. The author also discusses the selection of the rigidity ratio of arch and beam and the effect of the ratio on the structure internal forces distribution, and analyzes the influence law of the ratio on the structure internal forces. Then the author gets the delimitation value between rigid arch-flexible beam and flexible arch-rigid beam. It provides a guidance of selecting the structural parameters to designers.
     3. Based on the similitude theory of structural test models, the author analyzes and derives the static similitude principle, determines similitude ratio of the model, completes the beam,arch and pier combination area model tests in side span and middle span by adopting basic design principle of the model. And the author tests the mechanical properties of the model materials, provides correct material parameters to the numerical analysis. Loading cases are determined by calculation analysis, loading programs are established under feasible loading method. At last, the author determines the testing contents, methods and arrangement scheme of the measuring points.
     4. The author introduces the space static analysis theory. Based on choosing the constitutive relationships of concrete, steel and strand, the3-D finite element analysis model of beam, arch and pier combination area is established by the combination of existing study results. The numerical analysis results are obtained. Comparing the results of the model tests with the theoretical ones, the stress distribution of concrete in roof, floor, web, arch foot and pier top are obtained. The complicated mechanical behaviors of beam, arch and pier combination area are further studied.
     5. The author establishes the basic theory of local concrete compression under anchorage zones, including the analysis and research of stress state in local compression area, failure characteristics of local compression, shearing failure mechanism of local concrete compression under anchorage zones, and also local bearing capacity. Then the numerical analysis of the stress distribution in roof and floor anchorage zones are performed. Based on the design of Yi Chang Yangtze River Bridge, the local stress distribution in anchorage zones are studied on model test. By analyzing the stress tesing results of concrete and comparing the results with the theoretical ones, the local stress transferring rules in anchorage zones are obtained, and the causes of cracking in anchorage zones are concluded. These provide evidence for design and have a reference value to develop the same kind of bridge design system.
引文
[1]金成棣.预应力混凝土梁拱组合桥梁——设计研究与实践.北京:人民交通出版社,2001
    [2]颜东煌,刘雪锋,田仲初等.组合体系拱桥的发展与应用综述.世界桥梁,2007,(2):65-67
    [3]陆新焱,大跨高墩连续刚构桥地震响应特性研究,长沙理工大学硕士论文,2012.5
    [4]袁龙文,高墩大跨连续刚构桥力学特性计算分析与监测,长沙理工大学硕士论文,2012.5
    [5]马堂科,大跨度预应力混凝土连续刚构桥静力分析与温度效应研究长沙理工大学硕士论文,2012.5
    [6]占玉林,赵人达等,钢管混凝土组合格构柱高墩大跨连续刚构桥非线性研究,四川建筑科学研究,2009,(6),38-41
    [1]Pascal Klein, Michael Yamout. Cable-stayed arch bridge, Putrajaya, Kuala Lumpur, Malaysia. Structural Engineering International,2003, (3):196-199
    [2]王静思,钢管混凝土拱桥的发展概述,交通世界,2012,(7),252-253
    [3]K. J. Bathe & S. Bofourchi, Large displacement analysis of three-dimensional beam structures, Int. J. Num. Meth. Eng, V14 (1979),961-986
    [4]K. M. Hsiao, H. J. Horng &Y. R. Chen, A corotational procedure that handle large rotations of Spstial beam structures Comput.Struct.27(1987),769-781
    [5]崔军,大跨度钢管混凝土拱桥受力性能分析,浙江大学博士论文.2003,5
    [6]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析UL列式法.土木工程学报,1992,25(2),34-43
    [7]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析一Ⅱ三维问题.计算结构力学及其应用,1995,12(2),133-141
    [8]潘家英,程庆国.大跨度悬索桥有限位移分析.土木工程学报,1994,27(1),1-10
    [9]Y. L. Pi, N. S. Trahair. Nonlinear inelastic analysis of steel beam-columns. II: Application. J. Struct. Engrg., ASCE.1994,120 (7):2062-2085
    [10]Y. L. Pi, N. S. Trahair. Inelastic bending and torsion of steel I-beams J. Struct. Engrg., ASCE.1994,120 (7):3397-3417
    [11]Y. B. Yang, W. McGuire. Stiffness matrix for geometric nonlinear analysis. J. Struct 1986, 112 (4):853-877
    [12]S. Kitipornchai and S. L. Chan. Nonlinear finite analysis of angle and tee beam-colums. ASCE.1987,113, ST.:69-77
    [13]C. Borri and S. Chiostrini. A nonlinear approach to the stability analysis of space beam structures. Int. J. Space Strueture.1989,4 (4):193-217
    [14]W. R. Spillers. Geometric stiffness matrix for spaee frames. Computers&Structures 1990, 36 (1):29-37
    [15]Y. B. Yang, S. R. Kuo. J. D. Yau. Use of straight-beam approach to buckling of curved beams. J. Struct. Engrg. ASCE.1991,117 (7):1963-1978
    [16]R. K. Wen. Nonlinear curved beam elements for arch structures. J. Struct. Engrg., ASCE.1991, 117 (11):3496-3515
    [17]Y. B. Yang, S. R. Kuo. Curved beam elements for non-linear analysis. J. Engrg. Mech., ASCE.1989,115 (4):840-855
    [18]A. S. Nazmy and A. M. A. Del-Ghaffar. Three-dimensional nonlinear static analysis of cable-stayed bridges. Computers&Structures.1993,49 (6):25-36
    [19]Z. Q. Chen and T. J. A. Agar. Geometric nonlinear snalysis of flexible spatial beam Structure. Computer&Structure.1993,49 (6):25-36
    [20]Y. L. Pi, N. S, Trahair. Nonlinear inelastic analysis of steel beam-columns. I: Theory. J. Struct. Engrg., ASCE.1994,120 (7):2041-2061
    [21]Stussi, F. Lateral buckling and vibration of arches. Int. Assoc. of Bridges And Structural Engng Pubs, Vol.7, P.327,1973
    [22]Y. L. Pi, N. S. Trahair. Inelastic bending and torsion of steel I-beams J. Struct. Engrg. ASCE.1994,120 (7):3397-3417
    [23]R.S.Rowe. Amplification of stress in flexible arches. Transactions of ASCE.1954:2704-2714
    [24]S. P. Timosenko.弹性稳定理论.北京:科学出版社,1958
    [25]PN. Chatterjee. On the deflection theory of ribbed two-hinged elastic arches. Thesis, Ph. D. the university of illinois,1948
    [26]R. S. Rowe. Amplification of stress in flexible steel arches. Transactions of ASCE.1954: 2704-2714
    [27]G. Wastlund. Stability problems of compressed steel members and arch bridges. Proc. of ASCE.1960,86 (6):193-203
    [28]S. O. Asplund. Deflection theory of arches. Transactions of ASCE.1963,128 (Ⅱ):307-341
    [29]彭俊生张金平大跨度拱桥几何非线性稳定分析西南交通大学学报1993
    [30]项海帆,刘光栋.拱结构的稳定与振动.北京:人民交通出版社,1991
    [31]G. Wastlund. Stability problems of compressed steel members and arch bridges. Proc. Of ASCE. 1960,86(6):193-203
    [32]S.O.Asplund. Deflection theory of arches. Transactions of ASCE.1963,128(Ⅱ):307-341
    [33]T. Yabuk, S. Vinnakota. Stability of steel arch bridges:A State-of-the-Art Report. Aolid Mech., ArchiVes.1984,9:155-158
    [34]K. W. Robert, M. Khaled. Elastic stability of deek-type arches bridges. J. Struct. Engrg., ASCE.1987,113 (4):879-888
    [35]J. P. Papangelis, N. S. Trahair. Flexural-torsional bucking of arches, J. Struct. Engrg., ASCE.1987,113 (4):889-906
    [36]J. P. Papangelis, N. S. Trahair. Flexural-torsional buckling tension arches. J. Struct. Engrg. ASCE.1987,113 (7):1433-1443
    [43]J. P. Papangelis, N. S. Trahair. Flexural-torsional buckling of monosmmetric Arches. J. Struct. Engrg., ASCE.1987,113 (10):2271-2288
    [44]J. P. Papangelis, N. S. Trahair. Finite element analysis of arch lateral buckling. Civ. Engrs. Trans.1987, CE29 (1):34-39
    [45]J. P. Papangelis, N. S. Trahair. Buckling of monosmmetric archesunder point loads. Engrg. Struct.1988,114 (9):257-264
    [46]S. A. Chini, A. M. Wolde-Tinsae. Critical load and postbuckling of arch frameworks. J. Engrg. Meeh. ASCE.1988,114 (9):1435-1453
    [47]S. A. Chini, A. M. Wolde-Tinsae. Effect of prestressing on elastic arch. J. Engrg. Mech. ASCE.1988,114 (10):1791-1800
    [48]A. Mirmiran, A. M. Made, M. Wolde-Tinsae. Buckling and postbuckling of prestressed sandwich arches. J. Struct. Engrg., ASCE.1993,119 (1):262-278
    [49]Shunichi Nakamura. New structural forms for steel concrete composite bridges. Structural Engineering International,2000, (1):45-50
    [50]A. Mirmiran, A. M. Made. Inelastic buckling of prestressed sandwichor homogeneous Arch. J. Struct. Engrg., ASCE.1993,119 (9):2733-2743
    [51]A. Mirmiran, A. M. Made. A class of stability problems:Squential Fabrication of Structures. Int. J. Space Struetures.1993,8 (2):179-185
    [52]C. Blasi, P. Foraboschi. Analytical approach to collapse mechanisms of circular masonry arch. J. Struct. Engrg., ASCE.1994,120 (8):2285-2309
    [53]C. Molins, P. Roca. Capacity of masonry arches and spatial frames. J. Struct. Engrg., ASCE.1998,124 (6):653-663
    [54]Y. L. Pi, N. S. Trahair. Prebuckling deflections and lateral buckling. I-Theory. J. Struct. Engrg., ASCE.1992,118 (11):2949-2966
    [55]Y. L. Pi, N. S. Trahair. Prebckling deflections and lateral buckling. II-Applications. J. Struct. Engrg., ASCE.1992,118 (11):2967-2985
    [56]Y. L. Pi, J. P. PaPangelis, N. S. Trahair. Prebuckling deflections and flexual-torsional buckling of arches. J. Struct. Engrg., ASCE 1995,121 (9):1313-1322
    [57]钱莲萍,项海帆.空间拱桥结构侧倾稳定性的实用计算.同济大学学报.1989,17(2):161-172
    [58]向中富.中乘式拱桥横向屈曲临界荷载实用计算.重庆交通学院学报.1995,14(1):27-31
    [59]谢幼藩,陈克济.拱桥面内稳定性计算探讨.西南交通大学学报.1982,17(1):16-21
    [60]陈克济.钢筋混凝土拱面内承载力非线性分析.桥梁建设.1983,(1):20-25
    [61]金伟良.大跨度拱桥的横向稳定性研究.大连理工大学博士论文.1988,12
    [62]金伟良.钢筋混凝土拱桥的极限承载力.浙江大学学报.1997,31(4):449-461
    [63]金伟良,顾淑兴等.无横撑肋拱桥横向稳定性的研究.中国公路学报.1989,2(3):14-19
    [64]朱颖,大跨刚构拱桥的组合有限元计算分析研究,长沙理工大学硕士学位论文,2011(4)
    [65]邵长宇,朱旭初等,大跨连续钢桁拱-梁组合体系桥梁在万州长江铁路大桥的应用,桥梁建设,2003,(3),53-56
    [66]程进,江见鲸等,大跨度拱桥极限承载力的参数研究,中国公路学报,2004,(2),45-47
    [67]顾安邦.桥梁工程(下册)(土木工程专业用).人民交通出版社,2003
    [68]李国平.连续拱梁组合桥的性能与特点.桥梁建设,1999,(1):10-13
    [69]杨景瑜,基于ANASYS勺单面刚构拱桥稳定性分析,水运工程,2008,(11),58-61
    [70]柳鸣,V形刚构拱桥V构详细应力计算分析,山西建筑,2010,(6),303-304
    [71]柳鸣,郑凯峰等,V形刚构拱桥的V形结构不同施工方案受力分析和优化,广东公路交通,2008,(3),5-7
    [72]陈礼榕,郑凯峰等,混凝土时间依存特性对大跨刚构拱桥桥面线形的影响,四川建筑,2005,25(6),94-95
    [73]勾红叶.大跨度V形刚构拱组合桥受力行为研究.西南交通大学博士学位论文,2010(4)
    [74]王莲香,周水兴,马来西亚吉隆坡普特拉贾亚城的斜拉拱组合桥,世界桥梁,2004,(4),9-12
    [75]罗世东,王新国,王庭正,等.大跨径斜拉拱桥创新技术构思与研究.桥梁建设,2005,(6):31-33
    [76]张辉,王连华,大跨度斜拉拱桥地震反应的行波效应,中外公路,2008,(1),96-100
    [77]赵跃宇,彭河星等,多维地震激励作用下大跨度斜拉拱桥的随机响应,公路交通科技,2008,(2),69-78
    [78]黄伟,贺国京等,大跨度连续刚构拱桥的地震响应分析,中外公路,2008,(6),126-129
    [79]刘志,谢官模,大跨度连续刚构拱桥有限元建模的吊杆力研究,第21届全国结构工程学术会议论文集第Ⅱ册,2012,248-251
    [80]蔡绍怀,薛立红.高强度混凝土的局部承压强度[J].土木工程学报,1994,27(5):52-61
    [81]杨幼华,薛爱.高强度混凝土局部承压极限强度理论[J].四川建筑科学研究,1995,27(4):42-46
    [82]胡敏云,杨幼华.高强混凝土局部承压试验研究[J].四川建筑,1996,16(2):52-54
    [83]潘龙,易建国,汪雪波,潘光友.新型大吨位墩头锚体系及其锚下应力分析[J].同济大学学报,1999,27(2):220-223
    [84]杨艺,刘晓,杨佳新.后张法预应力梁端锚下混凝土开裂原因探讨[[J].黑龙江水利科技,2002,2(2):20-22
    [85]华毅杰,熊学玉,黄鼎业.后张预应力混凝土局部受压承载力计算[J].工业建筑,1998,28(2):10-12
    [86]杨熙坤,杨冰,孟凡石.混凝土及钢筋混凝土局部承压若干问题[J].低温建筑技术,1999,75(1):8-10
    [87]杨熙坤,杨冰,刘丽娜.混凝土及钢筋混凝士局部承压楔劈理论(上)[J].低温建筑技术,1999,7(4):10-12
    [88]陈从春.矮塔斜拉桥设计理论核心问题研究.同济大学博士论文.2005,12
    [89]铁路桥涵设计基本规范(TB10002.1-2005).北京:中国铁道出版社,2005:06
    [90]易云焜.梁拱组合体系设计理论关键问题研究.同济大学博士论文.2007,1
    [91]李德寅,王邦楣,林亚超.结构模型试验[M].北京:科学出版社,1996.1-20
    [92]颜东煌,田仲初,陈常松等.岳阳洞庭湖大桥三塔斜拉桥全桥静动力模型设计[J].长沙交通学院学报,1999,15(1):50-54
    [93]陈星烨,马晓燕,宋建中.大型结构试验模型相似理论分析与推导[J].长沙交通学院学报,2004,20(1):11-14
    [94]王光钦.弹性力学.四川:中国铁道出版社,2004:28
    [95]周士琼.建筑材料.北京:中国铁道出版社,1999:55-118
    [96]中华人民共和国建设部.普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2003:1-20
    [97]铁路桥涵钢筋混凝土和预应力混凝土桥涵结构设计规范(TB10002.3-2005).北京:中国铁道出版社,2005:6
    [98]SolidWorks Corporation. SolidWorks 2005 使用指南. Concord Massachusetts, U. S.2005
    [99]SolidWorks Corporation. SolidWorks 2005 简明教程. Concord Massachusetts, U. S.2005
    [100]李天敏.利用SolidWorks实现大型产品的大装配.CAD/CAM.2002
    [101]韩绿霞,宋怀俊,张彩云,张培.Solidworks在机械设计中的应用.郑州大学化工学院机电一体化.2005(4):36-37
    [102]杨维,杨丽.SolidWorks精彩实例.北京:清华大学出版社,2002
    [103]王小娟.SolidWorks应用教程.北京:电子工业出版社,2002
    [104]杨丽,杨勇生,李光耀.SolidWorks零件设计.北京:清华大学出版社,2002,7
    [105]李维,杨丽,李光耀.SolidWorks精彩实例.北京:清华大学出版社,2002,7
    [106]夏燕,郑风,李光耀.SolidWorks装配与二维工程图.北京:清华大学出版社,2002,7
    [107]赵汝嘉,曹岩. SolidWorks2001精通与提高篇.北京:机械工业出版社,2002,1
    [108]王建生,许树勤.Solidworks的设计思想.山西机械.2002(3):6-7,10
    [109]王吟.与SolidWorks集成的CAE软件.北京:计算机辅助设计与制造,2000(6):39-40
    [110]刘小斌.基于COSMOSXpress的应力分析.兰州工业高等专科学校学报.2004,11(2):16-18
    [111]孙德华.基于COSMOS/works的构件静强度与刚度分析.安徽职业技术学院学报.2004(3):22-23
    [112]Structural research and analysis corporation. COSMOS/Works Version 5.0 User's Guide. Los Angeles, California.1999
    [113]Structural research and analysis corporation. COSMOS/Works Version 5.0 Tutorial. Los Angeles, California.1999
    [114]蔡颖,薛庆,徐弘山.CAD/CAM原理与应用.北京:机械工业出版社,1998
    [115]林伟华.基于COSMOS/Works的龙门起重机金属结构的整体静态性能分析及结构细节设计的研究.上海海事大学硕士学位论文.2007.7
    [116]邵旭东,成尚锋,李立峰.钢管混凝土拱肋节段模型试验.长安大学学报.2003,23(4):34-39
    [117]朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1979:120-131
    [118]吕西林等.钢筋混凝土结构非线性有限元理论及应用.上海:同济大学出版社,1996:7-39
    [119]王焕定,吴德伦.有限单元法及计算程序.第1版.北京:中国建筑工业出版社,1997
    [120]王助成,邵敏.有限单元法基本原理和数值方法.第2版.北京:清华大学出版社,1997.3
    [121]张瓅元.体外预应力加固T型刚构桥锚下局部应力分析.东北林业大学硕士学位论文,2006
    [122]蓝宗建,梁书亭,孟少平.混凝土结构设计原理[M].江苏:东南大学出版社,2002
    [123]MarshallW. T., Mattock A. H. Control of horizontal cracking in the ends of pretensioned prestressed concrete girders[J]. PCI Joumal,7 (5):56-74,1962
    124] Iyengar KTSR. Two-dimensional theories of the anchorage zone stresses in post-tensioned prestressed beams [J]. ACI Journal,59 (10):1443-1465,1962
    125] Marshall W. T. A theory of end zone stresses in pretensioned conerete beams [J]. PCI Journal, 11 (2):45-51,1966
    126] Middendorf K. H. Practical aspects of end zone bearing of post-tensioning tendons[J]. PCI Journal,8 (4):57-62,1963
    127] Huang T. Stresses in end zones of a post-pensioned prestressed beam[J]. ACI Jounral,61(5): 589-601,1964
    128] Gegrely R., Sozen M. A. Design of anchorage zone reinforcement in prestressed concrete members[J]. PCI Journal,12 (2):63-75,1967
    129] Ohetal., Stress distribution and cracking behavior at anchorage zones in prestressed concrete members[J]. AC I Structural Jounral,94(50):549-557,1997
    130] Stone W. C., Breen J. E. Behavior of post-tensioned girder anchorage zones[J]. PCI Journal, 29 (1):64-109,1984
    131] Stone W. C., Breen J. E. Design of post-tensioned girder anchorage zones [J]. PCI Journal, 29 (2):28-61,1984
    132] Wollmann G. P., BreenJ. E. Discussion of "Stress distribution and cracking behavior at anchorage zones in prestressed concrete members"[J]. ACI Structural Journal,95(4):458-459, 1998
    133] Sarles D., ItaniR. Y. Effect of end blocks on anchorgae zone stresses in prestressed concrete girders[J]. PCI Journal,29 (6):100-114,1984
    134] Ma Z. G.., Saleh M. A., Tadros M. K. Optimized post-tensioning anchorage in prestressed concrete-beams [J]. PCI Journal,44 (2):56-69,1999
    135] Oh B. H., Chae S. T. Structural behvaior of tendon coupling joints in prestressed conerete bridge girders [J]. ACI Structural Journal,98 (9):87-95,2001
    136] D. C. Candappa, J. G. Sanjayan, and S. Setunge, Complete triaxial stress-strain curves of high-strength concrete, Journal of Materials in Civil Engineering, vl3n3,2001
    137] Carin L. Roberts-Wollmann and John E. Breen, Design and test specifications for local tendon anchorage zones, ACI Structural Journal, v97, n6,2000.11-12
    138] Members, Byung Hwan Oh, Dong Hwna Lim, and Sung Soo Park, Stress distribution and cracking behavior at anchorage zones in prestressed conerete
    139] Young Mook Yun, Evaluation of ultimate strength of post-tensioned anchorgae zones, Journal of Advnaced Conerete Technology, v3, nl,2005
    140] Nur Yazdani, Lisa Spainhour, Application of fiber reinforced concrete in the end zones of precast prestressed bridge girders, Technical report FDOT Contract No.BC-386, Florida A & M University-Florida State University, College of Engineering, Department of civil & Environmental Engineering,2002.12
    141] Lee, J., and. G. L. FenVes, "Plastic-damage model for cyclic loading of concrete structures, Jounral of Engineering Mechanics, vol.124, no.8, pp.892-900,1998
    [142]Federal Highway Administration, Post-tensioning tendon installation and grouting manual, U. S. Department of Transportation,2004.5
    [143]Nur Yazdani, Lisa Spainhour, Application of fiber reinoforced concrete in the end zones of precast prestressed bridge girders, Technical report FDOT Contract No. BC-386, Florida A & M University-Florida State University, College of Engineering, Department of civil & Environmental Engineering,2002.12
    [144]Hibbit,Karlson,and Sorensen Inc.,ABAQUS Theory Manual,USA,2003
    [145]中国建筑科学研究院,钢筋混凝土结构研究报告选集(人吨位预应力束锚固区混凝土局部承压问题的研究),中国建筑工业出版社,1981
    [146]刘荣,刘效尧.YM15-7型锚具锚固区应力分析.华东公路,v106,n3,1997,6
    [147]罗新才.箱梁桥大吨位预应力锚具锚下局部应力分析.四川建筑,v25n1,2005,2
    [148]周孟波,文武松,雷昌龙.大吨位锚固区混凝土抗裂性及承压能力研究.桥梁建设,1999,4
    [149]叶林,黄侨等.预应力混凝土箱梁锚下混凝土局压抗裂性能试验研究.哈尔滨建筑工程学报.v27,n4,1994,8
    [150]黄侨,王宗林.齐嫩公路桥大吨位预应力锚下局部承压问题的理论分析及试验研究.中国公路学报.v9,n2,1996,6
    [151]黑龙江省交通厅.齐齐哈尔嫩江公路大桥.人民交通出版社,1999
    [152]文武松,周履编译:单束中心直锚的后张拉锚固区域,国外桥梁,1998,3:3544
    [153]陈忠炎译:预应力混凝土箱梁桥局部锚固应力,国外公路,Vo1.14,No.6,43-46,1994
    [154]公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700