用户名: 密码: 验证码:
茶叶产地及铅污染溯源技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于铅同位素比值在地球化学过程中一般不受所在系统的温度、压力、pH、Eh和生物等作用而发生分馏,只与源区初始铅含量及形成时间有关这一特征,铅同位素指纹特征被广泛用做示踪环境铅污染的来源。为了研究铅同位素技术对追溯高暴露地区的农产品铅污染的来源和途径的可行性,研究不同铅污染源对农产品的贡献率,本研究利用了可调多接收热电离子质谱仪(MAT-261)分析浙江西湖龙井茶及其生长环境的土壤、大气降尘、冶炼矿石、工业燃煤铅同位素丰度值,利用ICP-MS和ICP-AES检测样品中的Pb、Cd、Cr、Fe、Mn的含量,并分析汽车尾气、土壤、加工过程对茶叶铅含量影响,研究茶叶铅同位素丰度值与种植土壤、工业燃煤、冶炼矿石等同位素之间的关系,借鉴化学质量平衡受体模型的基本理论,建立铅污染源对茶叶铅贡献率的数学模型。
     结果表明:不同铅污染来源铅同位素丰度值存在差异,并具有各自指纹特征;加工过程对西湖龙井影响不显著。距居民区的距离越近,茶叶铅含量越高。土壤铅含量与茶叶铅含量相关性不显著。老叶铅含量显著高于嫩叶铅含量。不同产地龙井茶206Pb/207Pb和208Pb/207Pb值差异不明显。西湖龙井茶铅同位素丰度值位于汽车尾气铅与工业燃煤铅同位素丰度值的交汇处,与大气降尘铅同位素特征值重合较多,远离土壤及工业冶金的铅同位素特征值。说明西湖龙井茶叶铅来源于汽车尾气和燃煤排放,主要污染途径为大气降尘,而不是土壤。说明利用铅同位素技术对茶叶中铅的污染源进行追溯是可行的方法。利用化学质量平衡受体模型理论可以推算污染源的贡献率。
     同时本文探索性的研究茶叶的产地溯源,目的是研究利用近红外光谱分析技术判别茶叶产地来源的可行性。在中国名茶主产区浙江省采集龙井绿茶样品28份,粉碎,过筛,平衡水分。利用近红外光谱分析技术,对茶叶样品的近红外光谱进行主成分分析、聚类分析。结果表明,浙江省龙井绿茶近红外原始光谱谱图差异较大,而不同产地龙井绿茶原始光谱间差异不甚明显。对原始光谱数学处理后对其进行主成份分析,发现在主成分空间内第一主成分得分绝大部分为正,继而对不同产地的样品进行主成分分析,西湖龙井有比较明显的主成分特征,区别于浙江龙井;西湖龙井主成份空间分布的离散度大于浙江各市县龙井的变异。对龙井绿茶样品进行聚类分析,得出相同产地的绿茶样品可聚为一类。初步研究结果表明:近红外光谱可以区分浙江的龙井绿茶,而且还可以准确的、快速的判别“西湖龙井”与“浙江龙井”。因此,应用近红外光谱分析技术可准确、快速、低廉地追溯茶叶的产地。
Lead isotope for environmental pollution tracing has been intensively applied mainly based on the geochemical characteristics. Also, the geochemical action of Pb was not controlled by temperature, pressure, pH and Eh values, even the biological effect. And Pb isotope fractionation could not happen. In order to investigate the feasibility of isotope technique in trace back the sources and the way of lead pollution of agricultural products in high exposure area, and the contribution rate of various lead pollution sources. We made some explorative research on the lead isotope ratios of Xihu Longjing Tea, soil, atmospheric dust, ore and industrial firing coal in Zhejiang province by MS detection(MAT-261); and the contents of Pb, Cd, Cr, Fe, Mn in tea and soil samples by ICP-MS and ICP-AES detection. Analyze of Influencing Factors on lead content of tea leaf. Investigate the relationship of the tea, soil, industrial firing coal, ores, with lead isotope ratios. And build a contribution rate model of lead pollution source to lead contamination in tea, using the chemical mass balance theory as reference.
     The results showed that lead isotope ratios of pollution sources were differences and had their respective characteristic. While the ratios of 206Pb/207Pb and 208Pb/207Pb of tea was insignificant in different producing area. Processing had little effect on it. The closer to the downtown, the higher content of Lead presented in tea leaf. The lead content of tea did not correlate significantly with that of soil. And growing leaf were higher than tender leaf. The lead isotope ratios of Xihu LongjingTea located in a overlay area consisting of atmospheric dust, automobile exhaust and industrial coal. Especially the ratios of atmospheric dust were quite the same. It showed that the most important source of tea lead pollution were vehicle tail gas and coal-fired emissions. The pollution way of tea was atmospheric dust not soil. At last we draw the conclusion by the practical study: the method based on lead isotope ratio to trace back the lead pollution in this paper was feasible. The application of chemical mass balance model method for pollution source identification and apportionment in tea was acceptable.
     Besides, the study on determination of the geographical origin of tea based on FT-IR spectroscopy analysis and pattern recognition Technique aimed to investigate the feasibility of tracing the geographical origin of tea with FT-IR spectroscopy. 28 dried Longjing tea samples from main tea-producing areas of Zhejiang province in China were crushed and sieved.Based on NIR spectroscopy of the pre-processing tea, samples were subjected to principal component analysis (PCA), cluster analysis (CA) ,discriminate analysis (DA). The results showed that obvious spectral differences could be observed of Longjing tea. The difference of Longjing tea from different geographical origins was relatively unconspicuous,whereas recognizable. The near-infrared reflectance spectra of tea are studied by the principal component analysis after mathematical treatment. It was indicated by the results that principle component score of Longjing tea is positive . The analysis on principal component of two different space distribution types expressed the characteristics of the tea samples. However, via a principle component analysis (PCA) disposal of Longjing tea, The characteristics can be defined as the particular features which distinguish Xihu Longjing tea from Zhejiang Longjing tea. And coefficient of variation of characteristic parameters was analyzed to determine dispersion in spatial distribution of Xihu Longjing tea was larger than that of the other cities and counties in Zhejiang province.According to the Euclidean distance of NIR spectroscopy, geographical origin can be identified by cluster analysis. So applying FT-NIR fingerprint spectroscopy to trace geographical origin of tea is accurate, rapid and low cost.
引文
1. Lag J, et al Geomedieal aspeets in present and future researeh [J], Oslo:Universities forlaget, 1990
    2. Thornton J. Environmental geoehemistry and health in1993s: a global perspective [J] Applied Geoehemistry, 1993.Sup(2): 203
    3. Blanco M.,Villarroya I..NIR Spectroscopy: a rapid-response analytical tool.Trends in analytical chemistry,2002,21(4):240-250
    4.陈宗懋,吴洵.关于茶叶中的铅含量问题.中国茶叶, 2000, 22(5):3-5
    5.金崇伟,郑绍建,茶叶的铅污染问题及铅污染的来源.广东微量元素科学, 2004, 11(3):12-16.
    6.陈宗懋,吴洵.关于茶叶中的铅含量问题.中国茶叶, 2000, 22(5):3-5
    7.高舸,陶锐.茶叶中有害元素As、Ba、Cd、Pb的卫生学研究.中国食品卫生杂志, 2001, 13(1):l2-l4
    8.李迎月,马林,陈坤.茶叶中铅含量卫生学分析.中国公共卫生管理, 2000, 16(4):258-260
    9.张寿宝,包文权.汽车尾气中的铅对茶园污染的研究.江苏环境科技, 2000, 13(3):1-2.
    10.袁陈敏,韩宗浩.铅冶炼厂铅、镉污染大气及对人体健康的影响[J].环境与健康杂志, 1990, 7(3): 131.
    11. Cilfillan S G.. Lead poisoning and the fall of the Roman Empire [J]. J Occup Med, 1965 ,7 (1): 53-60.
    12. T.I.Lidsky, J.S.Schneider. Adverse effects of childhood lead poisoning: The clinical neuropsychological perspective[J]. Environmental Research, 2006, 100(2):284-293.
    13. Alica Pizent, Jasna Jurasovi and Spomenka Teli man. Blood pressure in relation to dietary calcium intake, alcohol consumption, blood lead, and blood cadmium in female nonsmokers[J]. Journal of Trace Elements in Medicine and Biology. 2001, 15(2-3): 123-130.
    14.陈天金,魏益民,潘家荣.食品中铅对人体危害的风险评估[J].中国食物与营养, 2007, (2): 15-18
    15. GB 5749-85生活饮用水卫生标准[S].1.
    16.高桂珍,顾向荣,莫纪岚,等.茶叶驱铅效果与应用研究[J],卫生毒理杂志, 1996, 10(2): 90-92.
    17.杨方,李耀平,茶叶不同浸泡方式下的铅溶出[J].中国卫生检验杂志, 2001, 11(3): 349.
    18.石元值,马立峰,韩文炎,等. .汽车尾气对茶园土壤和茶叶中铅、铜、镉元素含量的影响[J].茶叶,2001,27(4):21-24
    19.金崇伟,郑绍建,茶叶的铅污染问题及铅污染的来源.广东微量元素科学, 2004, 11(3):12-16.
    20. Arvik, J.H., R.L.Zimdahl.J.Environ.Qual, 1974, 3(3):369-376
    21. Dav1es B E, Heavy Metals in Soils.Alloway, B J ed.Glasgow and London:Blaekie, 1990.
    22. YangYuangen, Paterson E and CmapbeL [C] Aeeuoulation of heavy metal in urban soils and impaets on mieroorganis[J], Environmental of Seience, 2001.22(3):44-48
    23. Grekovsk ii V G.Frid A S and Timokhin P A .Evaluation of soil Pollution by heavy metals and assenie in Chelyabinsk Oblass [J]. Eurasian soil Seienee.1997, 30(l):74-81
    24. Terelak H, Stuezynski T, Piotrowska M.Heavy metals in agrieultural soil in Poland [J].Polish Journal of soil Seienee.1997, 30(2):35-42
    25.段文锋《重视茶叶中的铅含量》.上海计量测试, 1996, (5):30
    26.甘宗祁,王林云等《茶叶铅污染及控制措施研究》.中国食品卫生杂志, 2001, 13(2):37-38
    27.《中华人民共和国农业行业标准无公害食品茶叶生产技术规范》中国茶叶, 2002, 24(l):l-3
    28. Smith S E, Reed D J. Mycorrhizal Symbiosis [M]. 2nd Edition, London: Academic, 1997. 589.
    29. Khan A G, Keuk C, Chaudhry T M, et a1. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation[J]. Chemosphere,2000, 41: 197-207.
    30. Colpaert J V, Vanassche J A. Zinc toxicity in ectomycorrhizal Pinus sylverstris L[J]. New Phytol, 1992, 123: 325-333.
    31. Lasat M M. Phytoextraction of toxic metals:A review of biological mechanisms[J]. J Evimn Qua, 2002, 31(1): 109-l20.
    32. OTHMAN I, AL—OUDAT M, AL-MASRI M S. Lead leveals in roadside soils and vegetation of Damascus city [J]. Sci Total Environ. 1997, 207 (1):43-48.
    33. HO Y B, TAI K M. Elevated leaves of lead and other metals in roadside soil and grass and their use to monitor aerial metal deposition in Hong Kong[J]. Environ Pollut, 1988, 49: 37-51.
    34. ONYARI J M, WANDIGA S O, NJENTEBE J O. Lead contanfination in street soils of Nairobi city, Mombassa Island, Kenya[J]. Bull Environ Contam Toxicol, 1991, 46: 782-789.
    35. PAGE A L, GANJI M S. Lead quantifies in plants, soil and air near some major highways in southern California[J]. Hilgadia, 1971, 4: 11-31.
    36. YASSOGLOU N, KOSMAS C, ASIMAKOPOULOS K. Heavy metal contamination of roadside soils in the greater Athens area[J]. Environ Pollut, 1987, 47: 293-304.
    37.王孝堂.土壤酸度对重金属形态分配的影响[J].土壤学报, 1991, 28(1):103-107
    38. JIN C W, HE Y F, ZHOU G D, et a1. Lead contamination in tea leaves and non-edaphic factors affecting it [J]. Chemosphere, 2005, 61: 726-732.
    39. VON STORCH H, COSTA-CABRAL M, FESER F, et a1. Reconstruction of lead(Pb)fluxes in Europe during 1955-1995 and evaluation of gasoline lead content regulation [M]. Proceeding of the 11th Joint Conference on the Application of Air Pollutiion Metrology with the Air and Waste Mannagement Association 9-14 January 2000. California: Long Beach, 2000.
    40. JIN C W, HE Y F, ZHOU G D, et a1. Lead contamination in tea leaves and non-edaphic factors affecting it [J]. Chemosphere, 2005, 61: 726-732.
    41.陈宗愈,吴询《关于茶叶中铅含量问题》,中国茶叶2000, 22(5):3-5
    42.李继明,叶学春,张全智《农产品的肥料污染与对策》,河南农业科学, 2002, (9): 29-30
    43.潘文毅《乌龙茶初制加工对茶叶铅污染的研究报告》,福建茶叶. 2002(3): 9-10
    44.汤茶琴,曾晓维,陆建良等《茶叶中的铅及其安全性检测》茶叶. 2003. 29(l): 20-22
    45.沙济琴,郑达贤《黄败品种茶树不同器官中矿质元素的分布》茶叶科学. 1996, 16(2): 141-146
    46.石元值,马立峰,韩文炎等《铅在茶树中的吸收累积特性》中国农业科学, 2003,36(11): 1272-1278
    47.卢国伟《土壤与茶叶中铅含量测定》预防医学文献信息2002, 8(2): 221-221
    48.吴永刚,姜志林,罗强《公路边茶园土壤与茶树中重金属的积累与分布》南京林业大学学报, Vol.26, No.4 Jul., 2002
    49. Chow T J, Johnstone M S. Lead istopes in gasline and aerosols of Los Angeles basin, California[J]. Science, 1965, 147(3657): 502-503
    50. Chow T J, Earl J L. Lead istopes in North American coals[J]. Science, 1972. 176(4034): 510-511.
    51. Adgate J L, Rhoads G G, Lioy P J. The use of isotope rations to apportion sources of lead in Jersey city,NJ,house dust wipe samples[J]. Sci Total Environ. 1998, 221(2/3): 171-180.
    52. Blais J M. Using isotope tracers in lake sediments to assess atmospheric transport of lead in Eastern Canada[J]. Water Air Soil Pollut, 1996, 92(3/4)
    53. Chiaradia M, Cupelin F. Gas-to-particle conversion of mercury, arsenic and selenium through reactions with traffic-related compounds(Geneva) Indication from lead isotope [J]. Atoms Environ. 2000, 34(2): 327-332.
    54. Chiaradia M, Gulson B L,Jameson C W,Johnson D. Identifican of secondary lead sources in the air of an urban environment [J]. Atmos Environ, 1997, 31(21): 3511-3521
    55. Gelinas Y, Schmit J P.Extending the use of lead isotope rations as a tracer in bioavailability studies [J]. Environ Sci Technol, 1997. 31(7):1968-1972.
    56. Gulson B L, Tiller K G,Mizon K J, Merry R H.Use of lead isotope rations in soils to identify the source of lead contamination near Idelaide, South Australia [J]. Environ Sci Technol, 1981, 15(6): 691-696.
    57. Gulson B L, Howarthl D, Mizon K J, Law A J, Korsch M J, davis J J. Source of lead in humans from Broken Hill mining community [J]. Environ Geochem Health. 1994, 16(1/2): 19-25.
    58.朱赖民,张海生,陈立奇..铅稳定同位素在示踪环境污染中的应用[J].环境科学研究. 2002, 15(1): 27-30
    59. Kerson M, Garbe-Schonberg C Thomson S. Source apportionment of Pb pollution in the coastal waters of Elefsis Bay Greece [J]. Environmental Science and Technology, 1997, 31: 1295-1301
    60. Munksgaard N C, Batterham G J, Parry K L.Lead isotope rations determined byICP-MS Investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria Australia [J]. Marine Pollution Bulltin, 1998. 36: 527-534
    61. Monna F, Dominik J, Loizeau J, et al. Origin and evolution of Pb in sediments of lake Geneva (Switzerland France). Establishing a stable Pb record [J]. Environmental Science and Technology, 1999, 33: 2850-2857.
    62.彭根元.同位素技术.北京农业大学出版社. 1994. 33.
    63. Gulson B L, Tiller K G, Mizon K J, et al Use of lead isotopes in soils to identify the source of lead contamination near Adelaide South Australia [J]. Environ Sci Technol, 1981, 15: 691-696
    64. McGill R A R, PearceJ, ForteyN J, et al Contaminant source apportionment in Brownfield soils by combined SEM Image Analyses and Plasma Ionisation MultCollectorMass Spectrometry (PIMMS)[J]. Journal of Conference Abstracts, 2000, 5 (2) :695-696
    65. RABINOWITZ M B. Lead isotopes in soils near five historic American lead smeltersand Refineries [J]. The Science of the Total Environmment, 2005, 346: 138-148.
    66. KASTE M J, FRIEDLAND AJ, STURUP S. Using stable and radioactive isotopes to trace atmospherically Deposited Pb in montane forest soils [J]. Environ Sci Technol, 2003, 37: 3560-3567.
    67. HURST R W, DAVIS-TERRY-E. Strontium isotopes as tracers of airborne fly ash from coal-fired power plants [J]. Environ mental Geology, 1981, 3( 6) 363-367.
    68.陈好寿,斐辉东,张霄宇.杭州市区土壤铅、锶同位素示踪研究[J].浙江地质, 1999, 15 (1): 43-48
    69.路远发,杨红梅,周国华,等.杭州市土壤铅污染的铅同位素示踪研究[J].第四纪研究, 2005, 25 (3 ): 355-362.
    70. Chow T J, Earl J L. Lead istopes in North American coals[J]. Science. 1972, 176(4034): 510-511.
    71. Munksgaard N C, Batterham G J, Parry K L. Lead isotope rations determined by ICP-MS Investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria Australia [J]. Marine Pollution Bulltin, 1998, 36: 527-534
    72.王婉,刘成德,鲁毅强,等.北京冬季大气颗粒物中铅的同位索丰度比的测定和来源研究,质谱学报, 2002, 23(1): 21-29.
    73. C. Marisa R. Almeida, M. Tiresa S.D. Vasconcelos. Determination of lead isotoperatios in port wine by inductively coupled plasma mass spectrometry after pre-treatment by UV-irradiation. Analytica Chimica Acta,Volume 396, Issue 1,13 September 1999, Pages 45-53
    74.李宏业.成都土壤-植物铅同位素地球化学示踪[D].成都:成都理工大学, 2004.
    75. MARGU E, IGLESIAS M, QUERAIT I, et al. Lead isotope ratio measurements by ICP-QMS to identify metal accumulation in vegetation specimens growing in mining environments [J]. Science of The Total Environment ,2006, 367: 988-998.
    76. Manton W I Sources of lead in blood idetification by stable isotopes[J]. Archivesde Environmental Health, 1977, 32: 149-157
    77. Yaffe Y, Flessel C P, Wesolowski J J, et al Identification of lead sources in Californian children using the stable isotope ration technique[J]. Archives de Environmental Health, 1983, 38: 237-245
    78. Tera O, Schwartzman D W, Watkins T R.Identification of gasoline lead in children’s blood using isotopic analysis[J]. Archives de Environmental Health, 1985, 40: 120-123
    79. Fettet M J, Mira M,Smith J, et al Community prevalence survy of children’s blood lead levels and environmental lead contamination in inner Sydney[J]. Medical Journal of Australia, 1992, 157: 441-445
    80. Gulson B L, Howarth D, Mizon K J, et al Source of lead in humans from Broken HilllMining Community[J]. Environ Geochem Heal, 1994, 16 (1): 19-25
    81.陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术.北京:中国石化出版社, 2000
    82. Litani-Barzilai I, Ilan Sela, Valery Bulator, et a1.On line remote prediction of gasoline properties by combined optical methods.Anal Chim Acta, 1997, 339: 193-199
    83.李庆春,王文真,张玉良,等.近红外漫反射光谱分析法(NIRDRSA)在作物品质育种中的应用.作物学报, 1992, 18(3): 235-240
    84. M Tanaka, T ojima. Near-Infrared Monitoring of the Growth period of Japanese Pear Fruit Based on Constituent sugar Concentrations.[J]. Agric Food Chem, 1996, 44(8): 2272-2277
    85. M Shimoyama, H Sato, T Ninomiya, et a1. Nondestructive Discrimination of Biological Material by Near-Infrared Fourier Transform Raman Spectroscopy andChemometries: Discrimination among hard and soft Ivories of African Elephants and manlmoth Tusks and prediction of specific Gravity of the Ivories.Appl Spectrosc, 1997, 51(8): 1154-1158
    86.李晓薇,赵环环,赵莲龙,等.用近红外光谱定量分析混毛织品中羊毛的质量分数,中国纺织大学学报, 2000, 26(3): 72-75
    87. W F Mc Clure. Near-infrared spectroscopy. Anal Chem, 1994, 66(1): 43A-53A
    88. Reid L M, Woodcock T, O′Donnell C P, et a1. Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data[J]. Food Research International, 2005, 38(10): 1109-1115
    89. Fugel R, Carle R, Schieber A. Quality and authenticity control of fruit purees,fruit preparations and jams-A review[J]. Trends in Food Science and Technology, 2005, 16(10): 433-441
    90. Christy A A, Kasemsumran, Du Y, et al. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics[J]. Analytical Sciences, 2004, 20(6): 935-940
    91. Cozzolino D, Murray I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy[J]. Lebensmittel Wissenschaft and Technologie, 2004, 37: 447-452
    92.刘沭华,张学工,周群,孙素琴,等.模式识别和红外光谱法相结合鉴别中药材产地[J],光谱学与光谱分析. 2005, 25(6): 878-881
    93.吴拥军,李伟,相秉仁,等.近红外光谱技术用于白芷类中药的鉴定研究.中药材, 2001, 24(1): 26-28
    94.何淑华,孙瑞岩,任玉秋,等.近红外漫反射光谱法对吉林人参的分类探讨.吉林大学自然科学学报, 2001, 01:96-98
    95.刘国林,蔡金娜,李伟,等.近红外光谱技术在中药蛇床子分类中的应用.计算机与应用化学, 2000, 17(2): 109-110
    96.刘荔荔,李力,邢旺兴,等.不同种丹参药材的近红外漫反射光谱模式识别法鉴别.医药服务与研究, 2002, 2(1): 23-25
    97.刘荔荔,原源,陈万生,等.近红外反射光谱法在羊蹄类生药分类中的应用.中草药, 2001, 32(1): 1024-1026
    98.任瑞雪,李伟,任玉林,等.多变量统计分类技术进行芦丁质量控制的研究.数理医药学杂志, 2000, 13(1): 75-77
    99.刘荔荔,刑旺兴,贾暖,等.近红外漫反射光谱聚类分析用于中药红曲的鉴别.第二军医大学学报, 2002, 23(12): 1230-l232
    100. Woo Y A, Kim H J, Cho J, et a1. Discrimination of herbal medicines according to geographical origin with near-infrared reflectance spectroscopy and pattern recognition techniques.J Pharmaceut Biomed, 1999, 21(2): 407-413
    101. Woo Y A, Kim H J, Chung H. Classification of cultivation area of ginseng radix with NIR and Raman spectroscopy. Analyst, 1999, 124: 1223-1726
    102. Woo Y A, Cho C H,Kim H J, et a1. Classification of cultivation area of ginseng by near infrared spectroscopy and ICP-AES. Microchem.[J], 2002, 73(3): 299-306
    103. Magali Laasonen, Tuulikki Harmia Pulkkinen, Christine L Simard, et a1. Fast Identification of Echinacea purpurea Dried Roots Using Near-lnfrared Spe ctroscopy. Anal Chem, 2002, 74: 2493-2499
    104. Cho C H, Woo Y A, Kim H J, et a1. Rapid qualitative and quantitative evaluation of deer antler(Cervus elaphus)using near-infrared reflectance spectroscopy. Microchem J, 2001, 68(2): 189-195
    105. Xiang L, Fan G Q, Li J H, et a1. The Application of an Artificial neural Network in the Identification of Medicinal Rhubarbs by Near-infrared Spectroscopy. Phytochem Anal, 2002, 13(5): 272-276
    106.刘荔荔,相秉仁,盛龙生,等.近红外漫反射光谱可视化褶合指纹谱对中药材的定性鉴别.中国药科大学学报, 2003, 34(2): 105-108
    107. JIN C W, ZHENG S J, HE Y F, et a1. Lead contamination in tea garden soils and factors affecting its bioavailability. Cliemosphere, 2005, 59: 1151-1159.
    108.刘栩.茶叶感官审评的误差控制.中国茶叶, 2005.(2), 25.
    109.傅志民.茶叶感官审评存在的不足和改进建议.中国茶叶加工, 2005, (1): 16
    110. Antonio Moreda-Pi?eiro, Andrew Fisher and Steve J. Hill.The classification of tea according to region of origin using pattern recognition techniques and trace metal data. Journal of Food Composition and Analysis, Volume 16, Issue 2, April 2003, Pages 195.
    111. N. Togari, A. Kobayashi and T. Aishima. Pattern recognition applied to gas chromatographic profiles of volatile components in three tea categories. Food Research International,Volume 28, Issue 5,1995, Pages 495.
    112.聂光华.不同产地茶叶的热分析鉴别.湖北农业科学, 2004(5) 77.
    113.康海宁,杨妙峰,陈波,韩超,王凌,王小如.利用矿质元素的测定数据判别茶叶的产地和品种.岩矿测试, 2006(25).
    114. WANG Duo-jia, ZHOU Xiang-yang, JIN Tong-ming, et al. Spectroscopy and Spectral Analysis, 2004, 24(4): 447.
    115. J. Luypaert, M. H. Zhang and D. L. Massart Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea, Camellia sinensis (L.)Analytica Chimica Acta,Volume 478, Issue 2,22 February 2003, Pages 303.
    116. Chen-Quansheng, Zhao-Jiewen, Zhang-Haidong, Wang-Xinyu. Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration。Analytica Chimica Acta, Volume 572, Issue 1,14 July 2006, Pages 77.
    117. M. H. Zhang, J. Luypaert, J. A. Fernández Pierna, Q. S. Xu and D. L. Massart. Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibrationTalanta, Volume 62, Issue 19 January 2004, Pages 25.
    118. Yong He, Xiaoli Lia and Xunfei Denga. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP modelJournal of Food Engineering, Volume 79, Issue 4,April 2007, Pages 1238.
    119. Chen Quan-sheng, Zhao Jie-wen, Liu Mu-hua, et a1. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. Journal of Pharmaceutical and Biomedical Analysis, Volume 46, Issue 3, 13 February 2008, Pages 568.
    120.王宝森,郭俊明,张虹,严和平,刘杰,廖发武.不同品种茶叶中矿物元素含量分析.安徽农业科学, 2007, 35(14):4222-4223
    121.聂光华,不同产地茶叶的热分析鉴别.湖北农业科学, 2004, (5): 77-78.
    122.赵杰文,陈全胜,张海东,刘木华.近红外光谱分析技术在茶叶鉴别中的应用研究.光谱学与光谱分析, 2006.26(9): 1601-1604
    123.陈全胜,赵杰文. SIMCA模式识别方法在近红外光谱识别茶叶中的应用.食品科学, 2006 (4): 186-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700