用户名: 密码: 验证码:
黔西地区煤中金赋存分布与富集地球化学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用煤地球化学、微量元素地球化学、煤岩学、煤田地质学、矿物学和岩石学的相关理论知识,系统研究了黔西上二叠统主要含煤地层中Au等伴生元素的地球化学行为,查明了煤中Au的主要分布特征,揭示了Au地球化学异常的地质控制因素;通过数理统计分析和逐级化学提取实验研究分析了煤中Au的赋存状态及主要载金矿物,揭示了研究区煤中Au赋存状态的复杂性,Au主要以无机态存在,煤中黄铁矿可能是Au的主要载体矿物;进而通过探讨煤中Au的物质来源及迁移富集过程,建立了煤中Au迁移富集的地质—地球化学机理。论文研究成果对丰富发展煤中Au的地球化学行为理论、科学预测评价煤中稀散金属矿产潜力具有理论和现实意义。论文研究表明:
     ①黔西上二叠统煤中Au含量普遍高于其地壳丰度、美国煤、世界煤及中国各聚煤期煤中Au的平均含量,Au高异常的最大值存在于含煤页岩中,Au地球化学高异常区主要集中在北西向紫云—垭都深断裂与北东向师宗—贵阳深断裂及东西向开远—平塘断裂所构成的“三角形”区域内;
     ②由于晚二叠世峨眉地幔热柱活动强烈,断裂带大量发育,加之同沉积断裂的共同影响,导致上扬子地台的稳定性较差,这不仅为同期和后期的岩浆活动及低温热液活动提供了条件,成为煤遭受变质的重要因素,也是控制煤中Au地球化学高异常的主控地质因素;
     ③煤中Au的赋存状态复杂多样,数理统计分析和逐级化学提取实验结果指示,煤中Au的无机亲和能力大于有机亲和能力,在煤中Au主要以无机态存在,黄铁矿是Au的主要载体矿物,而Au在煤中主要以纳米级分散形式存在;
     ④煤中Au具有多源性,但Au与峨眉地幔热柱及低温热液的关系表明,Au的内生来源(岩浆活动和低温热液)是黔西煤中Au的主要物质来源,断裂带不仅为低温热液提供了古地温,也成为含Au低温热液进入煤层的通道;
     ⑤构造运动、低温热液活动、岩相古地理条件对Au的活化、迁移及煤中富集存在显著影响,黔西含煤地层中Au的富集过程,实际上是峨眉地幔热柱活动形成的低温热液流体从地幔向地壳演化过程中Au等元素活化→迁移→富集的过程。从煤中Au的分布特征、赋存特征和富集规律看,煤中Au的富集类型为深大断裂—低温热液作用型。
     该论文有图55幅,表33个,参考文献286篇。
This paper uses the theories of coal geochemistry, trace element geochemistry, coal petrology, coal geology, mineralogy and petrology to systematically investigate the geochemical behavior of Au and other associated elements of Upper Permian coal-bearing formation in Western Guizhou Province, find out the main distribution characteristics of Au in coals and reveal the geological controlling factors of Au geochemical anomaly. On the basis of the mathematical statistical analysis and the data from the sequential chemical extraction , the occurrence of gold in coals and the main gold-bearing mineral are analyzed .It reveals the complexity of the occurrence of gold in coals that exists mainly in inorganic forms, and the pyrite in coals may be the main carrier mineral of gold. Further more, this paper discusses the material sources and the processes of transportation deposition and enrichment of gold in coals, establishes the geological and geochemical mechanism for the migration enrichment of gold in coals. The results of the study have theoretical and realistic significance to improve the theory of geochemical behavior and scientifically predict the mineral resource potentials of scattered metals.
     The research comes to the results:
     ①The concentration of gold in Upper Permian coal in southwest Guizhou Province is generally higher than the crust abundance and the average concentration of gold in America or the other coal-accumulating periods in China. The anomalous concentration of gold in shale comes to be highest. Areas where the anomalous concentration of gold is really high are mainly distributed in the“triangle”area including NW-trending Ziyun—Yadu deep fault, NE-trending Shizong—Guiyang deep fault and EW-trending Kaiyuan--Pingtang fault.
     ②There are many reasons for instability of the Upper Yangtze platform: the intense activity of Emei mantle plume in Late Permian, many fault zones and sedimentary fracture. It is not only the main factors of coal metamorphism, but also providing the conditions of deep magmatic activities and low-temperature hydrothermal. Further more, it is considered to be the main geological factors of anomalous concentration of gold in coals of Western Guizhou, Province.
     ③Though the occurrence state of gold in coals in research area is complicated, the inorganic affinity is stronger than the organic affinity according to the mathematical statistics analysis and the results from the sequential chemical extraction.The gold in coals exists mainly in inorganic forms, that is , nano-gold is the form of existence in coal. The pyrite in coals may be the main carrier mineral of gold.
     ④The gold in coals comes from multiple sources, but the endophytic source of gold (magmatic activity and epithermal fluid) is the main material source of the gold in coals in Western Guizhou Province based on the relation among gold, Emei mantle plume and epithermal fluid. The fault belt not only provides paleo-geotherm for epithermal fluid, but also becomes the channel for the gold contained in the epithermal fluid.
     ⑤Tectonic movements, epithermal fluid and lithofacies paleogeography have significant effect on the activation, transportation and precipitation of the gold in coals. The enrichment process of the gold in coals in Western Guizhou Province is actually the activation→transportation→enrichment process of the gold along with the epithermal fluid that is resulted from Emei mantle plume activity coming from mantle to crust. In accordance with the distribution characteristics, enrichment regularities and occurrence modes of gold in coals, the enrichment type of gold in coals is from deep faulted zone to low temperature hydrothermal activation.
     There are 55 figures, 33 tables and 286 references in the dissertation.
引文
[1] Arbuzov, S. I., Rikhvanov, L.P., Maslov, S. G., et al. Anomalous gold content in browns coal and peat in the south-eastern region of Western Siberian platform.[J]. International Journal of Coal Geology. 2006, 68: 127-134.
    [2] Seredin, V. V. Distribution and formation conditions of noble metal mineralization in coal-bearing basins[J]. Geology of Ore Deposits, 2007, 49(1): 3-36.
    [3] Cherepanov, N. A. Precious metals in the ash-cinder waste of Far Eastern heat and power stations[J]. Tikhookeanskaya Geology. 2008,27:16-28.
    [4]白向飞.中国煤中微量元素分布赋存特征及其迁移规律试验研究[D].北京:煤炭科学总院,2003:1-11.
    [5] Belkin, H. E., Zheng Baoshan, Zhou Daixing, et al. Preliminary results on the geochemistry and mineralogy of arsenic mineralized coals from endemic arsenosis areas in Guizhou Province, P. R. China[C]. In: 14th annual international Pittsburgh coal conference & workshop, 1997(9). 23-27, Taiyuan, Shanxi, China.
    [6] Ding Zhenhua, Zheng Baoshan, Long Jiangping, et al. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China[J]. Applied Geochemistry, 2001, 16: 1353-1360.
    [7]聂爱国,谢宏.峨眉山玄武岩浆与贵州高砷煤成因研究[J].煤田地质与勘探,2004,32(1):8-10。
    [8]谢宏,聂爱国.黔西南高砷煤成因研究[J].煤田地质与勘探,2007,36(6):10-14.
    [9]黄志勇.黔西南高砷煤与卡林型金矿成因关系研究[D].贵阳:贵州大学,2008.
    [10]桑树勋,王文峰,王冉.贵州省西南部煤与煤灰中Au的富集研究[R].徐州:中国矿业大学,2009
    [11]聂爱国,黄志勇,谢宏.黔西南地区高砷煤与金矿的成因研究[J].湖南科技大学学报(自然科学版),2006,21(3):21-25.
    [12] Seward, T. M. The hydrothermal geochemistry of gold[J]. In: Foster RP. (Ed), Gold Metallogeny and Exploration, 1991:37-62.
    [13]黎彤.地壳元素丰度的若干统计特征[J].地质与勘探,1992,28(10):1-7.
    [14] Chyi, L.L. The distribution of gold and platinum in bituminous coal[J]. Econ Geol, 1982, 77: 1592-1597.
    [15]Юдович,Я.Э.,Кетрис,М.П.,иМерц,А.В.Элементы-примесивископаемыхуглей[C].Леинград:Наука.239стр. 1985.
    [16]Ратынский,В.М.,Шпирт,М.Я.,Мусял,С.А.ит.д.Озолотевископаемыхуглях.ХимияТвёрдогоТоплива. 1982,(4): 88-90.
    [17] Bouska, V., Pesek, J. Quality parameters of lignite of the North Bohemian basin in the Czech Republic in comparison with the world average lignite[J]. International Journal of Coal Geology. 1999 (40):211-235
    [18] Swaine, D. J. Trace elements in coal[M]. London: Butterworths, 1990.
    [19] Van der Filer-Keller E., Fyfe, W. S. Relationships between inorganic constituents and organic matter in a northern Ontario lignite[J]. Fuel, 1988, 8(67):1048-1052.
    [20] Filippidis, A., Georgakopoulos, A, Kassoli-Fournaraki, A., et al. Trace element contents in composited samples of three lignite seams from the central part of the Drama lignite deposit, Macedonia, Greece[J]. International Journal of Coal Geology, 1996,29:219-234.
    [21] Bragg, L. J., Oman, J. K., Tewalt, S. J., et al. US Geological Survey Coal Quality (COALQUAL) database:Version 2.0. USGS Open-File Rep, 1998:97-134.
    [22] Cameron, C. C., Esterle, J. S., Palmer, C. A. The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes[J]. International Journal of Coal Geology, 1989, 12:105-156.
    [23] Bernatonis, V. K., Arhipov, V. S., Zdvigkov, M. A., et al. Geochemistry of plants and peat of the Great Vassyugan moor. Great Vassyugan moor[J]. Modern State and Processes of Development, 2002:204–215.
    [24]温显端,李宝芳,郑清文.内蒙平庄盆地煤系金的探索[J].现代地质,1993,7(3):346-355.
    [25]梁瑞成.滇东晚二叠世煤中硫的赋存状态及形成机理[D].北京:中国矿业大学北京研究生部, 1993.
    [26]庄新国.桂西北地区古地热场特征及其在微细粒浸染型金矿床形成中的作用[J].矿床地质,1995,14(1):82-89.
    [27]庄新国,曾荣树,徐文东.山西平朔安太堡露天矿9号层中的微量元素[J].地球科学,1998,23(6):583-588.
    [28]岳梅.煤系黄铁矿氧化溶解地球化学动力学研究[D].北京:中国矿业大学(北京校区),2005.
    [29]杨建业.贵州普安矿区晚二叠世煤中贵金属元素的赋存状态和地质成因[J].地球学报,2007,28(3):277-282.
    [30]唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆,2004:69-75.
    [31] Seredin, V. V. Abstracts of the thirtieth International Geological Congress[C]. The Thirtieth International Geological Congress, 1996, 2(3):710.
    [32]袁三畏.中国煤质论评[M].北京:煤炭工业出版社,1999:92-138.
    [33] Wells, J. D., Mullens, T. E. Gold-bearing arsenian pyrite determined by microprobe analyses,Cortez and Carlingold mines, Nevada[J]. Economic Geology, 1973, 68: 187-201.
    [34] Romberger, S. B. Disseminated gold deposits[J]. Geoscience Canada, 1986, 13(1): 23-31.
    [35] Roberts, R. G. Archean lode gold deposits[J]. Geoscience Canada, 1987, 14(1): 37-52.
    [36] Bakken, B. M., Hochella, M. F., Marshall, A. F. High-resolution microscopy of gold in unoxidized ore from theCarlin mine, Nevada [J]. Economic Geology, 1989, 84: 171-179.
    [37]蔡长金,陆荣军,宋湘荣.中国金矿物志[M].北京:冶金工业出版社,1994.453.
    [38]韦永福,吕英杰.中国金矿床[M].北京:地震出版社,1994:329.
    [39] Jean, G. E., Bancroft, G. M. An XPS and SEM study of gold deposition on sulfide mineral surface: Concentration of gold by adsorption/reduction[J]. Geochim. Cosmochim. Acta, 1985, 49: 979-987.
    [40] Hyland, M. M., Bancroft, G. M. An XPS study of gold deposition at low temperature on sulfide mineral: Reducing agents[J]. Geochim. Cosmochim. Acta, 1989, 53: 367-372.
    [41]博伊尔R W.金的地球化学及金矿床[M](马万钧,王立文,罗永国,秦国兴译).北京:地质出版社,1984.785.
    [42]曾贻善,姜士军.金在黄铁矿表面沉淀机理的实验研究[J].地质科学,1996,31(1):90-95.
    [43] Seredin, V. V., Evstigneeva, T. L., Generalov, M. E. Au–PGE mineralization in Cenozoic Coal-Bearing strata of the Pavlovka deposit, Russian Far East: Mineralogical evidence for hydrothermal origin[J]. In: Papunen editor, Mineral Deposits: Reseach and Exploration. Rotterdam Balkema, 1997: 107-110.
    [44] Foster, R. P. 2000年全球黄金展望[J].国外矿床地质. 1997(3): 37-51.
    [45]马建秦,李朝阳,温汉捷.不可见金赋存状态研究现状[J].矿物学报,1999,19(3):335-342.
    [46]张兴春,夏勇,刘建中等.贵州烂泥沟和水银洞金矿床金的赋存状态研究及其意义[C].第一届贵州地质矿产发展战略研讨会论文集,2003.
    [47]夏勇.贵州贞丰县水银洞金矿床成矿特征和金的超常富集机制研究[D].广州:中国科学院地球化学研究所,2005.
    [48]陈懋弘,毛景文,Phillip等.贵州锦丰(烂泥沟)超大型金矿床构造解析及构造成矿作用[J].矿床地质,2007(4):380-396.
    [49]王成辉.贵州水银洞金矿地质特征及成矿规律研究[D].北京:中国地质科学院,2008.
    [50] Gayer, R.,Rickard, D. Gold in South Wales coal[J]. Nature, 1993, 29: 395.
    [51] Gayer, R., Rickard, D. Colloform gold in coal from Southern Wales[J]. Geology 1994, 22(1): 35-38.
    [52] Finkelman, R. B. Concentration of some platium-group metals in coal[J]. International Journal of Coal Geologe, 1981, l(1):95-99
    [53] Finkelman, R. B. The inorganic geochemistry of coal: A scanning electron microscopeview[J]. Scanning Microsc, 1988, l.2(1): 97-105
    [54]王文峰,秦勇,傅雪海.煤中有害元素潜在污染综合指数及洁净等级研究[J].自然科学进展,2005 (8):973-980.
    [55] Gatellier, J. P., Disnar, J. R. Kinetics and mechanisms of the reduction of Au(Ⅲ) to Au (0) by sedimentary organic materials[J]. Org Geochem. 1990, 16: 631-640.
    [56]任德贻,赵峰华,张军营等.煤中有害微量元素富集的成因类型初探[J].地学前缘,1999,5(6):17-22.
    [57]Панов,Б.С.,Шевченко,О.А,Дудик,А.М.,идР.К.геоэколотииДонецкотокаменноуголъногоσссейиа[J].ИэвестиявуэовГеологияиРаэведка, 1998(5): 138-145.
    [58]Середин,В.В.Металлоноснстъусловияформированияиперспективыосвоения.Вкн:УголънаяБазаРосии,ТⅥ[ M].Москва:Геоинформмарк. 2004:453-519.
    [59] Sherbakov, Yu. G., Kalinin, Yu. A. Geochemical features and mineragenity of the south part of Western-Siberian cologene. Searches and Prospecting of Mineral Deposits[J]. Materials of Scientific Conference, Tomsk, Russia, 2000: 91-95.
    [60] Roslyakov, N. A., Nesterenko, G. V., Kalinin, Yu. A. Auriferous ofWeathering Crust of Salair[J]. NIC OIGGMSB RAS, Novosibirsk, Russia. 1995.
    [61] Yudovich, Ya. E., Ketris, M. P., Gold in coals. Lithogenesis and Geochemistry of Sedimentary Formations of the Timan–Ural Region[J]. Works of the Institute of Geology of Komi Scientific Center of Ural Department of Russian Academy of Sciences. 2004(5): 80-109.
    [62] Boyle, R. W. The geochemistroyf goldand itsdeposits[J]. Canada Geol. 1979:280-579.
    [63] Seredin, V. V. Gold and PGE in germanium-coal deposits: modes of occurrence, accumulation conditions, prospecting perspectives. Geology, Genesis and Questions of Prospecting of Complex Deposits of Noble Metals[J]. Materials of All-Russian Symposium, Moscow, 2002: 374-379.
    [64]刘金钟,范德廉.沉积成岩作用对桂西北中三叠统板纳组中金丰度的影响[J].沉积学报,1993 (2):51-57.
    [65]卢家烂,庄汉平.有机质在金银低温成矿作用中的实验研究[J].地球化学,1996,25(2):72-180.
    [66]卢家烂,庄汉平.临沧超大型锗矿床的沉积环境,成岩过程和热液作用与锗的富集[J].地球化学,2000 (1):36-42.
    [67] Bernatonis, V. K., Arhipov, V. S., Zdvigkov, M. A., et.al. Geochemistry of plants and peat of the Great Vassyugan moor[J]. Great Vassyugan moor. Modern State and Processes of Development, 2002:204-215.
    [68] Yazikov, E. G., Rihvanov, L. P., Baranovskaya, N. V., Indicator role of salt formations inwater at the geochemical monitoring[J]. News of high schools. Geol. Prospect. 2004, 1: 67-69.
    [69]涂光炽,霍明远.金的经济地质学[M].北京:科学出版社,1991.
    [70]牛数银,李红阳,孙爱群等.幔枝构造理论与找矿实践[M].北京:地震出版社,2002.
    [71]倪师军,曹志敏.成矿流体活动信息的三个示踪标志研究[J].地球学报:中国地质科学院院报,1998 (2):166-169.
    [72]周涛发,刘晓东,袁峰.安徽月山矿田成矿流体中铜、金的迁移形式和沉淀的物理化学条件[J].岩石学报,2000 (04):551-558.
    [73] Norrby, L. J. Why is, Mercury liguid?[J]. Journal of Chemical education, 1991, 68(2): 110-113.
    [74] Tarana, Yuri. A., Bernard, A., Gavilanes, J. C., et al. Native gold in mineral precipitates from high-temperature volcanic gases of Colima volcano, Mexico[J].Applied Geochemistry, 2000, 15:337-346.
    [75] Ulricht, T., Gunther, D., Heinrichc, A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399: 676-679.
    [76]任天祥,刘应汉,汪明启.纳米科学与隐伏矿藏[J].科技导报,1995,8:18-19.
    [77]刘应汉,任天祥,汪明启等.隐伏矿区地气测量试验与效果[J].有色金属矿产与勘察,1995,4(6):355-360.
    [78]伍宗华,金仰芬.山东邹平铜矿上方地气流的组分特征及赋存状态研究[J].物探与化探,1996,20(1):14-21.
    [79]施俊法,邱郁文.金属气相迁移新机制[M].北京:中国地质矿产信息研究院,1997.
    [80]姜泽春,莫德明.极性矿物对纳米金的吸附实验[J].矿物学报,1999 (3):358-361.
    [81]李九玲,亓锋,李铮等.金在气相中迁移与有机质演化生烃关系的实验研究[J].地学前缘,2004 (02):413-423.
    [82]汪东波.金从热液中沉淀的机制[J].有色金属矿产与勘查,1998 (5):257-261.
    [83] Helgeson, H. C., Garrals, R. W. Hydrothermal transport and deposition of gold[J]. Econ Geol, 1968, 63: 622-635
    [84] Henley, R. W. Solubility of gold in hydrothermal chloride solutions[J]. Chem. Geol. 1973, (11): 73-87
    [85] Seward, T. M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica at Cosmochimica Acta, 1973, 37:379-399
    [86] Seward, T. M. The transport and deposition of gold in hydrothermal systems[J]. Gold’82, the geology, geochemistry and genesis of gold deposits, Ed. Foster R P. Rotterdam: Balkema, 1984: 165-180
    [87]汪东波.金在热液中的迁移形式[J].地质科技情报,1988 (3):81-89.
    [88]赵伦山,陈岳龙,叶荣.含金黄铁矿的模拟合成实验及热液作用中金富集机制[J].地学前缘,1998,5(1/2):301-310.
    [89] Panov, B. S., Alekhin, V. I., Yushin, A. A. Gold-bearing coals of the Dnieper brown coal basin[J]. Geology of Coal Deposits, UGGGA, Ekaterinburg, 2001 (11): 248-252.
    [90] Leonov, S. B., Fedotov, K. V., Senchenko, A. E. Economic gold recovery from Cinder Dumps of Thermal Power Plants[J]. Gorn. Zhurn, 1998, 5: 67-68.
    [91]徐义刚.地幔柱构造、大火成岩省及其地质效应[J].地学前缘,2002,9(4):341-352.
    [92]代世峰,任德贻,赵蕾等.贵州织金煤矿区晚二叠世煤地球化学性质变异的硅质低温热液流体效应[J].矿物岩石地球化学通报,2005,24(1):39-49
    [93] Sillitoe, R. H. Gold deposits in western Pacific island arcs: the magmatic connection[J]. Economic Geology Monograph, 1989, 6: 274-291.
    [94] White, N. C., Leake, M. J., McCaughey, S. N., et al, Epithermal gold deposits of the southwest Pacific[J]. Journal of Geochemical Exploration, 54: 1995. 87-136.
    [95]徐彬彬,何明德.贵州煤田地质[M].徐州:中国矿业大学出版社,2003.
    [96]中国煤田地质总局.黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M].重庆:重庆大学出版社,1996.
    [97]王砚耕,陈履安,李兴中,王立亭.贵州西南部红土型金矿床[M].贵阳:贵州科技出版社,2000.
    [98]代世峰.煤中伴生元素的地质地球化学习性与富集模式[D].北京:中国矿业大学(北京校区),2002.
    [99]李文亢,姜信顺,具然弘等.黔西南微细金矿床地质特征及成矿作用[J].见:沈阳地质矿产研究所.中国金矿主要类型区域成矿条件文集6黔西南地区[M].北京:地质出版社,1989.
    [100]郑启玲,张明发,程代全等.黔西南微细金矿控矿条件[J].见:沈阳地质矿产研究所.中国金矿主要类型区域成矿条件文集6黔西南地区[M].北京:地质出版社,1989.
    [101]万兵.滇黔桂三角区金(银)矿床地质特征及成矿条件[J].矿产与地质,1991,5(22):169-172.
    [102]李俊海.黔西南高砷煤形成特殊性研究[D].贵阳:贵州大学,2009
    [103]韩至钧,王砚耕,冯济舟等.黔西南金矿地质与勘查[M].贵阳:贵州科技出版社,1999.
    [104]贵州省地质矿产局.贵州省区域地质志[M].北京:地质出版社,1987.
    [105]任德贻,赵峰华,代世锋等.煤的微量元素地球化学[M].北京:科学出版社,2006.
    [106]任德贻,许德伟,张军营等.沈北煤田煤中伴生元素分布特征[J].中国矿业大学学报,1999,28(1):5-8.
    [107] Gluskoter. H. J. Ruch, P. P., Miller, W. G., et al. Trace elements in coal: occurrence and distribtuion,Ⅲ[ J]. State Geol. Surv. Circ, 1977, 499:154.
    [108] valkovic, V. Trace elements in coal[M]. Boca Raton :CRC Press, 1983.
    [109] Taylor, S. R. Abundance of chemical elements in the continental crust: a new table[J]. Geochim et Cosmochin Acta, 1964,28:1273
    [110] Clarke, L. B., Sloss, L. L. Trace elements-emissions from coal combusition and gasification [C]. IEACR/49, IEA Coal Research, 1992:111.
    [111]黎彤.化学元素的地球丰度[J].地球化学,1976,(3):167-174.
    [112] Finkelman, R. B. Trace and minor elements in coals[J]. In:Engel, M. H., Macko, S. A. Editors. Organic geochemistry[M]. New York: Plenum Press, 1993.
    [113] Eskenazy, G. M., Mincheva, E., Ruseva D. Trace elements in lignite lithotypes from the Elhovo coal basin[J]. Dokl Bolg Akad Nauk,1987, 39(10):99-101.
    [114] Birk, D White, J. C. Rare earth elements in bituminous coals and underclays of Sydney Basin, NovaScotia:Element sites, distribution, mineralogy[J]. International Journal of Coal Geology, 1991,19: 219-251.
    [115]王中刚,于学元,赵振华等.稀土元素地球化学[M].北京:科学出版社,1989.
    [116]邵靖邦,曾凡桂,王宇林,高常青.平庄煤田煤中稀土元素地球化学特征[J].煤田地质与勘探,1997,(4):13-16.
    [117]杨建业.贵州普安矿区晚二叠世煤中微量元素的质量分数和赋存状态[J].燃料化学学报,2006,32(2):129-135.
    [118]赵峰华.煤中有害微量元素分布赋存机制及燃煤产物淋滤实验研究[D].北京:中国矿业大学(北京),1997.
    [119]朱文渊.煤燃烧过程中典型痕量元素挥发行为特性研究[D].武汉:华中科技大学,2005
    [120]刘桂建,王俊新,杨萍玥等.煤中矿物质及其燃烧后的变化分析[J].燃料化学学报,2003, 31(3):215-219.
    [121]王运泉.燃煤过程中微量元素的分布及逸散规律[J].能源环境保护,1995(06):25-28
    [122]孙景信,Jervis, R. E.煤中微量元素及其在燃烧过程中的分布特征[J].中国科学(A辑),1986,12:1287-1294.
    [123] Rose, A. W., Hawkes, H. E., Webb, J. S. Geochemistry in mineral exploration[M]. New York: Academic Press, 1979.
    [124] Beus, A. A., Grigoryan, S. V. Geochemical exploration methods for mineral deposits[J]. Applied Publishing Co Wilmette, 1977:287.
    [125] Hawkes, H. E., Webb, J. S. Geochemistry in mineral exploration[M]. New York: Harper & Row, 1962.
    [126]王学求,谢学锦.金的勘查地球化学理论与方法·战略与战术[M].济南:山东科学技术出版社,2000.
    [127]杨科佑.滇黔桂地区卡林型金矿的地球化学特征及找矿远景,中加金矿床对比研究[M].北京:地震出版社,1994.
    [128]冯学仕,王尚彦.贵州省区域矿床成矿系列与成矿规律[M],北京:地质出版社,2004.
    [129] Chung, S. L.,Jahn, B. M. Plume一lithosPhrer in generation of the Emeishan basalts at the Pemina-triassic boundary[J]. Geology,1995,23: 889-892
    [130]冯济舟.贵州省地球化学图集[M].北京:地质出版社,2008.
    [131]罗志立.峨眉地裂运动的厘定及其意义[J].四川地质学报,1989(1):1-17
    [132] Chung, S. L, Jahn, B. M.,Wu, G. Y.,et a. The Emeishan flood basalt in WS China[C]. In: A mantle plume lnitration model and its connection with continental breakup and mass extinction at the Permian-Triassic boundary Mantle Dynamics and Plate Interactions in East Asia Geodynamics, 1998, 27: 47-58.
    [133] Amdt, N. T.,Czamanske, G. K., Wooden, J. L., et al. Mantle and crustal contributions to continental flood basalt volcanism[J]. Tectonophys, 1993, 223: 39-52.
    [134]陈换疆.论板块大地构造与油气盆地分析[M].上海:同济大学出版社,1990.
    [135]吴应林,朱洪发,朱忠发等.中国南方三叠纪岩相古地理与成矿作用[M].北京:地质出版社,1994.
    [136]丁炳松,裘愉卓.贵州地区新元古代—三叠纪沉积岩中稀土元素地球化学特征与地壳演化[J].现代地质,1998,12(2):173-179.
    [137]赵传东.贵州西部铂、钯背景值及对找寻铂、钯的启示[J].贵金属地质,2000,9(4):220-222.
    [138]黄勇.试论贵州西部晚二叠世煤种分带与金矿的分布关系[J].贵州地质, 1993,10:300-307.
    [139] Finkelman, R. B. What we do not know about the occurrence and distribution of the trace elements in coal[J]. J of Coal Quality, 1989, 8: 63-66.
    [140]Клер,В.Р.,Волкова,Γ.А.,ΓуРвич,Е.М.,идр.МеталлогенияУгленосныхиСланцесодержащихТолцСССР.ГеохимияЗлементов[M].Москва:Наука. 1987.
    [141]张军营,任德贻,许德伟等.黔西南煤层主要伴生矿物中汞的分布特征[J].地质论评,1999,(5):539-542.
    [142]代世峰,任德贻,李生盛.内蒙古准格尔超大型镓矿床的发现[J].科学通报,2006(2):294-300.
    [143]秦勇,王文峰,刘新花等.煤中由开发利用价值的微量元素研究[R].徐州:中国矿业大学,2007.
    [144] Minkin, J. A, Chao, E. C. T, Thompsonk, C. L. Distribution of elements in coal macerals and minerasl: determination by electron microprobe[J]. Am Chem Soc Div, Fuel Chem Prepr,1979, 24(1):242-249.
    [145] White, R. N., Smith, J. V., Spears, D. A., et al. Analysis of iron sulphides from UK coal by synchrotron radiation X-ray fluorescence[J]. Fuel, 1989, 68:1480-1486.
    [146] Huggins, F. E., Huffman, G. P. Modes of occurrence of trace elements in coal from XAFS spectroscopy[J]. International Journal of Coal Geology, 1996, 32: 31-53.
    [147]丁振华,郑宝山,张杰等.黔西南高砷煤中砷存在形式的初步研究[J].中国科学(D辑), 1999(05):421-425.
    [148] Shi, J. X., Yu, X. Y. Second Hydrocarbon-Generation from Organic Matter Trapped in Fluid Inclusions in Carbonate Rocks[J]. Chinese Journal of Geochemistry, 1999, (4):372-376.
    [149]庄汉平,卢家烂,傅家谟等.原油作为金运移的载体:可能的岩石学和地球化学证据[J].中国科学(D辑),1998,28(6):552-558.
    [150]夏勇,周惟桀,陈庆年.低温开放体系中元素迁移富集及其初步实验—以贵州微细浸染型金矿床为例[J].地质与勘探,1996,32(5):37-41.
    [151]王文峰,秦勇,宋党育等.安太堡矿区11号煤层的元素地球化学及其洗选洁净潜势研究[J].中国科学(D辑),2005,35(10):963-972.
    [152]刘英俊,曹励明,李兆麟等.元素地球化学[M].北京:地质出版社,1986.
    [153] Taylor, S. R., Mclennan, S. M. The continental crust: its compositions and evolutions[M]. Oxford: Blackwell Scientific Publication, 1985.
    [154]刘英俊,马东升.江西隘上沉积-叠加成因钨矿床的元素地球化学判据[J].中国科学(B辑),1984,(12):1126-1135.
    [155]张文彤.SPSS 11统计分析教程[M].北京:希望电子出版社,2002.
    [156] Eskenazy, G. M., Minceva, E. On the geochemistry of strontium in Bulgarian coals[J]. Chem. Geol, 1989(74): 265-276.
    [157]邵龙义,陈江峰,吕劲等.燃煤电厂粉煤灰的矿物学研究[J].煤炭学报,2004,29(4):449-452.
    [158]赵蕾,代世峰,张勇等.内蒙古准格尔燃煤电厂高铝粉煤灰的矿物组成与特征[J].煤炭学报,2008,33(10):1168-1172.
    [159]袁春林,张金明,段玖祥等.我国电厂粉煤灰的化学成分特征[J].电力环境保护,1998,14(1):49-53
    [160]刘桂建.煤中微量元素的环境地球化学研究—以兖州矿区为例[M].徐州:中国矿业大学出版社,1999
    [161]汤达祯,杨起,周春光等.华北晚古生代成煤沼泽微环境与煤中硫的成因关系研究[J].中国科学(D辑),2000,(6):584-591.
    [162]王奎仁,周有勤,孙立广等.中国几个典型卡林型金矿床金的赋存状态研究[M].合肥:中国科学技术大学出版社,1984.
    [163]陈光远,邵伟,孙岱生.胶东金矿成因矿物学与找矿[M].重庆:重庆出版社,1989.
    [164]蔡长金,陆荣军,宋湘荣.中国金矿物志[M].北京:冶金工业出版社,1994.
    [165]韦永福,吕英杰,江雄新等.中国金矿床[M].北京:地震出版社,1994.
    [166]陈光远,孙岱生,周询若等.胶东郭家岭花岗闪长岩成因矿物学与金矿化[M].武汉:中国地质大学出版社,1993.
    [167] Wells, J. D., Mullens, T. E. Gold-bearing arsenian pyrite determined by microprobe analyses, Cortez and Carlin gold mines, Nevada[J]. Economic Geology, 1973, 68: 187-201
    [168] Roberts, R. G. Archean lode gold deposits [J]. Geoscience Canada, 1987, 14(1): 37-52.
    [169]高振敏,杨竹森.黄铁矿载金的原因和特征[J].高校地质学报, 2000 (2): 156-162.
    [170]唐跃刚,任德贻.煤中黄铁矿的成因研究[J].地质论评,1996,42(1):64-70.
    [171]朱笑青,章振根.矿物、岩石对纳米金吸附作用的实验研究[J].矿产与地质,1996,10(2):126-130.
    [172]张振儒.次显微金在毒砂中的赋存状态研究[J].桂林冶金地质学院学报, 1991(2):150-153
    [173]刘东升.中国卡林型(微细浸染型)金矿[M].南京:南京大学出版社, 1994.
    [174]朱赖民.黔西南微细浸染型金矿床金,砷共生分异机制初步研究[J].地质与勘探,1998 (4):29-33.
    [175]刘建中,邓一明,刘川勤等.水银洞金矿床包裹体和同位素地球化学研究[J].贵州地质,2006 (1): 51-56.
    [175]刘建中,夏勇,邓一明等.贵州水银洞超大型金矿床金的赋存状态再研究[J].贵州地质,2007 (3):165-169.
    [176]陈懋弘.基于成矿构造和成矿流体藕合条件下的贵州锦丰(烂泥沟)金矿成矿模式[D].北京:中国地质科学院,2007.
    [177] Fyfe, W. S., Kerrieh, R.,黄德华等.金的自然富集作用[J].地质调查与研究,1985,(4):42-66.
    [178]刘克云.黔西南微细浸染型金矿床中标型矿物特征初探[J].矿产与地质,1992,(2):139-143.
    [179]苏文超,张弘弢,夏斌等.贵州水银洞卡林型金矿床首次发现大量次显微—显微可见自然金颗粒[J].矿物学报,2006,(3):257-260.
    [180] Goldschmidt, V. M.über die Anreicherung seltener elemente in Steinkohlen; Gesell. Wiss. G?ttingen, Nachr.[J] Math. Phys. Kl, 1933, 4: 371-386.
    [181] Goldschmidt, V. M. Rare elements in coal ashes ind.[J]. Eng Chen, 1935 (27): 1100-1102.
    [182] Durie, R. A. The inorganic constituents in Australian coals[J]. Fuel, 1961, 40: 407-422.
    [183] Tomschey, O., Harman, M., Blasko, D. Trace elements distribution in the Pukanec lignite deposit[J]. Geologicky Zbornik, 1986, 37: 137-146.
    [184] Finklman, R. B., Bhuyan, K. Inorganic geochemistry of a texas lignite[J]. Coal Geology of the Interior Coal Province, Western Region, 1990
    [185]张淑苓,尹金双,王淑英.云南帮卖盆地煤中锗存在形式的研究[J].沉积学报,1988 (3):29-40.
    [186] Cavender, P. F., Spears, D. A. Analysis of forms of sulfur within coal, and minor and trace element associations with pyrite by ICP analysis of extraction solutions[C]. In: Pajares, J. a, Tascon, J. M. D editors. Coal Science, Coal Sci Technol, 1995, 24: 1653-1656.
    [187] Palmer, C. A., Krasnow, M. R., Finkelman, R. B., et al. An evaluation of leaching to determin modes of occurrence of selected toxic elements in coal[J]. J Coal Qual, 1993, 12(4):135-141.
    [188]程志中,王学求,刘大文.冲积物覆盖区活动态金属在土壤中的分配规律[J].地质地球化学,2002(2):46-48.
    [189]谈成龙,.金属活动态测量方法在层间氧化带砂岩型铀矿勘查中的初步试验[J].世界核地质科学,2005 (4):231-235.
    [190] ]陈希泉,罗先熔,文雪琴.内蒙古额尔古纳虎拉林金矿区金属元素活动态测量法找矿试验[J].矿产与地质,2006,(Z1):475-478.
    [191] Bloom, H. A filed method for the determination of ammonium citrate-soluble heavy metals in soils and alluvium[J]. Econ. Geol, 1955, 50: 535-541.
    [192] Canney, F. C., Hawkins, D. B. Cold acid extraction of copper from soils and sediments-a proposed field method[J]. Econ. Geol, 1958, 53: 877-886.
    [193] Saunders, W. M. H. Aluminum extracted by neutral citrate dithionite geagen[J]. Nature, 1959, 184: 2037.
    [194] Aleksandrova, L. N. The use of sodium pyrophosphate for isolating free humic substances and their organic mineral compounds from the soil[J]. Sov. Soil Sci, 1960, 2: 190-197.
    [195] Chao, T. T., Theobald, P. K. The significance of iron and manganese oxides in geochemical exploration[J]. Econ. Geol, 1986, 71: 1560-1569.
    [196] Hoffman, S. J., Flecher, W. K. Selective sequential extraceion of Cu, Zn, Fe, Mn, and Mo from soils and sediments[C]. In: Watterson, J. R., Theobald, P. K. Editors. Geochemical exploration 1979. Assoc. Explor. Geochem., Resdale, 1979: 289-299.
    [197] Rose, A. W., Suhr, N. H. Major element content as a means of allowing for background variation in stream sediment geochemical exploration[C]. In: Boyle, R. W. Editor. Geochemical exploration. Can. Inst. Min. Metal., 1971(11):587-593.
    [198] Gatehouse, S., Russell, D. W., Ban Moort, J. C. Sequential soil analysis in exploration geochemistry[J]. Geochem. Explor, 1977,8: 483-494.
    [199]王学求.颗粒金的分布及其变化规律的研究[J].地球物理地球化学勘查研究所所刊,1994a,6.
    [200]王学求.从第16届国际化探大会看当前金矿化探现状及其未来发展趋势[J].物探与化探,1994b,18(1):19-21
    [201] Mann, A. W., Birrell, R. D., Gay, L. M., et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. In: Hall, G. E. M., Bonham-Carter, C. F Editors. Selective extractions. J. Geochem Explor, 1995, 61:87-102.
    [202] Mann, A. W., Birrell, R. D., Mann, A. T., et al. Partial extractions and mobile ions[J]. In: Camuti, K. S. Editor. Extended abstracts of the 17th IGES, 1998:31-34.
    [203]王学求.地气的研究现状与未来[J].国外地质勘探技术,1996a(5):12-18.
    [204]王学求,程志中.元素活动态测量技术的发展及其意义[J].国外地质勘探技术,1996b,(2):17-22.
    [205]王学求,谢学锦.非传统金矿化探的理论与方法技术研究[J].地质学报,1996c,(1):84-95.
    [206] Tessier, A.,·Campbell, P.·G.·C.,·Bisson, M.·Sequential extraction procedure for the speciation of particulate trace metals [J]·Analytical Chemistry, 1979, 51(7): 844-851.
    [207] Arehart, G. B.·Characteristics and origin of sediment-hosted gold deposits: a review[J].·Ore Geology Review, 1996,11: 383-403.
    [208] Hofstra, A. H., Cline, J. S.·Characteristics and models for Carlin-type gold deposits [J]·Rewiews in Economic Geology, 2000,13: 163-220.
    [209]栾世伟,陈尚迪,曹殿春等.金矿床地质及找矿方法[M].成都:四川科学技术出版社,1987.
    [210]孙宝田.纳米物质及对金成矿作用的思考[J].中国地质,2001(5):11-14.
    [211] Wilson, J. T. A possible origin of the Hawaiian island[J]. Can. J. Phys, 1963, 41: 863-870
    [212] Morgan, W. J. Deepantle convection plumes and plate motions[J].Amer. Assoc. Petro. Geol.Bull.,1972,56:203-213
    [213] ;Morgan, W. J. Convection plumes in the lower mantle[J],Nature,1971,230: 42-43
    [214] Anderson, D. L. Chemical plumes in the mantle[J]. Geol. Soc. Am. Bull, 1975, 86: 1593-1600.
    [215] Anderson, D. L. Hot spots,basalts and the evolution of the mantle[J]. Seience,1981,213:82-89.
    [216]孙爱群,牛树银.地幔热柱成矿作用研究进展[J].地质科技情报,1997(01):65-71.
    [217]郝黎明.克拉通盆地含煤岩系高分辨率层序地层学研究-以贵州西部上二叠统为例[D].北京:中国矿业大学(北京校区),2000.
    [218]王登红,地幔柱及其成矿作用[M].北京,地震出版社,1998
    [219]卢记仁,峨眉地幔热柱的动力学特征,地球学报,1996,17(4):424 438.
    [220]徐义刚,钟孙霖.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J].地球化学,2001,30(l):l-9.
    [221]徐义刚,梅厚钧,许继峰等.峨眉山大火成岩省中两类岩浆分异趋势及其成因[J].科学通报,2003,48(4):383-387.
    [222]宋谢炎,侯增谦,汪云亮等.峨眉山玄武岩的地幔热柱成因[J].矿物岩石,2002,22(4):27-32.
    [223]聂爱国.论贵州独山半坡锑矿床构造动力成矿[J].地质地球化学,1999(1):91-94.
    [224]卢新卫.煤中砷的地球化学研究[J].内蒙古大学学报(自然科学版),2004(3):348-354.
    [225]沈阳地质矿产研究所.中国金矿主要类型区域成矿条件文集·6黔西南地区[M].北京:地质出版社,1989.
    [226]郭振春.贵州紫木凼金矿地质特征、成矿机理及找矿[J].见:刘东升主编.中国卡林型(微细浸染型)金矿[M].南京:南京大学出版社,1994.
    [227] Hedenquist, J. W., Arribas, A. J., Reynolds, T. J. Evolution ofan intrusion-centered hydrothermal system: FarSoutheast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. EconomicGeology, 1998, 93(4): 373-404.
    [228] Heinrich, C. A., Driesner, T., Stefansson, A, et al. Magmatic vapor contraction and the transport of gold from porphyry to epithermal ore deposits[J]. Geology, 2004, 32(9): 761-764.
    [229] Heinrich, C. A.. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study[J]. Mineralium Deposita, 2005, 9: 864-889.
    [230] Williams-Jones, A. E., Heinrich, C. A.. Vapor transport ofmetals and the formation ofmagmatic-hydrothermalore deposits[J]. Economic Geology, 2005, 100(7): 1287-1312.
    [231]韩德馨,杨起.中国煤田地质学[M].北京:煤炭工业出版社,1980
    [232]贵州地质矿产局.贵州省区域地质志[M].北京:地质出版社,1987.
    [233]杨起.中国煤变质作用[M].北京:煤炭工业出版社,1996.
    [234]陈庆年,贾蓉芬,刘德汉.中国科学院地球化学研究所有机地球化学开放研究实验室研究年报[M],贵阳:贵州人民出版社,1986.
    [235]胡凯,刘英俊,贾蓉芬,陈文华.低温热液条件下有机质富集金机理的实验研究[J].中国科学(B辑),1993,(8):880-889
    [236]贾蓉芬,陈庆年,周丕康等.贵州丹寨卡林型金矿中金的富集阶段与有机质演化关系[J].地质找矿论丛,1993(4):69-81.
    [237]聂爱国,龙江平.贵州西南地区高砷煤与低温元素矿化的关系[J].贵州地质,1995(4):317-321.
    [238]李朝阳.有关卡林型金矿的几点认识[J].矿物学报,1995(2):132-137.
    [239]陈朝玉,黄文辉,陈国勇.贵州上二叠统炼焦煤煤分布成因解析[J]中国煤炭地质,2010,22(5):7-10.
    [240]黄开年, Opdyke, N. D. Kent, D. V等.二叠纪峨眉山玄武岩的一些古地磁新结果[J].科学通报,1986(2):133-137.
    [241]兰安平,陈朝玉.热液循环系统对黔西南高砷煤作用研究[J].科技信息,2010(25):353-336.
    [242]彭扬奇.黔西南微细浸染型金矿的成矿条件及成因探讨[J].见:刘东升主编.中国卡林型(微细浸染型)金矿[M].南京:南京大学出版社,1994.
    [243] Spears, D. A., Martinez-Tarazoa, M. R. Geochemical and mineralogical characteristics of a power station feed-coal, Eggborough, England[J]. International Journal of Coal Geology, 1993, 22: 1-10.
    [244] Querol, X., Whateley, M. K. G.., Fernandez-Turiel, J. L., et al. Geochemical controls on the mineralogy and geochemistry of the Beypazari lignite, Central Anatolia, Turkey [J]. International Journal of Coal Geology, 1997, 33: 255-271
    [245] Karayigit, A. I., Gayer, R. A., Ortac, F. E., Goldsmith, S. Trace elements in the Lower Pliocene fossiliferous Kangal lignites, Sivas, Turkey[J]. International Journal of Coal Geology, 2001, 47: 73-89.
    [246] Triplehorn, D. Applications of tonsteins to coal geology: some examples from western United States[J]. International Journal of Coal Geology, 1990, 16: 157-160.
    [247] Pollock, S. M., Goodarzi, F., Riediger, C. L. Mineralogical and elemental variation of coal from Alberta, Canada: an example from the No. 2 seam, Genesee Mine[J]. International Journal of Coal Geology, 2000, 43: 259-286.
    [248] Goodchild, W. H. The evolution of ore deposits from igneous magmas. Min, Mag., 1918 (19).
    [249] Koeberlin, F. R. An hypothesis as to the origin of gold in volcanic ash[J]. Eng. Min .1934, 135.
    [250]周义平.中国西南龙潭早起碱性火山灰蚀变的TONSTENINS[J].煤田地质与勘探,1999,27(4):5-9.
    [251]周义平,任友谅.滇东黔西晚二叠世煤系中火山灰蚀变粘土岩的元素地球化学特征[J].沉积学报,1994(2):28-38.
    [252] Burger, K., Zhou Yiping, Tang Dazhang. Synsedimentary volcanic ash derived illitetonsteins in Late Permian coal-bearing formations of southwestern China[J]. International Journal of Coal Geology,1990, 15:341-356.
    [253] Jones, R. S. Gold content of water, plants and animals[J]. U.S. Geol. Surv., 1970, 625:15
    [254] Brooks, R. R. Biological methods of prospection tool for gold[J]. Gcochem. Explor, 1982,17:109-122.
    [255]鄢明才,王春书.地球化学标准物质的研制—植物光谱金[M].北京:地质出版社,1991.
    [256]宋慈安,雷良奇,陈三明.Au的生物地球化学异常和对植物细胞的变异效应[J].地球化学,2004 (2):191-195.
    [257] Busche, F. D. Using plants as an exploration tool for gold[J]. Gcochem. Explor, 1989, 32: 199-209.
    [258] Dunn, C. E. Pine bark biogeochemical signatures of the Edako molybdenum camp and surrouding areas, central British Columbia: Implications for mineral exploration and environmental baselines[J]. Abstr Prog, 2000, 32(6):11-12.
    [259]沈远超,杨金中,李慎之.生物地球化学方法与金矿找矿—以新疆西准噶尔安齐成矿断裂带为例[J].地质科技情报,1999,18(3):55-59.
    [260]徐瑞松,马跃良,吕惠萍.Au及伴生元素生物地球化学效应研究—以广东河台金矿为例[J].地球化学,1996,25(2):196-203.
    [262]张景荣,杨帆,蔡彤.湖南石门地区砷—金的植物地球化学异常及其找矿意义[J].南京大学学报(地球科学),1992,4(3):97-104.
    [263]胡西顺,刘金成,汪振洋等.植物地球化学测量及其在金洞子金矿区的应用效果[J].地质与勘探,1993,29(1):41-46.
    [264] Ren Deyi, Zhao Fenghua, Wang Yunquan, et al. Distribution of minor and trace elements in Chinese coal. International Journal of Coal Geology, 1999, 40:109-118.
    [265]聂爱国.黔西南卡林型金矿的成矿机制及找矿预测[D].昆明;昆明理工大学,2007.
    [266] A. S.克拉克.卡林型金矿床[M].华盛顿:美国政府出版局,1985.
    [267]郭振春.贵州省兴仁县紫木凼金矿床地质特征及成因探讨[J].中国地质科学院沈阳地质矿产研究所所刊,1988,17.
    [268]袁玉松,马永生,胡圣标等.中国南方现今地热特征[J].地球物理学报,2006 (4):1118-1126.
    [269] Rona, P. A. Hydrothermal mineralization at oceanic ridges[J]. The Canadian Mineralogist-Seafllor hydrothermal mineralization, 1988, 26(3):431-466.
    [270] Rona, P. A., Scott, S. D. A special issue of seafloorhy drothermal mineralization: new perpective[J]. Economic Geology, 1993, 88(8):1935-2078.
    [271]王涛,刘淑文,隗合明等.热水沉积矿床的现状与趋势[J].地球科学与环境学报,2004,26(4):6-10.
    [272]王砚耕,索书田,张明发等.黔西南构造与卡林型金矿[M].北京:地质出版社,1987.
    [273]桂宝林.黔西滇东煤层气地质与勘探[M].昆明:云南科技出版社,2000.
    [274]贵州省煤田地质局.贵州省煤层气资源评价[R].贵阳:贵州省煤田地质局,1996.
    [275]陈贞龙.黔西滇东地区煤层气富集规律及流体作用研究[D].北京:中国地质大学(北京),2010.
    [276]顾成亮,桂宝林.滇东—黔西地区晚二叠世煤层割理研究及其在煤层气勘探中的意义[J].云南地质,2000,19(04):352-362.
    [277]涂光炽.中国层控矿床地球化学第三卷[M].北京:科学出版社,1988.
    [278]林清,傅家谟,刘德汉等.油气演化与一些金矿床成因的关系[J].地球化学,1993,(3):217-225.
    [279] Bowell, R. J., Gize, A. P., Foster, R. p. The role of fulvic acid in the supergene migration of gold in tropcal rain forest soils[J]. Geochim Cosmochim Acta, 1993, 54: 4178-4190.
    [280]陈先沛,高计元,陈多福.热水沉积作用的概念和几个岩石学标志[J].沉积学报,1992, 1(3):124-132.
    [281] Walker, A. L., Buchnnan, A. S. Geochemical process in ore formation, part1 production of hydrothermal fluids from sedimentary sequences[J].Econ. Geol, 1969,64:919-922.
    [282]章振根,姜泽春.纳米矿床学—一门有前途的新科学[J].矿产与地质,1993,(3):161-165.
    [283]李景春.金在热液流体中存在形式的讨论—“纳米效应”在成矿理论中的应用[J].地质与资源,1995(4):307-311.
    [284]刘英俊,马东升.金的地球化学[M].北京:科学出版社,1991.
    [285]林清,刘德汉.黔西南金矿有机质地球化学研究[J].地球化学,1995,24:402-408.
    [286]黄华州.贵州盘北—水城矿区煤资源特性与化工煤资源[D].徐州:中国矿业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700