用户名: 密码: 验证码:
肠出血性大肠杆菌(EHEC O157:H7)VT2毒素致病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠出血性大肠杆菌(EHEC)是产VT毒素大肠杆菌(VTEC)的一个亚群。O157:H7血清型是EHEC中典型的致病菌株,是大规模O157感染爆发的主要病原菌。O157:H7是一种食源性致病菌,牛是其首要的天然寄主,主要是食物被牛粪污染,导致感染爆发。EHEC感染会引起轻度腹泻到出血性肠炎、严重者会引起出血性尿毒综合症,甚至死亡。EHEC最关键的两个致病因子是由噬菌体编码的VT毒素和介导粘附作用的LEE毒力岛(肠道上皮细胞损伤位点)。LEE毒力岛编码的蛋白负责形成粘附抹平损伤,其典型特征是通过病原菌和寄主肠道表面的紧密粘附,在寄主细胞表面细菌粘附位点肌动蛋白富集,形成杯状基座和细胞表面边缘刷状微绒毛损伤。LEE毒力岛由LEE1到LEE5主要5个操纵子组成,编码的Ⅲ型分泌系统涉及到移位因子的分泌、效应蛋白和外膜表面紧密粘附素Intinmin与其受体蛋白Tir(由细菌编码转运到宿主细胞上的粘附素受体)。粘附素Intinmin除了和其主要受体蛋白Tir结合之外,还会和寄主细胞表面的粘附素受体(HIR)结合,如Intinmin与肠道细胞表面的β1整合素(β1-integrin)和核仁素(nucleolin)结合。有研究认为在形成稳定的intimin-Tir结构之前,粘附素intimin首先和寄主细胞的粘附素受体HIRs结合,使得细菌和寄主细胞足够接近从而完成Tir和其他效应因子从细菌到寄主上皮细胞表面的注射转运过程。
     EHEC O157:H7产生的VT毒素是其重要的致病因素之一,本研究关注肠出血性大肠杆菌EHEC86-24感染猪空肠细胞系(IPEC-J2)、人结肠细胞系(CaCo-2)和人喉癌细胞系(HEp-2)过程中,产生的VT毒素对其粘附定植过程的影响,以及在细菌感染IPEC-J2细胞过程中,VT毒素对其相关致病因子的基因表达水平影响,包括对致病粘附因子β1整合素(β1-integrin)和核仁素( nucleolin)的基因表达影响,对VT毒素受体Gb3合成表达的影响,从而深入分析VT毒素在EHEC致病过程中的作用机理。试验利用λ-Red同源重组技术构建了vt2基因敲除突变菌株86-24-vt2S,同时产生了编码VT2毒素的噬菌体缺失突变菌株86-24△933W、以及突变菌株的vt2基因补充菌株86-24-vt2S(pVT2)和86-24-933W(pVT2)。将野生型菌株EHEC 86-24和不同vt2基因突变菌株与真核细胞系进行粘附试验,并对感染过程真核细胞IPEC-J2的相关粘附因子基因进行实时定量PCR检测。试验结果显示:与其亲本野生型EHEC菌株和vt2基因补充菌株比较,vt2基因敲除突变株对3株真核细胞系的粘附能力均显著降低;野生型EHEC菌株在感染IPEC-J2细胞系过程中,伴随宿主细胞相关粘附因子β1-integrin、nucleolin和Gb3合成基因的表达增加;IPEC-J2细胞系与野生型EHEC O157:H7或vt2基因补充突变株相互作用时,β1整合素的表达水平高于IPEC-J2与vt2基因敲除突变菌株或无细菌粘附时的表达水平;IPEC-J2与vt2基因敲除突变菌株粘附感染时,核仁素的表达水平降低,但是其基因补充菌株没有修复核仁素的表达到野生型水平。试验数据揭示VT2毒素在EHEC O157:H7致病菌对肠道上皮细胞的粘附过程中有促进作用,这种促进作用从基因水平上是通过提高宿主细胞表面受体因子β1-integrin和nucleolin的表达水平,从而提高了细菌的粘附功能。
     核仁素(Nucleolin)是一种可以表达在多种类型真核细胞表面的多功能核蛋白,作为一些病毒和粘附素的受体。核仁素是与广泛的细胞和细胞之间相互作用相关的一个受体大家族。肠致病性大肠杆菌杆(EPEC)的粘附素与β1整合素特异结合。在猪和牛的组织感染试验中,免疫染色发现β1整合素聚集在细菌粘附位点,说明整合素在EHEC字O157:H7感染过程中是一个潜在的受体蛋白。VT毒素是一种典型的AB_5结构蛋白,能抑制真核细胞蛋白合成。VT毒素在EHEC感染过程中导致出血性肠炎(HC)、溶血性尿毒综合症(HUS)等严重的临床症状。VT毒素的B亚基和目标细胞表面的糖脂类受体(Gb3)结合,通过受体介导毒素内化。最近研究报道VT2毒素通过刺激真核细胞表达核仁素,从而促进EHEC在肠道上的定植过程。然而,关于VT毒素促进细菌粘附定植的理论依然具有争议。
     本实验室前期研究工作中构建了萘啶酮酸抗性EHEC菌株的vt2基因插入突变菌株,实验结果显示vt2基因突变导致EHEC 86-24对IPEC-J2和HEp-2的粘附能力降低。本研究中重新在萘啶酮酸敏感的野生型EHEC 86-24菌株基础上,产生了vt2基因敲除突变菌株和编码VT2噬菌体缺失突变菌株,评估了两株EHEC O157:H7突变菌株对IPEC-J2细胞系的粘附特征,并和细胞系HEp-2和CaCo-2进行了比较。实验室前期用小猪做了动物肠道感染体内实验,在此基础上本研究建立新的猪结肠IPEC-J2细胞体外感染模型,研究了EHEC O157:H7 86-24及其等位基因vt2-突变菌株对IPEC-J2细胞的粘附受体nucleolin、β1-intergrin和Gb3合成的表达影响,为进一步准确分析EHEC O157:H7的感染机理提供理论依据。
Enterohemorrhagic E. coli (EHEC) is a subgroup of verotoxin-producing E. coli (VTEC), also referred to as Shiga-toxin-producing E. coli (STEC). Serotype O157:H7 is the prototypic EHEC, associated with large outbreaks of disease in North America due to the ingestion of food contaminated with feces from cattle, which are the primary reservoir for EHEC O157:H7. The disease syndromes caused by EHEC infection include mild diarrhea to hemorrhagic colitis (HC) and, in the most severe cases, the hemolytic uremic syndrome (HUS). The key virulence factors for EHEC are a phage-encoded verotoxin (VT) and adherence mediated by the LEE (locus for enterocyte effacement) pathogenicity island (PAI). The LEE encodes proteins responsible for the attaching and effacing lesion (AE), which is characterized by intimate adhesion of the pathogen to the enterocyte surface, formation of an actin-rich pedestal on the host cell surface beneath the bacterium, and destruction of brush border microvilli. The LEE PAI consists of five major operons (LEE1, LEE2, LEE3, tir/LEE5 and LEE4) that encode a typeⅢsecretion system involved in secretion of translocon and effector proteins and the outer membrane surface adhesin intimin and its receptor Tir (translocated intimin receptor). In addition to binding to its primary receptor Tir, intimin also interacts with host cell intimin receptors (HIR), such asβ1-integrin and nucleolin, on the surface of enterocytes. It is hypothesized that prior to the formation of a stable intimin-Tir interaction, intimin binds to HIRs and brings the bacteria close enough for injection of Tir and other effectors into the host epithelial cells.
     Verotoxin (VT) has been implicated in promotion of adherence to and colonization of intestinal epithelial cells by enterohemorrhagic Escherichia coli (EHEC) O157:H7. The present study investigated the effect of VT2 on adherence of EHEC O157:H7 strain 86-24 to porcine jejunal (IPEC-J2), human colon (CaCo-2) and human laryngeal carcinoma (HEp-2) cell lines and on expression in IPEC-J2 cells of synthases forβ1-integrin and nucleolin, which are both implicated in bacterial adherence. The effect on expression of Gb3 synthase, the receptor for VT, was also examined. Data were obtained by adherence assays and quantitative reverse transcriptase PCR, using EHEC O157 strain 86-24, a vt2 deletion mutant, a vt2-phage negative strain, and complemented mutants in which the vt2 gene was restored. Compared with the parent and complemented mutant strains, the vt2-negative strains adhered significantly less to all three types of cells. Adherence of the wild type EHEC strain to IPEC-J2 cells was accompanied by increased expression ofβ1-integrin, nucleolin, and Gb3 synthase. IPEC-J2 cells in association with the wild type EHEC O157 or the complemented mutants expressed higher levels ofβ1-integrin than did cells associating with the vt2-negative strains or with no bacteria. Expression of nucleolin was decreased by association with the vt2-negative mutant but complementation failed to restore wild type expression. The data indicate that VT2 plays a role in adherence of EHEC O157:H7 to intestinal epithelial cells, possibly by increasing the expression of the host receptorβ1-integrin.
     Nucleolin is a multifunctional nuclear protein that can be expressed at the surface of many cell types and serves as a receptor for some viruses and intimin. Integrins are a large family of heterodimeric receptors that are associated with a wide range of cell to cell interactions. Intimin of enteropathogenic E. coli (EPEC) specifically binds toβ1 integrin. Immunostainedβ1 integrin clusters at the sites of bacterial adherence to porcine and bovine tissues, suggesting thatβ1 integrin potentially serves as a receptor for intimin during EHEC O157:H7 infection. VT, an AB_5 toxin that inhibits protein synthesis in eukaryotic cells, is responsible for the severe clinical manifestations of EHEC infection, such as HC and HUS. The toxins are internalized by receptor-mediated endocytosis after binding of the B pentamer to the target cell glycolipid receptor globotriaosylceramide (Gb3). Recent studies have indicated that VT2 also promotes EHEC colonization of the intestine by stimulating expression of nucleolin. However, this role is still controversial.
     In a previous study, we showed that a Nal~R vt2-insertion mutant caused a reduction in adherence of EHEC O157:H7 strain 86-24 to IPEC-J2 and HEp-2 cells. In the present study, new vt2-deletion and VT2-phage cured mutants were generated in a Nal-sensitive strain 86-24 and the effect of the mutants on adherence of EHEC O157:H7 to IPEC-J2 cells was assessed and compared to effects on adherence to HEp-2 and CaCo-2 cells. To further characterize the new in-vitro model of porcine jejunal IPEC-J2 cells for use in combination with pig gut-loops for the study of EHEC O157:H7 pathogenesis, we analyzed the effect of EHEC O157:H7 strain 86-24 and its isogenic vt2~- mutant on expression of nucleolin,β1-intergrin, and Gb3 synthase in IPEC-J2 cells.
引文
陈萍,冯书章,刘军,孙洋,祝令伟. 2007.肠出血性大肠杆菌O157:H7感染小鼠模型的研究.中国兽医杂志, 43(6): 23-25.
    樊蕊,刘谦民. 2003.肠出血性大肠杆菌O157∶H7研究进展[J].临床医药实践杂志, 8(12): 563-564.
    冯翔宇(综述),卢仙娥(审校). 2002.肠出血性大肠杆菌毒力因子研究进展,医学综述, 8 (1): 17-19.
    郭卜乐. 2009.致病性大肠杆菌性食物中毒. http://www.zgxl.net/light/yjcs/zhongdu/zbxdcgjx.htm.
    刘军,孙洋(综述),冯书章,姜力(审校). 2001. A/ E大肠杆菌LEE致病岛[J],中国人兽共患病杂志, 17 (6): 109-112.
    刘雪连,孙振钧,王冲. 2008.大肠杆菌O157 : H7的疫病生态学研究进展及其控制对策[J],家畜生态学报, 4(29): 91-94.
    罗霞,徐建国. 2006.产志贺毒素型大肠杆菌的研究进展[J].疾病监测, 4(21): 217-220.
    孟昭赫. 1999.食品卫生检验方法.北京:人民卫生出版社: 57-76.
    邱素军,吕春华,杨冬梅. 2009.产肠毒素性大肠杆菌的研究进展[J].草食家畜, 9(3): 12-15.
    孙洋,岳瑛,刘军,等.肠出血性大肠杆菌志贺毒素的研究进展[J],吉林医学,2002,5(23): 259-262.
    严亚贤,华修国. 2003.大肠杆菌O157 : H7的毒力因子的研究进展[J],畜牧与兽医, 4(35): 37-40.
    杨琴,阎有功. 2008.肠出血性大肠杆菌Ⅲ型分泌系统及转位效应器蛋白的研究进展[J].华南国防医学杂志, 22(2): 66-67.
    周勇. 2006.大肠杆菌O157: H7的毒力岛与毒力因子的研究进展[J],微生物学免疫学进展, 34(2) : 58-62.
    邹全明.肠出血性大肠杆菌O157感染防治研究进展[J],微生物学杂志, 2004, 5 (24): 96-98.
    Adu-Bobie, J., G. Frankel, C. Bain, A. G. Goncalves, L. R. Trabulsi, G. Douce, S. Knutton, and G. Dougan. 1998. Detection of intimins alpha, beta, gamma, and delta, four intimin derivatives expressed by attaching and effacing microbial pathogens. J. Clin. Microbiol. 36:662-8.
    Barba, J., V. H. Bustamante, M. A. Flores-Valdez, W. Deng, B. B. Finlay, and J. L. Puente. 2005. A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. J. Bacteriol. 187:7918-30.
    Bauer, M. E., and R. A. Welch. 1996. Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 64:167-75.
    Bell, B. P., M. Goldoft, P. M. Griffin, M. A. Davis, D. C. Gordon, P. I. Tarr, C. A. Bartleson, J. H. Lewis, T. J. Barrett, J. G. Wells, and et al. 1994. A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. J. A. M. A. 272:1349-53.
    Benson, A. 2003. Molecular and population genetics of virulence traits in Escherichia coli O157:H7. In M. E. Torrence, Isaacson, R. E. (ed.), Microbial Food Safety in Animal Agriculture: current topics pp. 155-166. Iowa State Press, Ames, Iowa.
    Benz, I., and M. A. Schmidt. 1992a. AIDA-I, the adhesin involved in diffuse adherence of thediarrhoeagenic Escherichia coli strain 2787 (O126:H27), is synthesized via a precursor molecule. Mol. Microbiol. 6:1539-46.
    Benz, I., and M. A. Schmidt. 1992b. Isolation and serologic characterization of AIDA-I, the adhesin mediating the diffuse adherence phenotype of the diarrhea-associated Escherichia coli strain 2787 (O126:H27). Infect. Immun. 60:13-8.
    Berin, M. C., A. Darfeuille-Michaud, L. J. Egan, Y. Miyamoto, and M. F. Kagnoff. 2002. Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cell NF-kappaB and MAP kinase pathways and the upregulated expression of interleukin 8. Cell. Microbiol. 4:635-48.
    Best, A., R. M. La Ragione, D. Clifford, W. A. Cooley, A. R. Sayers, and M. J. Woodward. 2006. A comparison of Shiga-toxin negative Escherichia coli O157 aflagellate and intimin deficient mutants in porcine in vitro and in vivo models of infection. Vet. Microbiol. 113:63-72.
    Best, A., R. M. La Ragione, W. A. Cooley, C. D. O'Connor, P. Velge, and M. J. Woodward. 2003. Interaction with avian cells and colonisation of specific pathogen free chicks by Shiga-toxin negative Escherichia coli O157:H7 (NCTC 12900). Vet. Microbiol. 93:207-22.
    Beutin, L., M. A. Montenegro, I. Orskov, F. Orskov, J. Prada, S. Zimmermann, and R. Stephan. 1989. Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J. Clin. Microbiol. 27:2559-64.
    Blattner, F. R., G. Plunkett, 3rd, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453-74.
    Boerlin, P., S. A. McEwen, F. Boerlin-Petzold, J. B. Wilson, R. P. Johnson, and C. L. Gyles. 1999. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 37:497-503.
    Brigotti, M., Caprioli, A., Tozzi, A.E., Tazzari, P.L., Ricci, F., Conte, R., Carnicelli, D., Procaccino, M.A., Minelli, F., Ferretti, A.V., Paglialonga, F., Edefonti, A., Rizzoni, G., 2006, Shiga toxins present in the gut and in the polymorphonuclear leukocytes circulating in the blood of children with hemolytic-uremic syndrome. Journal of clinical microbiology 44, 313-317.
    Brunder, W., H. Schmidt, and H. Karch. 1996. KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 142 ( Pt 11):3305-15.
    Brunder, W., H. Schmidt, and H. Karch. 1997. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24:767-78.
    Brussow, H., C. Canchaya, and W. D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560-602.
    Burk, C., R. Dietrich, G. Acar, M. Moravek, M. Bulte, and E. Martlbauer. 2003. Identification and characterization of a new variant of Shiga toxin 1 in Escherichia coli ONT:H19 of bovine origin. J. Clin. Microbiol. 41:2106-12.
    Burland, V., Y. Shao, N. T. Perna, G. Plunkett, H. J. Sofia, and F. R. Blattner. 1998. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26:4196-204.
    Bustamante, V. H., F. J. Santana, E. Calva, and J. L. Puente. 2001. Transcriptional regulation of typeⅢsecretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol. Microbiol. 39:664-78.
    Calderwood, S. B., and J. J. Mekalanos. 1987. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169:4759-64.
    Campellone, K. G., D. Robbins, and J. M. Leong. 2004. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7:217-28.
    Chapman, P. A. 2000. Sources of Escherichia coli O157 and experiences over the past 15 years in Sheffield, UK. Symp. Ser. Soc. Appl. Microbiol. 51S-60S.
    Clarke, M. B., and V. Sperandio. 2005. Events at the host-microbial interface of the gastrointestinal tractⅢ. Cell-to-cell signaling among microbial flora, host, and pathogens: there is a whole lot of talking going on. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G1105-9.
    Conedera, G., E. Mattiazzi, F. Russo, E. Chiesa, I. Scorzato, S. Grandesso, A. Bessegato, A. Fioravanti, and A. Caprioli. 2007. A family outbreak of Escherichia coli O157 haemorrhagic colitis caused by pork meat salami. Epidemiol. Infect. 135:311-4.
    Cornick, N. A., A. F. Helgerson, and V. Sharma. 2007. Shiga toxin and Shiga toxin-encoding phage do not facilitate Escherichia coli O157:H7 colonization in sheep. Appl. Environ. Microbiol. 73:344-6.
    Crane, J. K., B. P. McNamara, and M. S. Donnenberg. 2001. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell. Microbiol. 3:197-211.
    Dahan, S., S. Wiles, R. M. La Ragione, A. Best, M. J. Woodward, M. P. Stevens, R. K. Shaw, Y. Chong, S. Knutton, A. Phillips, and G. Frankel. 2005. EspJ is a prophage-carried typeⅢeffector protein of attaching and effacing pathogens that modulates infection dynamics. Infect. Immun. 73:679-86.
    Dean-Nystrom, E. A., B. T. Bosworth, H. W. Moon, and A. D. O'Brien. 1998a. Bovine infection with Shiga toxin-producing Escherichia coli. In J. Kaper and A. D. O'Brien (eds.), Escherichia coli O157:H7 and other Shiga toxin-producing Escherichia coli, pp. 261-267. American Society for Microbiology, Washington, D.C.
    Dean-Nystrom, E. A., B. T. Bosworth, H. W. Moon, and A. D. O'Brien. 1998b. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect. Immun. 66:4560-3.
    Deng, W., J. L. Puente, S. Gruenheid, Y. Li, B. A. Vallance, A. Vazquez, J. Barba, J. A. Ibarra, P. O'Donnell, P. Metalnikov, K. Ashman, S. Lee, D. Goode, T. Pawson, and B. B. Finlay. 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc. Natl. Acad. Sci. U. S. A. 101:3597-602.
    DeVinney, R., A. Gauthier, A. Abe, and B. B. Finlay. 1999a. Enteropathogenic Escherichia coli: a pathogen that inserts its own receptor into host cells. Cell. Mol. Life Sci. 55:961-76.
    DeVinney, R., M. Stein, D. Reinscheid, A. Abe, S. Ruschkowski, and B. B. Finlay. 1999b. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67:2389-98.
    Dibb-Fuller, M. P., A. Best, D. A. Stagg, W. A. Cooley, and M. J. Woodward. 2001. An in-vitro model for studying the interaction of Escherichia coli O157:H7 and other enteropathogens with bovine primary cell cultures. J. Med. Microbiol. 50:759-69.
    Dobrindt, U., B. Hochhut, U. Hentschel, and J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2:414-24.
    Donnenberg, M. S., C. O. Tacket, S. P. James, G. Losonsky, J. P. Nataro, S. S. Wasserman, J. B. Kaper, and M. M. Levine. 1993a. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J. Clin. Invest. 92:1412-7.
    Donnenberg, M. S., J. Yu, and J. B. Kaper. 1993c. A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J. Bacteriol. 175:4670-80.
    Donohue-Rolfe, A., I. Kondova, S. Oswald, D. Hutto, and S. Tzipori. 2000. Escherichia coli O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J. Infect. Dis. 181:1825-9.
    Doughty, S., J. Sloan, V. Bennett-Wood, M. Robertson, R. M. Robins-Browne, and E. L. Hartland. 2002. Identification of a novel fimbrial gene cluster related to long polar fimbriae in locus of enterocyte effacement-negative strains of enterohemorrhagic Escherichia coli. Infect. Immun. 70:6761-9.
    Dziva, F., A. Mahajan, P. Cameron, C. Currie, I. J. McKendrick, T. S. Wallis, D. G. Smith, and M. P. Stevens. 2007. EspP, a Type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells. FEMS Microbiol. Lett. 271:258-64.
    Dziva, F., P. M. van Diemen, M. P. Stevens, A. J. Smith, and T. S. Wallis. 2004. Identification of Escherichia coli O157 : H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150:3631-45.
    Ebel, F., T. Podzadel, M. Rohde, A. U. Kresse, S. Kramer, C. Deibel, C. A. Guzman, and T. Chakraborty. 1998. Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol. Microbiol. 30:147-61.
    Eisenhauer, P. B., P. Chaturvedi, R. E. Fine, A. J. Ritchie, J. S. Pober, T. G. Cleary, and D. S. Newburg. 2001. Tumor necrosis factor alpha increases human cerebral endothelial cell Gb3 and sensitivity to Shiga toxin. Infect. Immun. 69:1889-94.
    Elliott, S. J., E. O. Krejany, J. L. Mellies, R. M. Robins-Browne, C. Sasakawa, and J. B. Kaper. 2001. EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect. Immun. 69:4027-33.
    Elliott, S. J., V. Sperandio, J. A. Giron, S. Shin, J. L. Mellies, L. Wainwright, S. W. Hutcheson, T. K. McDaniel, and J. B. Kaper. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68:6115-26.
    Elliott, S. J., L. A. Wainwright, T. K. McDaniel, K. G. Jarvis, Y. K. Deng, L. C. Lai, B. P. McNamara, M. S. Donnenberg, and J. B. Kaper. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28:1-4.
    Endo, Y., K. Tsurugi, T. Yutsudo, Y. Takeda, T. Ogasawara, and K. Igarashi. 1988. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171:45-50.
    Fitzhenry, R. J., D. J. Pickard, E. L. Hartland, S. Reece, G. Dougan, A. D. Phillips, and G. Frankel. 2002. Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. Gut 50:180-5.
    Forsyth, K. D., A. C. Simpson, M. M. Fitzpatrick, T. M. Barratt, and R. J. Levinsky. 1989. Neutrophil-mediated endothelial injury in haemolytic uraemic syndrome. Lancet 2:411-4.
    Francis, D. H., J. E. Collins, and J. R. Duimstra. 1986. Infection of gnotobiotic pigs with an Escherichia coli O157:H7 strain associated with an outbreak of hemorrhagic colitis. Infect. Immun. 51:953-6.
    Frankel, G., O. Lider, R. Hershkoviz, A. P. Mould, S. G. Kachalsky, D. C. Candy, L. Cahalon, M. J. Humphries, and G. Dougan. 1996. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J. Biol. Chem. 271:20359-64.
    Frankel, G., A. D. Phillips, I. Rosenshine, G. Dougan, J. B. Kaper, and S. Knutton. 1998. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30:911-21.
    Frankel, G., A. D. Phillips, L. R. Trabulsi, S. Knutton, G. Dougan, and S. Matthews. 2001. Intimin and the host cell--is it bound to end in Tir(s)? Trends Microbiol. 9:214-8.
    Fraser, M. E., M. Fujinaga, M. M. Cherney, A. R. Melton-Celsa, E. M. Twiddy, A. D. O'Brien, and M. N. James. 2004. Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem. 279:27511-7.
    Friedrich, A. W., M. Bielaszewska, W. L. Zhang, M. Pulz, T. Kuczius, A. Ammon, and H. Karch. 2002. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J. Infect. Dis. 185:74-84.
    Garmendia, J., A. D. Phillips, M. F. Carlier, Y. Chong, S. Schuller, O. Marches, S. Dahan, E. Oswald, R. K. Shaw, S. Knutton, and G. Frankel. 2004. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol. 6:1167-83.
    Gerald V Ling , Charles E Franti . 1998. Urolithiasis in dogs [ J ] . AJVR , 59 (5) : 24-27.
    Girard, F., I. Batisson, G. M. Frankel, J. Harel, and J. M. Fairbrother. 2005a. Interaction of enteropathogenic and Shiga toxin-producing Escherichia coli and porcine intestinal mucosa: role of intimin and Tir in adherence. Infect. Immun. 73:6005-16.
    Girard, F., I. P. Oswald, I. Taranu, P. Helie, G. D. Appleyard, J. Harel, and J. M. Fairbrother. 2005b. Host immune status influences the development of attaching and effacing lesions in weaned pigs. Infect. Immun. 73:5514-23.
    Griffin, P. M. 1995. Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli. In M. J. Blaser, P. D. Smith, J. I. Ravdin, H. B. Greenberg and R. L. Guerrant (eds.), Infections of the
    Gastrointestinal Tract, pp. 739-761. Raven Press Ltd, New York City.
    Griffin, P. M., and R. V. Tauxe. 1991. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev. 13:60-98.
    Gruenheid, S., R. DeVinney, F. Bladt, D. Goosney, S. Gelkop, G. D. Gish, T. Pawson, and B. B. Finlay. 2001. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat. Cell. Biol. 3:856-9.
    Gruenheid, S., I. Sekirov, N. A. Thomas, W. Deng, P. O'Donnell, D. Goode, Y. Li, E. A. Frey, N. F. Brown, P. Metalnikov, T. Pawson, K. Ashman, and B. B. Finlay. 2004. Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coliO157:H7. Mol. Microbiol. 51:1233-49.
    Grys, T. E., M. B. Siegel, W. W. Lathem, and R. A. Welch. 2005. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect. Immun. 73:1295-303.
    Gunzer, F., I. Hennig-Pauka, K. H. Waldmann, and M. Mengel. 2003. Gnotobiotic piglets as an animal model for oral infection with O157 and non-O157 serotypes of STEC. Methods Mol. Med. 73:307-27.
    Gyles, C. L. 2007. Shiga toxin-producing Escherichia coli: an overview. J. Anim. Sci. 85:E45-62.
    Haack, K. R., C. L. Robinson, K. J. Miller, J. W. Fowlkes, and J. L. Mellies. 2003. Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect. Immun. 71:384-92.
    Hacker, J., and E. Carniel. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2:376-81.
    Hacker, J., and J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54:641-79.
    Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, and A. Aderem. 2001a. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099-103.
    Hughes, A. K., Z. Ergonul, P. K. Stricklett, and D. E. Kohan. 2002. Molecular basis for high renal cell sensitivity to the cytotoxic effects of shigatoxin-1: upregulation of globotriaosylceramide expression. J. Am. Soc. Nephrol. 13:2239-45.
    Hynes, R.O., 1992, Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25.
    Jacewicz, M., H. Clausen, E. Nudelman, A. Donohue-Rolfe, and G. T. Keusch. 1986. Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J. Exp. Med. 163:1391-404.
    Jacewicz, M. S., M. Mobassaleh, S. K. Gross, K. A. Balasubramanian, P. F. Daniel, S. Raghavan, R. H. McCluer, and G. T. Keusch. 1994. Pathogenesis of Shigella diarrhea: XVII. A mammalian cell membrane glycolipid, Gb3, is required but not sufficient to confer sensitivity to Shiga toxin. J. Infect. Dis. 169:538-46.
    Jackson, M. P., J. W. Newland, R. K. Holmes, and A. D. O'Brien. 1987. Nucleotide sequence analysis of the structural genes for Shiga-like toxin I encoded by bacteriophage 933J from Escherichia coli. Microb. Pathog. 2:147-53.
    Jackson, M. P., R. J. Neill, A. D. O'Brien, R. K. Holmes, and J. W. Newland. 1987. Nucleotide sequence analsysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxin II encoded by bacteriophages from Escherichia coli 933. FEMS Microbiol. Lett. 44:109-14.
    Johannes, L., and W. Romer. 2009. Shiga toxins - from cell biology to biomedical applications. Nature reviews. Microbiology.
    Johnson, J. R., T. A. Russo, P. I. Tarr, U. Carlino, S. S. Bilge, J. C. Vary, Jr., and A. L. Stell. 2000. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN(E. coli), among Escherichia coli isolates from patients with urosepsis. Infect. Immun. 68:3040-7.
    Jones, N. L., A. Islur, R. Haq, M. Mascarenhas, M. A. Karmali, M. H. Perdue, B. W. Zanke, and P. M. Sherman. 2000. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278:G811-9.
    Jordan, D. M., N. Cornick, A. G. Torres, E. A. Dean-Nystrom, J. B. Kaper, and H. W. Moon. 2004.Long polar fimbriae contribute to colonization by Escherichia coli O157:H7 in vivo. Infect. Immun. 72:6168-71.
    Kalman, D., O. D. Weiner, D. L. Goosney, J. W. Sedat, B. B. Finlay, A. Abo, and J. M. Bishop. 1999. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat. Cell. Biol. 1:389-91.
    Kanack, K. J., J. A. Crawford, I. Tatsuno, M. A. Karmali, and J. B. Kaper. 2005. SepZ/EspZ is secreted and translocated into HeLa cells by the enteropathogenic Escherichia coli type III secretion system. Infect. Immun. 73:4327-37.
    Kaper, J. B., J. P. Nataro, and H. L. Mobley. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2:123-40.
    Kaper, J. B., and V. Sperandio. 2005. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect. Immun. 73:3197-209.
    Karaolis DK, McDaniel TK,Kaper JB, et al . 1997. Cloning of the RDEC-1 locus of enterocyte effacement (LEE) and functional analysis of the phenotype on Hep-2 cells. Adv Exp Med Biol , 412 :241~245.
    Karmali, M. A. 1989. Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 2:15-38.
    Karmali, M. A. 2004. Infection by Shiga toxin-producing Escherichia coli: an overview. Mol. Biotechnol. 26:117-22.
    Karmali, M. A., M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper. 2003. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J. Clin. Microbiol. 41:4930-40.
    Karmali, M. A., M. Petric, C. Lim, P. C. Fleming, and B. T. Steele. 1983. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet 2:1299-1300.
    Kawano, K., M. Okada, T. Haga, K. Maeda, and Y. Goto. 2007. Relationship between pathogenicity for humans and stx genotype in Shiga toxin-producing Escherichia coli serotype O157. Eur. J. Clin. Microbiol. Infect. Dis. Dec 11
    Kenny, B., R. DeVinney, M. Stein, D. J. Reinscheid, E. A. Frey, and B. B. Finlay. 1997b. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511-20.
    Kenny, B., and M. Jepson. 2000. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2:579-90.
    Khan, A. S., B. Kniep, T. A. Oelschlaeger, I. Van Die, T. Korhonen, and J. Hacker. 2000a. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect. Immun. 68:3541-7.
    Khan, A. S., I. Muhldorfer, V. Demuth, U. Wallner, T. K. Korhonen, and J. Hacker. 2000b. Functional analysis of the minor subunits of S fimbrial adhesion (SfaI) in pathogenic Escherichia coli. Mol. Gen. Genet. 263:96-105.
    Klapproth, J. M., I. C. Scaletsky, B. P. McNamara, L. C. Lai, C. Malstrom, S. P. James, and M. S. Donnenberg. 2000. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect. Immun. 68:2148-55.
    Knutton, S., T. Baldwin, P. H. Williams, and A. S. McNeish. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 57:1290-8.
    Kojima, Y., S. Fukumoto, K. Furukawa, T. Okajima, J. Wiels, K. Yokoyama, Y. Suzuki, T. Urano, and M. Ohta. 2000. Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. The Journal of biological chemistry 275:15152-6.
    Kuczius, T., M. Bielaszewska, A. W. Friedrich, and W. Zhang. 2004. A rapid method for the discrimination of genes encoding classical Shiga toxin (Stx) 1 and its variants, Stx1c and Stx1d, in Escherichia coli. Mol. Nutr. Food Res. 48:515-21.
    Lathem, W. W., T. E. Grys, S. E. Witowski, A. G. Torres, J. B. Kaper, P. I. Tarr, and R. A. Welch. 2002. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45:277-88.
    Lingwood, C. A. 1994. Verotoxin-binding in human renal sections. Nephron. 66:21-8.
    Lingwood, C. A. 1996. Role of verotoxin receptors in pathogenesis. Trends Microbiol. 4:147-53.
    Lingwood, C. A., H. Law, S. Richardson, M. Petric, J. L. Brunton, S. De Grandis, and M. Karmali. 1987. Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J. Biol. Chem. 262:8834-9.
    Livak, K.J., Schmittgen, T.D., 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
    Lommel, S., S. Benesch, M. Rohde, J. Wehland, and K. Rottner. 2004. Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell. Microbiol. 6:243-54.
    Louise, C. B., S. A. Kaye, B. Boyd, C. A. Lingwood, and T. G. Obrig. 1995. Shiga toxin-associated hemolytic uremic syndrome: effect of sodium butyrate on sensitivity of human umbilical vein endothelial cells to Shiga toxin. Infect. Immun. 63:2766-9.
    Louise, C. B., and T. G. Obrig. 1991. Shiga toxin-associated hemolytic-uremic syndrome: combined cytotoxic effects of Shiga toxin, interleukin-1 beta, and tumor necrosis factor alpha on human vascular endothelial cells in vitro. Infect. Immun. 59:4173-9.
    Louise, C. B., and T. G. Obrig.. 1995. Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J. Infect. Dis. 172:1397-401.
    Low, A. S., N. Holden, T. Rosser, A. J. Roe, C. Constantinidou, J. L. Hobman, D. G. Smith, J. C. Low, and D. L. Gally. 2006b. Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ. Microbiol. 8:1033-47.
    Ludwig, K., M. Petric, V. Blanchette, and M. Karmali. 1998. Isolated thrombocytopenic purpura associated with infection due to verocytotoxin (Shiga toxin)-producing Escherichia coli serotype O26:H11. Clin. Infect. Dis. 27:660-1.
    Maurer, J., J. Jose, and T. F. Meyer. 1999. Characterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions. J. Bacteriol. 181:7014-20.
    McClure, P. J., and S. Hall. 2000. Survival of Escherichia coli in foods. Symp. Ser. Soc. Appl. Microbiol. 61S-70S.
    McDaniel, T. K., K. G. Jarvis, M. S. Donnenberg, and J. B. Kaper. 1995. A genetic locus of enterocyteeffacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 92:1664-8.
    McKee, M. L., A. R. Melton-Celsa, R. A. Moxley, D. H. Francis, and A. D. O'Brien. 1995. Enterohemorrhagic Escherichia coli O157:H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEp-2 cells. Infect. Immun. 63:3739-44.
    McKee, M. L., and A. D. O'Brien. 1995. Investigation of enterohemorrhagic Escherichia coli O157:H7 adherence characteristics and invasion potential reveals a new attachment pattern shared by intestinal E. coli. Infect. Immun. 63:2070-4.
    McNamara, B. P., A. Koutsouris, C. B. O'Connell, J. P. Nougayrede, M. S. Donnenberg, and G. Hecht. 2001. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107:621-9.
    Mellies, J. L., S. J. Elliott, V. Sperandio, M. S. Donnenberg, and J. B. Kaper. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol. Microbiol. 33:296-306.
    Miyamoto, Y., M. Iimura, J. B. Kaper, A. G. Torres, and M. F. Kagnoff. 2006. Role of Shiga toxin versus H7 flagellin in enterohaemorrhagic Escherichia coli signalling of human colon epithelium in vivo. Cell. Microbiol. 8:869-79.
    Moon, H. W., S. C. Whipp, R. A. Argenzio, M. M. Levine, and R. A. Giannella. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 41:1340-51.
    Mora, A., M. Blanco, J. E. Blanco, G. Dahbi, C. Lopez, P. Justel, M. P. Alonso, A. Echeita, M. I. Bernardez, E. A. Gonzalez, and J. Blanco. 2007. Serotypes, virulence genes and intimin types of Shiga toxin (verocytotoxin)-producing Escherichia coli isolates from minced beef in Lugo (Spain) from 1995 through 2003. BMC Microbiol. 7:13.
    Moxley, R. A., and D. H. Francis. 1998. Overview of animal models. In J. Kaper and A.D. O'Brien (ed.), Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains, pp. 249-260. ASM press, Washington, DC.
    Mundy, R., C. Jenkins, J. Yu, H. Smith, and G. Frankel. 2004. Distribution of espI among clinical enterohaemorrhagic and enteropathogenic Escherichia coli isolates. J. Med. Microbiol. 53:1145-9.
    Mundy, R., S. Schuller, F. Girard, J. M. Fairbrother, A. D. Phillips, and G. Frankel. 2007. Functional studies of intimin in vivo and ex vivo: implications for host specificity and tissue tropism. Microbiology 153:959-67.
    Murphy, K. C., and K. G. Campellone. 2003. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol. Biol. 4:11.
    Murphy, K. C., K. G. Campellone, and A. R. Poteete. 2000. PCR-mediated gene replacement in Escherichia coli. Gene 246:321-30.
    Meyers, K. E., and B. S. Kaplan. 2000. Many cell types are Shiga toxin targets. Kidney international 57:2650-1.
    Nataro, J. P., and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142-201.
    Nicholls, L., T. H. Grant, and R. M. Robins-Browne. 2000. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol. Microbiol. 35:275-88.
    O' Brien A D, Tesh V L, Donohue-Rolfe A, et al. 1992. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis[J]. Curr Top Microbiol Iminunol, 180: 65294.
    O'Brien, A. D., and R. K. Holmes. 1987. Shiga and Shiga-like toxins. Microbiol. Rev. 51:206-20.
    O'Brien, A. D., T. A. Lively, T. W. Chang, and S. L. Gorbach. 1983. Purification of Shigella dysenteriae 1 (Shiga)-like toxin from Escherichia coli O157:H7 strain associated with haemorrhagic colitis. Lancet 2:573.
    Obrig, T. G., P. J. Del Vecchio, J. E. Brown, T. P. Moran, B. M. Rowland, T. K. Judge, and S. W. Rothman. 1988. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect. Immun. 56:2373-8.
    Ohnishi, M., J. Terajima, K. Kurokawa, K. Nakayama, T. Murata, K. Tamura, Y. Ogura, H. Watanabe, and T. Hayashi. 2002. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc. Natl. Acad. Sci. U. S. A. 99:17043-8.
    Pamela J S, John M L, Kenan C M, et al. Rapid Allelic Exchange in Enterohemorrhagic Escherichia coli (EHEC) and Other E. coli UsingλRed Recombination [J]. Current Protocols in Microbiology, 2006, 5A.2: 1~13.
    Paton, J. C., and A. W. Paton. 1998. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 11:450-79.
    Perera, L. P., L. R. Marques, and A. D. O'Brien. 1988. Isolation and characterization of monoclonal antibodies to Shiga-like toxin II of enterohemorrhagic Escherichia coli and use of the monoclonal antibodies in a colony enzyme-linked immunosorbent assay. J. Clin. Microbiol. 26:2127-31.
    Perna, N. T., J. D. Glasner, V. Burland, and G. Plunkett III. 2002. The Genomes of Escherichia coli K-12 and Pathogenic E. coli. In M. S. Donnenberg (ed.), Escherichia coli Virulence Mechanisms of a Versatile Pathogen
    pp. 3-53. Academic Press, San Diego.
    Perna, N. T., G. Plunkett, 3rd, V. Burland, B. Mau, J. D. Glasner, D. J. Rose, G. F. Mayhew, P. S. Evans, J. Gregor, H. A. Kirkpatrick, G. Posfai, J. Hackett, S. Klink, A. Boutin, Y. Shao, L. Miller, E. J. Grotbeck, N. W. Davis, A. Lim, E. T. Dimalanta, K. D. Potamousis, J. Apodaca, T. S. Anantharaman, J. Lin, G. Yen, D. C. Schwartz, R. A. Welch, and F. R. Blattner. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529-33.
    Persson, S., K. E. Olsen, S. Ethelberg, and F. Scheutz. 2007. Subtyping method for Escherichia coli shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. J. Clin. Microbiol. 45:2020-4.
    Plunkett, G., 3rd, D. J. Rose, T. J. Durfee, and F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181:1767-78.
    Pohlenz, J. F., K. R. Winter, and E. A. Dean-Nystrom. 2005. Shiga-toxigenic Escherichia coli-inoculated neonatal piglets develop kidney lesions that are comparable to those in humans with hemolytic-uremic syndrome. Infect. Immun. 73:612-6.
    Poirier, K., Faucher, S.P., Beland, M., Brousseau, R., Gannon, V., Martin, C., Harel, J., Daigle, F., 2008, Escherichia coli O157:H7 survives within human macrophages: global gene expression profile and involvement of the Shiga toxins. Infection and immunity 76, 4814-4822.
    Pruimboom-Brees, I. M., T. W. Morgan, M. R. Ackermann, E. D. Nystrom, J. E. Samuel, N. A.Cornick, and H. W. Moon. 2000. Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc. Natl. Acad. Sci. U. S. A. 97:10325-9.
    Rangel, J. M., P. H. Sparling, C. Crowe, P. M. Griffin, and D. L. Swerdlow. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis. 11:603-9.
    Rashid, R. A., P. I. Tarr, and S. L. Moseley. 2006b. Expression of the Escherichia coli IrgA homolog adhesin is regulated by the ferric uptake regulation protein. Microb. Pathog. 41:207-17.
    Ray, P. E., and X. H. Liu. 2001. Pathogenesis of Shiga toxin-induced hemolytic uremic syndrome. Pediatr. Nephrol. 16:823-39.
    Reid, S. D., C. J. Herbelin, A. C. Bumbaugh, R. K. Selander, and T. S. Whittam. 2000. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406:64-7.
    Richardson, S. E., T. A. Rotman, V. Jay, C. R. Smith, L. E. Becker, M. Petric, N. F. Olivieri, and M. A. Karmali. 1992. Experimental verocytotoxemia in rabbits. Infect. Immun. 60:4154-67.
    Riley, L. W. 1987. The epidemiologic, clinical, and microbiologic features of hemorrhagic colitis. Annu. Rev. Microbiol. 41:383-407.
    Ritchie, J. M., C. M. Thorpe, A. B. Rogers, and M. K. Waldor. 2003a. Critical roles for stx2, eae, and tir in enterohemorrhagic Escherichia coli-induced diarrhea and intestinal inflammation in infant rabbits. Infect. Immun. 71:7129-39.
    Ritchie, J. M., P. L. Wagner, D. W. Acheson, and M. K. Waldor. 2003b. Comparison of Shiga toxin production by hemolytic-uremic syndrome-associated and bovine-associated Shiga toxin-producing Escherichia coli isolates. Appl. Environ. Microbiol. 69:1059-66.
    Robinson, C. M., J. F. Sinclair, M. J. Smith, and A. D. O'Brien. 2006. Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc. Natl. Acad. Sci. U. S. A. 103:9667-72.
    Roe, A. J., C. Currie, D. G. Smith, and D. L. Gally. 2001. Analysis of type 1 fimbriae expression in verotoxigenic Escherichia coli: a comparison between serotypes O157 and O26. Microbiology 147:145-52.
    Roe, A. J., D. E. Hoey, and D. L. Gally. 2003. Regulation, secretion and activity of type III-secreted proteins of enterohaemorrhagic Escherichia coli O157. Biochem. Soc. Trans. 31:98-103.
    Rogers, T. J., J. C. Paton, H. Wang, U. M. Talbot, and A. W. Paton. 2006. Reduced virulence of an fliC mutant of Shiga-toxigenic Escherichia coli O113:H21. Infect. Immun. 74:1962-6.
    Salyers, A. A. and D.D. Whitt. 2000. Approaching and Studying Bacterial Diseases, Bacterial Pathogenesis, A Molecular Approach, pp. 19-33. ASM Press, Washington, D.C.
    Sandvig, K., B. Spilsberg, S. U. Lauvrak, M. L. Torgersen, T. G. Iversen, and B. van Deurs. 2004. Pathways followed by protein toxins into cells. Int. J. Med. Microbiol. 293:483-90.
    Savarino, S. J., A. McVeigh, J. Watson, A. Cravioto, J. Molina, P. Echeverria, M. K. Bhan, M. M. Levine, and A. Fasano. 1996. Enteroaggregative Escherichia coli heat-stable enterotoxin is not restricted to enteroaggregative E. coli. J. Infect. Dis. 173:1019-22.
    Saxena, S. K., A. D. O'Brien, and E. J. Ackerman. 1989. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J. Biol. Chem. 264:596-601.
    Schierack, P., M. Nordhoff, M. Pollmann, K. D. Weyrauch, S. Amasheh, U. Lodemann, J. Jores, B. Tachu, S. Kleta, A. Blikslager, K. Tedin, and L. H. Wieler. 2006. Characterization of a porcine intestinalepithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem. Cell. Biol. 125:293-305.
    Schmidt, H., and M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17:14-56.
    Schmidt, H., C. Kernbach, and H. Karch. 1996a. Analysis of the EHEC hly operon and its location in the physical map of the large plasmid of enterohaemorrhagic Escherichia coli O157:h7. Microbiology 142 ( Pt 4):907-14.
    Schmidt, H., E. Maier, H. Karch, and R. Benz. 1996b. Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7. Eur. J. Biochem. 241:594-601.
    Schmidt, H., W. L. Zhang, U. Hemmrich, S. Jelacic, W. Brunder, P. I. Tarr, U. Dobrindt, J. Hacker, and H. Karch. 2001. Identification and characterization of a novel genomic island integrated at selC in locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect. Immun. 69:6863-73.
    Schmitt, C. K., M. L. McKee, and A. D. O'Brien. 1991. Two copies of Shiga-like toxin II-related genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157:H- strain E32511. Infect. Immun. 59:1065-73.
    Schuller, S., Y. Chong, J. Lewin, B. Kenny, G. Frankel, and A. D. Phillips. 2007a. Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models. Cell. Microbiol. 9:1352-64.
    Sheng, H., J. Y. Lim, H. J. Knecht, J. Li, and C. J. Hovde. 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect. Immun. 74:4685-93.
    Siegler, R. L., T. G. Obrig, T. J. Pysher, V. L. Tesh, N. D. Denkers, and F. B. Taylor. 2003. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr. Nephrol. 18:92-6.
    Sinclair, J. F., E. A. Dean-Nystrom, and A. D. O'Brien. 2006. The established intimin receptor Tir and the putative eucaryotic intimin receptors nucleolin and beta1 integrin localize at or near the site of enterohemorrhagic Escherichia coli O157:H7 adherence to enterocytes in vivo. Infect. Immun. 74:1255-65.
    Sinclair, J. F., and A. D. O'Brien. 2002. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277:2876-85.
    Sinclair, J. F., and A. D. O'Brien. 2004. Intimin types alpha, beta, and gamma bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor. J. Biol. Chem. 279:33751-8.
    Skinner, L. M., and M. P. Jackson. 1997. Investigation of ribosome binding by the Shiga toxin A1 subunit, using competition and site-directed mutagenesis. J. Bacteriol. 179:1368-74.
    Sonntag, A. K., M. Bielaszewska, A. Mellmann, N. Dierksen, P. Schierack, L. H. Wieler, M. A.
    Schmidt, and H. Karch. 2005. Shiga toxin 2e-producing Escherichia coli isolates from humans and pigs differ in their virulence profiles and interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 71:8855-63.
    Spears, K. J., A. J. Roe, and D. L. Gally. 2006. A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol. Lett. 255:187-202.
    Sperandio V, Kaper JB, Bortolini MR, et al . 1998, Characterization of the locus of enterocyte effacement (LEE) in different enteropathogenic Escherichia coli ( EPEC) and Shiga - toxin producing Escherichia coli (STEC) serotypes. FEMS Microbiol Lett , 164 (1) :133~139.
    Sperandio, V., J. L. Mellies, R. M. Delahay, G. Frankel, J. A. Crawford, W. Nguyen, and J. B. Kaper.2000. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol. Microbiol. 38:781-93.
    Sperandio, V., J. L. Mellies, W. Nguyen, S. Shin, and J. B. Kaper. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 96:15196-201.
    Sperandio, V., A. G. Torres, B. Jarvis, J. P. Nataro, and J. B. Kaper. 2003. Bacteria-host communication: the language of hormones. Proc. Natl. Acad. Sci. U. S. A. 100:8951-6.
    Stricklett, P. K., A. K. Hughes, Z. Ergonul, and D. E. Kohan. 2002. Molecular basis for up-regulation by inflammatory cytokines of Shiga toxin 1 cytotoxicity and globotriaosylceramide expression. J. Infect. Dis. 186:976-82.
    Strockbine, N. A., M. P. Jackson, L. M. Sung, R. K. Holmes, and A. D. O'Brien. 1988. Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1. J. Bacteriol. 170:1116-22. Takeda, T., S. Dohi, T. Igarashi, T. Yamanaka, K. Yoshiya, and N. Kobayashi. 1993. Impairment by verotoxin of tubular function contributes to the renal damage seen in haemolytic uraemic syndrome. J. Infect. 27:339-41.
    Tarr, P. I., and S. S. Bilge. 1998. Intimin-independent adherence mechanisms of escherichia coli O157:H7 and other shiga toxin-producing E. coli strains. In J. B. Kaper and A.D. O'Brien (ed.), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains, pp. 157-162. American Society for Microbiology, Washington, D.C.
    Tarr, P. I., S. S. Bilge, J. C. Vary, Jr., S. Jelacic, R. L. Habeeb, T. R. Ward, M. R. Baylor, and T. E. Besser. 2000. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect. Immun. 68:1400-7.
    Tarr, P. I., C. A. Gordon, and W. L. Chandler. 2005. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365:1073-86.
    Tatsuno, I., M. Horie, H. Abe, T. Miki, K. Makino, H. Shinagawa, H. Taguchi, S. Kamiya, T. Hayashi, and C. Sasakawa. 2001. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect. Immun. 69:6660-9.
    Tatsuno, I., R. Mundy, G. Frankel, Y. Chong, A. D. Phillips, A. G. Torres, and J. B. Kaper. 2006. The lpf gene cluster for long polar fimbriae is not involved in adherence of enteropathogenic Escherichia coli or virulence of Citrobacter rodentium. Infect. Immun. 74:265-72.
    Tesh, V. L. 1998. Virulence of enterohemorrhagic Escherichia coli: role of molecular crosstalk. Trends Microbiol. 6:228-33.
    Tesh, V. L., and A. D. O'Brien. 1991. The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins. Mol. Microbiol. 5:1817-22.
    Tesh, V. L., J. E. Samuel, L. P. Perera, J. B. Sharefkin, and A. D. O'Brien. 1991. Evaluation of the role of Shiga and Shiga-like toxins in mediating direct damage to human vascular endothelial cells. J. Infect. Dis. 164:344-52.
    Thorpe, C. M., B. P. Hurley, L. L. Lincicome, M. S. Jacewicz, G. T. Keusch, and D. W. Acheson. 1999. Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells. Infect. Immun. 67:5985-93.
    Thorpe, C. M., W. E. Smith, B. P. Hurley, and D. W. Acheson. 2001. Shiga toxins induce, superinduce, and stabilize a variety of C-X-C chemokine mRNAs in intestinal epithelial cells, resulting in increasedchemokine expression. Infect. Immun. 69:6140-7.
    Tilden, J., Jr., W. Young, A. M. McNamara, C. Custer, B. Boesel, M. A. Lambert-Fair, J. Majkowski, D. Vugia, S. B. Werner, J. Hollingsworth, and J. G. Morris, Jr. 1996. A new route of transmission for Escherichia coli: infection from dry fermented salami. Am. J. Public Health 86:1142-5.
    Toma, C., E. Martinez Espinosa, T. Song, E. Miliwebsky, I. Chinen, S. Iyoda, M. Iwanaga, and M. Rivas. 2004. Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 42:4937-46.
    Torres, A. G., J. A. Giron, N. T. Perna, V. Burland, F. R. Blattner, F. Avelino-Flores, and J. B. Kaper. 2002. Identification and characterization of lpfABCC'DE, a fimbrial operon of enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 70:5416-27.
    Torres, A. G., K. J. Kanack, C. B. Tutt, V. Popov, and J. B. Kaper. 2004. Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol. Lett. 238:333-44.
    Torres, A. G., and J. B. Kaper. 2003. Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infect. Immun. 71:4985-95.
    Torres, A. G., and S. M. Payne. 1997. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 23:825-33.
    Tu, X., I. Nisan, C. Yona, E. Hanski, and I. Rosenshine. 2003. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol. Microbiol. 47:595-606.
    Tzipori, S., C. W. Chow, and H. R. Powell. 1988a. Cerebral infection with Escherichia coli O157:H7 in humans and gnotobiotic piglets. J. Clin. Pathol. 41:1099-103.
    Tzipori, S., F. Gunzer, M. S. Donnenberg, L. de Montigny, J. B. Kaper, and A. Donohue-Rolfe. 1995. The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect. Immun. 63:3621-7.
    Tzipori, S., I. K. Wachsmuth, C. Chapman, R. Birden, J. Brittingham, C. Jackson, and J. Hogg. 1986. The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J. Infect. Dis. 154:712-6.
    van Diemen, P. M., F. Dziva, M. P. Stevens, and T. S. Wallis. 2005. Identification of enterohemorrhagic Escherichia coli O26:H- genes required for intestinal colonization in calves. Infect. Immun. 73:1735-43.
    Viswanathan, V. K., A. Koutsouris, S. Lukic, M. Pilkinton, I. Simonovic, M. Simonovic, and G. Hecht. 2004. Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect. Immun. 72:3218-27.
    Waddell, T., S. Head, M. Petric, A. Cohen, and C. Lingwood. 1988. Globotriosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin 2. Biochem. Biophys. Res. Commun. 152:674-9.
    Wagner, P. L., J. Livny, M. N. Neely, D. W. Acheson, D. I. Friedman, and M. K. Waldor. 2002. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44:957-70.
    Wagner, P. L., M. N. Neely, X. Zhang, D. W. Acheson, M. K. Waldor, and D. I. Friedman. 2001. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J. Bacteriol.183:2081-5.
    Werber, D., A. Fruth, U. Buchholz, R. Prager, M. H. Kramer, A. Ammon, and H. Tschape. 2003. Strong association between shiga toxin-producing Escherichia coli O157 and virulence genes stx2 and eae as possible explanation for predominance of serogroup O157 in patients with haemolytic uraemic syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 22:726-30.
    Willshaw, G. A., H. R. Smith, S. M. Scotland, A. M. Field, and B. Rowe. 1987. Heterogeneity of Escherichia coli phages encoding Vero cytotoxins: comparison of cloned sequences determining VT1 and VT2 and development of specific gene probes. J. Gen. Microbiol. 133:1309-17.
    Wong, C. S., S. Jelacic, R. L. Habeeb, S. L. Watkins, and P. I. Tarr. 2000. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N. Engl. J. Med. 342:1930-6.
    Yamasaki, C., Y. Natori, X. T. Zeng, M. Ohmura, S. Yamasaki, Y. Takeda, and Y. Natori. 1999. Induction of cytokines in a human colon epithelial cell line by Shiga toxin 1 (Stx1) and Stx2 but not by non-toxic mutant Stx1 which lacks N-glycosidase activity. FEBS Lett. 442:231-4.
    Yin, X., Chambers, J.R., Wheatcroft, R., Johnson, R.P., Zhu, J., Liu, B., Gyles, C.L., 2009, Adherence of Escherichia coli O157:H7 mutants in vitro and in ligated pig intestines. Applied and environmental microbiology 75, 4975-4983.
    Yoshida, S., E. Katayama, A. Kuwae, H. Mimuro, T. Suzuki, and C. Sasakawa. 2002. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21:2923-35.
    Yoshida, T., M. Fukada, N. Koide, H. Ikeda, T. Sugiyama, Y. Kato, N. Ishikawa, and T. Yokochi. 1999. Primary cultures of human endothelial cells are susceptible to low doses of Shiga toxins and undergo apoptosis. J. Infect. Dis. 180:2048-52.
    Zhang, L., R. R. Chaudhuri, C. Constantinidou, J. L. Hobman, M. D. Patel, A. C. Jones, D. Sarti, A. J. Roe, I. Vlisidou, R. K. Shaw, F. Falciani, M. P. Stevens, D. L. Gally, S. Knutton, G. Frankel, C. W. Penn, and M. J. Pallen. 2004. Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E. coli O157:H7. Infect. Immun. 72:7282-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700