用户名: 密码: 验证码:
风及列车荷载作用下大跨度桥梁振动响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度桥梁由于柔度很大,对风荷载非常敏感,在风的动力作用下会产生较大的变形和振动。在沿江、沿海这些风速较大的地区修建跨江、跨海铁路大桥时,必须综合考虑风和列车荷载对桥梁的动力作用,以确保桥梁结构及列车运行安全。随着桥梁跨度的增大,非线性因素也愈加明显,这就给本已经非常复杂的风-车-桥系统研究增加了难度。本文在综合国内外关于车桥耦合振动及桥梁抗风研究的基础上,考虑大跨度桥梁的几何非线性因素,建立了风-列车-桥梁体系非线性动力分析模型,以综合考虑风荷载和列车荷载对桥梁的动力作用。全文内容主要包括以下五部分内容:
     1.结合国内外大跨度桥梁的修建情况,对不同结构型式的大跨度桥梁发展史及现状进行综述,回顾了车桥系统动力相互作用、桥梁风致振动以及各种型式大跨度桥梁的非线性研究情况。总结了当前研究的特点,在此基础上阐述了将风、列车和桥梁统一为一个交互作用、协调工作的耦合振动系统进行研究的必要性。
     2.研究了列车变速行驶情况下的车桥耦合振动问题,通过共振曲线解释了车辆变速运行时桥梁位移极值的变化规律。计算结果表明,车辆变速行驶与匀速行驶时相比较,桥梁的位移时程曲线振动趋势没有变化,桥梁的最大位移相差也很小,因此为简化计算,不必考虑车辆的变速作用。
     3.通过分析脉动风的特性,采用谐波叠加法对大跨度桥梁的风场进行模拟,考虑作用在桥梁上的静风力、抖振风力和自激风力,作用在车辆上的静风力和抖振风力,采用具有27个自由度的四轴列车车辆模型,分别建立了桥梁广义坐标及考虑非线性因素的动力分析模型,形成了风-列车-桥梁系统相互作用分析模型,编制了相应计算程序,并简单介绍了编程过程中能够提高计算效率的一些技巧。
     4.将所建立的风-车-桥模型应用于九江长江大桥三拱连续钢桁梁部分的动力响应研究。对桥梁进行模态分析,得到了其各阶自振频率及主梁节点振型。通过逐步施加不同的风荷载,计算了静风荷载和脉动风荷载对桥梁的作用效应;分析了风速变化对桥梁振动时程曲线及振动响应极值的影响;综合考虑了风速变化和列车速度对桥梁振动的影响。通过计算得出以下结论:
     (1)静风荷载使桥梁位移偏向一侧,而脉动风荷载使其在静风位移的基础上呈现波动趋势;
     (2)桥梁的竖向位移极值随着风速的增加而减小,横向及扭转位移极值均随着风速的增加而增大,桥梁的振动加速度均随着风荷载的增加而加剧;
     (3)车速及风速变化对桥梁的振动响应极值均有较大影响。
     5.以移动车轮-簧上质量的车辆模型为基础,考虑桥梁结构的位移与应变的非线性关系,推导了简支梁桥广义坐标下的动力平衡微分方程,采用Newmark积分与直接迭代法进行求解,并以某公路简支梁桥为例进行计算验证。在此基础上探讨了非简支梁桥在列车移动荷载作用下的非线性振动响应研究方法,作为后面采用复杂车辆模型作用下大跨度桥梁非线性振动计算的基础研究。计算了九江长江大桥吊杆初始内力及结构大位移非线性的影响。然后考虑悬索桥结构的几何非线性因素,以主跨1120m的五峰山悬索桥设计方案为例,进行了风车桥非线性振动响应计算。研究了非线性因素、风速与车速变化对悬索桥振动的影响,并与九江长江大桥大跨度钢桁拱桥振动响应进行比较。通过计算得到以下结论:
     (1)悬索桥缆索结构在自重和恒载下的初始内力会明显增大结构刚度,使其各阶自振频率提高,但不影响其振型。
     (2)悬索桥结构的几何非线性因素没有改变桥梁节点位移及加速度时程曲线变化趋势,但由于几何刚度的存在,使各项振动响应极值有所减小;
     (3)静风荷载使桥梁结构向一侧偏移,脉动风荷载使其在静风位移的基础上产生波动,风荷载产生的作用效应对九江长江大桥和五峰山悬索桥的一致;
     (4)风速增加后,悬索桥的振动呈加剧趋势,风速变化对其横向及扭转位移、加速度产生很大影响。当风速增大到一定程度时,会使悬索桥的竖向振动加剧,对其竖向振动响应也产生较大影响,这点与九江长江大桥的计算结果不同;
     (5)车速变化对桥梁的各项振动响应均有所影响,特别是对桥梁竖向位移的影响比较明显。而横向、扭转位移及加速度则对风速变化比较敏感。
     (6)大位移非线性的影响会随着位移的急剧增大更加明显,但非线性误差与位移值并不成线性关系。
Long-span bridges are so susceptible to wind actions due to their high flexibility characteristic that large displacement and vibration will be induced with the action of strong wind loads. If a railway bridge is built to span river or sea, its dynamic response to the action of wind and train should be studied to ensure the safety of bridge structure and the running train. Furthermore, the nonlinear characteristics will be more and more obvious with the increase of bridge span, which further adds the difficulty of analysis for the coupled wind-train-bridge system. Based on the research background review of the dynamic interaction of bridge with running train and the wind induced vibrations of long-span bridges, a nonlinear wind-train-bridge model is established considering the geometric nonlinearities of the long-span bridge, and a corresponding computer code is written. In this way, the dynamic actions of both wind and running train to the long-span bride are studied synthetically. The main contents of this paper are as following:
     1. The current construction state and the current study of long-span bridges in the world are summarized, including a review of the rapid development of long span bridges with different style, the research background of the dynamic interaction of bridge with running trains, the wind-induced vibrations of bridges, and the nonlinear analysis of long-span bridges. The significance and necessary of studying this problem by regarding the wind, running train and long-span bridge to a coupled system are set out.
     2. The effect of train speed varying is studied based on the coupling vibration of train and bridge system. The distribution curve of the bridge maximum deflection versus vehicle speed is given, with which the varying tendency of maximum displacement with speed varying is explained. The calculated results show that the tendency of the bridge displacement time history does not change when the train runs with varying speed, and the values of the maximum displacements have little difference. Therefore, for simplification of study, the speed varying of train can be ignored.
     3. The dynamic characteristics of fluctuating winds are analyzed. Wind forces, including steady-state, buffeting and self-excited forces acting on the bridge, and steady-state, buffeting ones acting on the train, are simulated in time domain by harmonic superposition technique. A dynamic model of wind-train-bridge system is established, by considering27degrees-of-freedom for the4-axle train, and adopting the modal superposition technique for the bridge model, while the geometric nonlinearity is considering further. The framework for solving the coupled dynamic train-bridge system subjected to wind action is proposed. A computer code is written, and some skills in writing the code are introduced.
     4. The proposed framework is then applied to a real long-span steel truss arch bridge across the Jiujiang River. The natural frequencies and node modes of the bridge are gained via modal analysis. The effect of static wind loads and fluctuating wind loads are calculated through applying different wind loads. The dynamic responses of the bridge are calculated with different wind velocity, and the influences of wind velocity and train speed are synthetically analyzed. The conclusions obtained are given below:
     (1) The static wind makes the bridge to produce a biased lateral displacement, and the fluctuating wind makes it to vibrate around the static displacement.
     (2) The vertical displacements reduce with increase of wind velocity, while the lateral and torsional displacements increase, and the accelerations of the bridge in both directions increase with wind velocity.
     (3) Both train speed and wind velocity have great influence on the dynamic responses of the bridge.
     5. Considering the nonlinear relation between displacement and strain, a dynamic model of simply-supported bridge with moving wheel-sprung mass is established, and the dynamic differential equations of bridge with generalized coordinates are derived, which is solved by the Newmark numerical integration and the direct interactive method. The proposed analysis model is validated with a real highway bridge. On this basis, the analysis method is investigated for nonlinear dynamic responses of non-simply-supported bridges subjected to running train, which is the basic study for the nonlinear analysis of complex train model and long-span bridge. The influence of initial force in the hangers and large displacement effect of the Jiujiang Yangtze River Bridge are calculated. By taking the Wufengshan suspension bridge with the main span1120m as an example, and considering the geometric nonlinear characteristics of the long-span suspension bridge, the nonlinear dynamic responses of wind-train-bridge system are analyzed. The influences of structure geometric nonlinearity, wind velocity and train speed are analyzed, and are compared with those of the Jiujiang steel arch bridge. The corresponding conclusions are as following:
     (1) The initial forces of gravity and dead load in the main cable and·suspenders may increase the structural stiffness and the frequencies of the bridge, but not influence its vibration, modes.
     (2) The geometric nonlinearity of the structure does not influence the shape of bridge displacement and acceleration histories, but reduces the maximum values of the responses.
     (3) The static wind makes the bridge to produce a biased lateral displacement, and the fluctuating wind makes it to vibrate around the static displacement. The wind load effect to the Wufengshan suspension bridge is the same to the Jiujiang steel arch bridge.
     (4) The bridge vibration will be exacerbated under higher wind velocity. The lateral and torsional displacements and accelerations are affected significantly by wind velocity. The vertical responses will be exacerbated when the wind velocity is high enough, which is different to the results of the Jiujiang steel arch bridge.
     (5) Train speed has certain influences on the dynamic response of the bridge, and especially the influence to the vertical displacement is obvious. While the lateral and torsional displacements and accelerations are more sensitive to the wind velocity.
     (6) Influence of the large displacement increases with the bridge displacement, but it is not a linear relation between the nonlinear error and displacement.
引文
[1]姚玲森.桥梁工程[M].北京,人民交通出版社,2008.
    [2]范立础.桥梁工程[M].北京,人民交通出版社,2001.
    [3]郑建中.国高速铁路桥梁建设关键技术[J].中国工程科学,2008, 10(7):18-27.
    [4]傅志寰.中国铁路提速工程管理的探索与创新[J].铁道建筑技术,2002,(1):1-6.
    [5]杨绍举.列车提速引起的桥梁病害及对策[J].铁道建筑,2004, 10:1-2.
    [6]曹雪琴.钢桁梁桥横向振动[M].北京:中国铁道出版社,1991.
    [7]雷俊卿.大跨度桥梁结构理论与应用[M].北京:清华大学出版社,北京交通大学出版社,2007.
    [8]夏禾,张楠.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005:1-28.
    [9]雷俊卿.自锚式悬索桥主要构件刚度对结构的影响分析[J].北京交通大学学报,2011,35(1):68-72,78.
    [10]Luo Xiu. An applicable assessment methodology for running safety of railway vehicles during earthquakes [J]. Journal of JSCE,2001,197-206.
    [11]Yang Y.B., Wu Y.-S. Dynamic stability of trains moving over bridges shaken by earthquakes [J]. Journal of Sound and Vibration,2002,258(1):65-94.
    [12]Chul-Woo Kim, Mitsuo Kawatani. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion", Earthquake Engineering and Structural Dynamics,2006,35:1225-1245.
    [13]熊建珍,高芒芒,俞翰斌.天兴洲长江大桥斜拉桥在地震作用下的车-桥耦合振动分析[J].中国铁道科学,2006, 27(5):54-59.
    [14]谭长建,祝兵.地震作用下高速列车与桥梁耦合振动分析[J].振动与冲击,2009, 28(1):4-8.
    [15]韩艳,夏禾.地震作用下列车过桥安全性分析[J].中国安全科学学报,2006, 16(7):24-30.
    [16]韩艳,夏禾,张楠.考虑非一致地震输入的车-桥系统动力响应分析[J].中国铁道科学,2006,27(5):46-53.
    [17]阎贵平,夏禾.列车与刚梁柔拱组合系桥系统的地震响应分析[J].北方交通大学学报,1994,18(1):10-16.
    [18]Gu M, et al. Fatigaue life estimation of steel girder of Yangpu cableOstayed bridge due to buffeting[J]. Wind Engineering,1999,80:383-400.
    [19]Zhu L D, Xu Y L, Xiang H F. Tsing Ma bridge deck under skew winds—Part Ⅱ:flutter derivatives[J]. Wind Engineering and Industrial Aerodynamics,2002,807-837.
    [20]夏禾等.风和列车荷载共同作用下刚梁柔拱组合系桥的动力响应研究[A].全国桥梁学术大会论文集[C].上海:同济大学出版社,1992,1063-1770.
    [21]顾明,徐幼麟.带人工雨线的拉索在风激励下的响应[J].应用数学和力学,2002(10):1047-1054.
    [22]张楠,夏禾等.京沪高速铁路南京大胜关长江大桥风-车-桥耦合振动分析[J].中国铁道科学,2009(1):41-48.
    [23]Scanlan R H, Jones N P. Aeroelastic analysis of cable-stayed bridges[J]. Structural Engineering, ASCE,1990,116(2):279-297.
    [24]Lin Y K, Yang J N. Multimode bridge response to wind excitations[J]. Engineering Mechanics, ASCE,1983,109(2):586-603.
    [25]周述华.大跨度悬索桥空间非线性抖振响应仿真分析[D].成都:西南交通大学博士学位论文,1993.
    [26]郭薇薇.风荷载作用下大跨度桥梁的动力响应及行车安全性分析[D].北京:北京交通大学,2004.
    [27]GUO W. W., XIA H., XU Y.L. Running safety analysis of a train on the Tsing Ma Bridge under turbulent wind[J]. Earthquake Engineering and Engineering Vibration,2010,9(3):307-318.
    [28]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展[J].土木工程学报,2003(4):3-8.
    [29]Allan Larsen. Advances in aeroelastic analyses of suspension and cable-stayed bridges[J]. Journal of wind Enigeering and Industrial Aerodynamics,1998:73-90.
    [30]Yau J.D. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations [J]. Journal of Sound and Vibration,2009,1-16.
    [31]Yau J.D. Vibration of arch bridges due to moving loads and vertical ground motions [J]. Journal of Chinese Institute of Engineers,2006,29:1017-1027.
    [32]Yau J.D., Yang Y.B.. Vertical accelerations of simple beams due to successive loads traveling at resonant speeds [J]. Journal of Sound and Vibration,2006,289:210-228.
    [33]Zhang Nan, Xia He. Vehicle-bridge vibration analysis under high-speed trains [J]. Journal of Sound & Vibration,2008,268:103-113.
    [34]Yang YB, Wu YS. A versatile element for analyzing vehicle-bridge interaction response [J]. Engineering Structures,2001,23:452-69.
    [35]Xia He, Xu Y.L., Chan T.H.T.. Dynamic interaction of long suspension bridges with running trains [J]. Journal of Sound & Vibration,2000,237(2):263-280.
    [36]Xia He, De Roeck G, Zhang Nan. Maeck J. Dynamic analysis of high speed railway bridge under articulated trains [J]. Computers & Structures,2003,81:2467-2478.
    [37]Xia He, Zhang Nan, De Roeck G. Experimental analysis of high speed railway bridge under Thalys trains [J]. Journal of Sound & Vibration,2003,268:103-113.
    [38]Xia He, Zhang Nan. Dynamic analysis of railway bridge under high speed trains [J]. Computers & Structures,2005,83 (1):1891-1900.
    [39]Xia He, Zhang Nan. Experimental analysis of railway bridge under high speed trains [J]. Journal of Sound & Vibration,2005,282(2):517-528.
    [40]Xia He, Guo Weiwei. Lateral dynamic interaction analysis of a train-girder-pier system [J]. Journal of Sound & Vibration,2008, (318):927-942.
    [41]Xia H, et al. Dynamic analysis of rail transit elevated bridge with ladder track [J]. Frontiers of Architecture and Civel Engineering in China,2009,3(1):2-8.
    [42]严国敏.现代悬索桥[M].北京:人民交通出版社,2002.
    [43]周孟波.悬索桥手册[M].北京:人民交通出版社,2003.
    [44]项海帆.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
    [45]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,2000.
    [46]沈火明.移动荷载作用下桥梁的振动理论及非线性研究[D].成都:西南交通大学,2005.
    [47]吴庆雄.三维杆系结构的几何非线性有限元分析[J].工程力学,2007,24(12):19-24.
    [48]刘星庚.大跨度桥梁中的几何非线性问题[J].湖南工程学院学报,2003,13(4):64-67.
    [49]唐茂林,沈锐利,强士中.大跨度悬索桥非线性静动力分析与软件开发[J].桥梁建设, 2000,1:9-12.
    [50]洪锦如.悬索桥的非线性分析[J].上海力学,1995,16(4):323-331.
    [51]潘永仁,杜国华,范立础.悬索桥恒载结构几何形状及内力的精细计算[J].中国公路学报,2000,13(4),33-36.
    [52]潘永仁,范立础,杜国华.悬索桥架设过程中吊索长度调整的计算方法[J].同济大学学报,27(2):239-242.
    [53]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学博士学位论文,2003
    [54]傅强.悬索桥空间非线性分析[J].同济大学学报,1997,25(3),364-368.
    [55]张卉,王志清.悬索桥有限元建模及动力特性分析[J].华中科技大学学报,2006,23(2),25-37.
    [56]潘家英,张国政,程庆国.大跨度桥梁极限承载力的几何与材料非线性耦合分析[J].土木工程学报,2000,33(1):5-8.
    [57]张新军,孟松兔,陈艾荣等.大跨度桥梁非线性空气静力和动力行为研究[J].桥梁建设,2001,6,4-7.
    [58]张新军.大跨径悬索桥空气静力和动力分析的影响因素研究[J].计算力学学报,2007,24(3),285-288.
    [59]华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997.
    [60]P.H.Wang, T.C.Tseng, C.G.Yang. Initial shape of cable-stayed bridges [J]. Computers&structures,1993,47(1):111-123.
    [61]Y.B.Yang. Wind-induced aerostatic instability of cable-supported bridges by a two-stage geometric nonlinear analysis[J]. Interaction and Multiscale Mechanics,2008,1(3),381-396.
    [62]程进,江见鲸,肖汝诚.考虑几何与材料及静风荷载的非线性因素的大跨径桥梁静风稳定分析方法[J].应用力学学报,2002,19(4),117-121.
    [63]郭棋武.大跨斜拉桥的非线性及可靠性分析[D].武汉,湖南大学,2007.
    [64]王贵春,潘家英,张欣.大跨度铁路斜拉桥车桥耦合振动非线性分析[J].应用力学学报,2008,25(3):524-528.
    [65]王贵春,潘家英.铁路斜拉桥车激振动非线性分析方法[J].铁道工程学报,2008,(7):31-35.
    [66]徐凯燕.大跨度斜拉桥非线性地震反应时程分析及减、隔震研究[D].华南理工大学,2009.
    [67]戴鹏,郝宪武,狄谨.大跨径PC斜拉桥地震响应非线性分析[J].郑州大学学报,2006,27(4):79-83
    [68]李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社,2002.
    [69]方绪镯.大跨度连续钢桁梁拱桥极限承载力研究与非线性因素影响分析[D].成都:西南交通大学硕士学位论文,2009.
    [70]卜一之,杨兴旺.大跨度悬索拱桥非线性分析[J].西南交通大学学报,2002,4:357-361.
    [71]张建东.CFRP拉索系杆拱桥非线性静力性能研究[D].武汉:湖南大学硕士学位论文,2005.
    [72]谢开仲.大跨度钢管混凝土拱桥非线性地震反应分析与研究[D].南宁:广西大学,2005.
    [73]吴玉华,元兴军,郭剑飞.行波效应下大跨钢管混凝土拱桥的非线性地震响应分析[J].公路交通科技,2011,28(1),80-85.
    [74]陈峰,胡大琳.大跨径钢管混凝土拱桥非线性静风稳定性[J].长安大学学报,2006,26(2), 42-46.
    [75]I M Biggs. Introduction to Structural Dynamics[M]. Mc-Graw-Hill Book Co., Inc., New York,1964.
    [76]L Fryba. Dynamic behaviour of bridges due to high speed trains[A]. Bridges for high speed railways[C]. Potro,2004,137-158.
    [77]张楠.高速铁路铰接式列车的车桥动力耦合问题的理论分析与试验研究[D].北京:北方交通大学博士学位论文,2002.
    [78]Chu K.H., et al.. Dynamic Interaction of Railway Train and Bridges[J]. Vehicle System Dynamics,1980,9(4),207-236.
    [79]Fryba L. Vibration of Solids and Structures Under moving Loads[M]. Groningen, Noordhoff International Publishing,1972.
    [80]松浦章夫.高速铁路にぉける车辆と桥桁の动的相互作用[R].铁道技术研究资料,1974,14-17.
    [81]松浦章夫.高速铁路にぉける车辆と桥桁の动的举动に关する研究[J].土木学会论文集.1976,258(12):35-47.
    [82]松浦章夫.二轴货车走行性からみた长大吊桥の折ゎ角限度[R].铁道技术研究报告,1978,1806:1-44.
    [83]夏禾,徐幼麟,阎全胜.大跨度悬索桥在风与列车荷载同时作用下的动力响应分析[J].铁道学报,2002(4):83-91.
    [84]阎贵平,夏禾.列车-斜拉桥系统在风载作用下的动力响应[J].北方交通大学学报,1995,19(2):131-136.
    [85]郭薇薇,夏禾,张楠.武汉天兴洲大跨度桥梁方案的动力分析[A].上海:中国土木工程学会桥梁及结构工程分会第十五次年会论文集,2002:461-468.
    [86]郭薇薇,夏禾,徐幼麟.风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J].工程力学,2006,23(2):103-110.
    [87]郭薇薇,夏禾.直线电机列车作用下高架桥的动力响应分析[J].中国铁道科学,2007,28(4):55-60.
    [88]W.W.Guo, Y.L.Xu, H.Xia, W.S.Zhang, K.M.Shum. Dynamic Response of Suspension Bridge to Typhoon and Trains II:Numerical Results[J]. Journal of Structural Engineering, ASCE, 2007,133(1),12-21.
    [89]W.W.Guo, He Xia, G.J.Sun. Dynamic Analysis of Train-Bridge System Subjected to Cross Winds. Proceedings of the 3rd International Symposium on Environmental Vibrations: Prediction, Monitoring, Mitigation and Evaluation[A]. National Taiwan University, Taipei, 2007,381-386.
    [90]郭文华.中小跨度铁路桥梁横向刚度分析[D].长沙:长沙铁道学院,1999.
    [91]郭文华,曾庆元.下承式钢板梁桥空间振动计算分析[J].振动与冲击,2003,22(3):1-5.
    [92]郭文华,陈代海,李整.二期恒载对大跨度斜拉桥车桥耦合振动的影响[J].中南大学学报,2011,42(8):2423-2429.
    [93]何发礼,李乔.曲率和超高对曲线梁桥车桥耦合振动的影响[J].桥梁建设,1999,3:5-7.
    [94]何发礼.高速铁路中小跨度曲线梁桥车桥耦合振动研究[D].成都,西南交通大学,1999.
    [95]李乔.偏心支承曲线梁桥有限元模型[J].桥梁建设,2000,3:8-10.
    [96]沈锐利.高速铁路线上简支梁桥车桥共振问题初探[J].西南交通大学学报,1995,30(3):275-282.
    [97]沈锐利.高速铁路简支梁桥竖向允许刚度及其分析方法[J].西南交通大学学报,1995,30(4):368-375.
    [98]沈锐利.高速铁路简支梁桥竖向振动响应研究[J].中国铁道科学,1996,17(3):24-34.
    [99]唐贺强,沈锐利.简支梁桥有载频率分析[J].西南交通大学学报,2004,39(5):628-832.
    [100]王忠斌,沈锐利,唐茂林.悬索桥钢桁架加劲梁施工方法分析[J].石家庄铁道学院学报,2006,1:117-121.
    [101]沈锐利,廖海黎.悬索桥静动力空间非线性计算有限元模型及其应用[A].全国桥梁结构学术大会论文集.上海:同济大学出版社,1992:935-940.
    [102]Chu K.H., et al.. Railway-Bridge Impact:Simplified Train and Bridges[J]. Journal of Structural Engineering, ASCE,1979,105(9):1823-1844.
    [103]Bhatti M.H.. Vertical and Lateral Dynamic Response of Railway Bridges due to Nonlinear Vehicle and Track Irregularities[D]. Thesis, Illinois Institute of Technology, Chicago, Illinois, 1982.
    [104]Wang T.L.. Ranp/Bridge interface in railway prestressed concrete bridge[J]. Structural Engineering, ASCE,1990,116(6).
    [105]Tanabe M., Yamada Y.. Modal mothed for interaction of train and bridge[J]. Computer Structures,1987,27(1):119-127.
    [106]翟婉明.车辆-轨道耦合动力学[M].北京:科学出版社,2007.
    [107]翟婉明.车辆-轨道耦合动力学(第二版)[M].北京:中国铁道出版社,2002.
    [108]N K Cooperrider, et al. Analytical and Experimental Determination of nonlinear Wheel/rail Constrains[A]. Proc. of ASME, Symposium on Equipment Dynamics,1979.
    [109]De Pater, Yang G. The Geometrical Contact Between Track and Rail [J]. Vehicle System Dynamics,1988,17(3):126-135.
    [110]Garg V.K.著,沈利人译.机车车辆轨道系统动力学[M].成都:西南交通大学出版社,1996.
    [111]詹斐生.机车动力学[M].北京:中国铁道出版社,1990.
    [112]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [113]J J Kalker. Survey of Wheel-Rail Rolling Contact Theory [J]. Vehicle System Dynamics, 1979,8(4):317-358.
    [114]高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究[D].北京:铁道部科学研究院,2001.
    [115]葛玉梅,袁向荣.机车-桁架桥梁耦合振动研究[J].西南交通大学学报,1998,33(2),138-142.
    [1]6]宁晓骏,何发礼,强士中.车桥耦合振动研究中轮轨接触几何非线性的考虑[J].桥梁建设,1999,2,8-10.
    [117]翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社,2002.
    [118]陈宪麦,王澜等.用于铁路轨道不平顺预测的综合因子法[J].中国铁道科学,2006,6:27-31.
    [119]高建敏,翟婉明.既有干线轨道不平顺区段管理长度分析[J].铁道建筑,2009,5:105-108.
    [120]高建敏,翟婉明,徐涌.铁路有砟轨道下沉及高低不平顺发展预研究[J].中国铁道科学, 2009,30(6):132-134.
    [121]林玉森,李小珍,强士中.轨道不平顺激励下高速铁路桥上列车走行性研究[J].铁道学报,2005,27(6):96-100.
    [122]蔡文锋.遂渝线无砟轨道不平顺统计规律研究[D].成都:西南交通大学硕士学位论文,2008.
    [123]Yang Y.B., et al. Impact formulas for vehicle moving over simple and continuous beams [J]. Structural Engineering, ASCE,1995,121(11):1644-1650.
    [124]Yang Y.B., et al. Vehicle-bridge interaction analysis by dynamic condensation method [J]. Structural Engineering, ASCE,1995,121(11):1636-1643.
    [125]Yang Y.B., et al. Vehicle-bridge interaction element for dynamic analysis[J]. Structural Engineering, ASCE,1997,123(11):1512-1518.
    [126]Yang Y.B., et al. Vibration of simple beams due to trains moving at high speeds [J]. Engineering Structure,1997,19(11):936-944.
    [127]Green M.F., Cebon D. Dynamic response of highway bridges to heavy vehicles loads:theory and experimental validation [J]. Sound & Vibration,1994,170(1):51-78.
    [128]Green M.F., et al. Effects of vehicle suspension design on dynamics of highway bridges [J]. Structural Engineering, ASCE,1995,121(2):272-282.
    [129]杨岳民,潘家英.大跨度铁路桥梁车桥动力响应理论分析及试验研究[J].中国铁道科学,1995(4):1-16.
    [130]冯星梅.中小跨度桥梁横向振动模拟及适应快速行车结构型式的研究[D].北京:铁道科学研究院博士学位论文,2000.
    [131]潘家英,高芒芒.铁路车线桥系统动力分析[M].北京:中国铁道出版社,2008.
    [132]岳阻润.铁路桥梁三维耦合振动仿真与墩台状态评估[D].北京:铁道科学研究院博士学位论文,2002.
    [133]夏禾,郭薇薇,张楠.车桥系统共振机理和共振条件分析[J].铁道学报,2006(5):54-58.
    [134]Xu YouLin, Zhang Nang, Xia He. Vibration of coupled train and cable-stayed bridge systems in cross winds[J]. Engineering Structure,2004(26):1389-1406.
    [135]Xia He, Zhang Nang, Guo WeiWei. Analysis of resonance mechanism and conditions of tain-bridge system. Sound & Vibration,2006,297(1):810-822.
    [136]张楠,夏禾.地震对多跨简支梁桥上列车运行安全的影响[J].世界地震工程,2001,17(4):43-49.
    [137]沈火明,肖新标.求解车桥耦合振动问题的一种数值方法[J].西南交通大学学报,2003,38(6):658-662.
    [138]林玉森,李小珍,强士中.车桥耦合振动中2种轮轨接触模型的比较分析[J].中国铁道科学,2007(6):70-74.
    [139]黄林.列车风与自然风联合作用下的车-桥耦合振动分析[D].成都:西南交通大学博士学位论文,2007.
    [140]晋智斌.车-线-桥耦合系统及车-桥随机振动[D].成都:西南交通大学博士学位论文,2007.
    [141]单德山,李乔.车桥耦合振动数值模拟及软件实现[J].交通运输,1999,6:662-667.
    [142]李小珍.高速铁路列车~桥梁系统耦合振动理论及应用研究[D].博士学位论文,西南交通大学,2000.
    [143]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社.1999.
    [144]郭文华,郭向荣等.大跨度斜拉桥空间振动计算分析[J].振动与冲击,1998,17(1):30-33.
    [145]徐庆元.高速铁路桥上无缝线路纵向附加力三维有限元静力与动力分析研究[D].长沙:中南大学博士学位论文,2005.
    [146]邓子铭.强风作用下大跨度刚构连续桥梁的车-桥耦合振动分析[D].长沙:中南大学博士学位论文,2007.
    [147]陈政清.桥梁风工程[M].北京:人民交通出版社,2005.
    [148]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展[J].土木工程学报,2003(4):3-8.
    [149]张新军,陈艾荣,项海帆.大跨度桥梁的三维非线性颤振频域分析[J].同济大学学报,2001(3):20-24.
    [150]Allan Larsen. Advances in aeroelastic analyses of suspension and cable-stayed bridges[J]. Journal of wind Enigeering and Industrial Aerodynamics,1998:73-90.
    [151]Boonyapinyo V., Yamada H., Miyata T. Wind-induced nonlinear lateral-torsion buckling of cable-stayed bridges[J]. Journal of Structural Engineering, ASCE,1994(2):486-506.
    [152]Chen X.Z., Kareem A., F.L.Han. Nonlinear aerodynamic analysis of bridge under turbulent winds:the new frontier in bridge aerodynamics[A]. Proceedings of the international Conference on Advances in structural Dynamics, HongKong, China,2000:475-482.
    [153]Jain a, Jones N P, Scanlan R.H. Couple flutter and buffeting analysis of long-span bridges[J]. Journal of Structure Engineering, ASCE,1996(8):707-721.
    [154]Xu YouLin, Xia He, et al. Dynamic response of suspension bridge to high wind and running train[J]. Bridge Engineering, ASCE,2003,8(1):46-55.
    [155]XuYL, Sun DK, KoJM, Lin J H. Fully coupled buffeting analysis of Tsing Ma suspension bridge [J]. Wind Engineering and Industrial Aerodynamics,2000,85:97-117.
    [156]Zhu L D, Xu Y L, Xiang H F. Tsing Ma bridge deck under skew winds—Part Ⅰ:aerodynamic coefficients[J]. Wind Engineering and Industrial Aerodynamics,2002,781-805.
    [157]项海帆,林志兴.公路桥梁抗风设计指南[M].人民交通出版社,1996.
    [158]陈艾荣.桥梁断面18个颤振导数自由振动识别[J].同济大学学报,2002,30(5):544-550.
    [159]宋馨,贾丽君,肖汝诚,项海帆.大跨度悬索桥在静风荷载下的动力特性研究[J].计算力学学报,2001,18(2):221-224.
    [160]廖海黎.大跨悬索桥风致振动研究[D].成都:西南交通大学博士学位论文,1996.
    [161]刘高,王秀伟,强士中等.大跨度悬索桥颤振分析的能量方法[J].中国公路学报,2000,13(3):20-24.
    [162]李永乐,强士中,廖海黎.考虑车辆位置影响的风-车-桥系统耦合振动研究[J].桥梁建设,2004(3):1-4.
    [163]陈英俊,于希哲.风荷载计算[M].北京:中国铁道出版社,1998.
    [164]郭向荣,曾庆元.京沪高速铁路南京长江斜拉桥方案行车临界风速分析[J].铁道学报,2001(5):612-616.
    [165]Dinaa G., Cheli F. Dynamic interaction of railway systems with large bridges[J]. Vehicle System Dynamics,1998 (1):71-106.
    [166]Xia He, Guo Wei Wei, Zhang Nang. Dynamic analysis of a train-bridge system under wind action[J]. Computers and Structures,2008:1845-1855.
    [167]Xu YouLin, Xia He, et al. Dynamic response of suspension bridge to high wind and running train [J]. Bridge Engineering, ASCE,2003,8(1):46-55.
    [168]葛玉梅,李永乐,何向东.作用在车-桥系统上的风荷载的风洞试验研究[J].西南交通大学学报,2001(6):612-616.
    [169]葛玉梅,周述华,李龙安.斜拉桥在考虑风效应时的车-桥耦合振动[D].西南交通大学学博士学位论文,2001.
    [170]李永乐,强士中,廖海黎.风-车-桥系统空间耦合振动研究[J].土木工程学报,2005(7):62-70.
    [171]李永乐.风-车-桥系统非线性空间耦合振动研究[D].成都:西南交通大学博士学位论文,2003.
    [172]黄林.列车风与自然风联合作用下的车-桥耦合振动分析[D].成都:西南交通大学博士学位论文,2007.
    [173]Soon-Duck Kwo, Jun-Seok Lee, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures, 2008,30:3445-3456.
    [174]韩万水.杭州湾跨海大桥车桥空间耦合振动参数分析[J].公路交通科技,2008,25(5):56-60.
    [175]Shen-Haw Ju, Hung-Ta Lin. A finite element model of vehicle-bridge interaction considering braking and acceleration[J]. Journal of Sound and Vibration,2007,303:46-57.
    [176]彭献,殷新锋,方志.变速车辆与桥梁的耦合振动及其TMD控制[J].湖南大学学报(自然科学版),2006,33(5):61-66.
    [177]陈上有,夏禾,战家旺.变速移动荷载作用下简支梁的动力响应分析[J].中国铁道科学,2007,28(6):40-46.
    [178]彭献,刘子建,洪家旺.匀变速移动质量与简支梁耦合系统的振动分析[J].工程力学,2006,23(6):106-110.
    [179]M.A.Saadeghvaziri. Finite Element Analysis of Highway Bridges Subjected to Moving Loads [J]. Computer and Structure,1993,49:837-842.
    [180]K.Liu, E. Reynders, G. De Roeck, G. Lombaert. Experimental and numerical analysis of a composite bride for hig-speed trains [J]. Journal of Sound and Vibration,2009,320:201-220.
    [181]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.
    [182]张海龙.桥梁的结构分析程序设计施工监控[M].北京:中国建筑工业出版社,2003.
    [183]刘尔烈.有限单元法及程序设计[M].天津:天津大学出版社,2004.
    [184]曹映泓,项海帆,周颖.大跨度桥梁颤振和抖振统一时程分析[J].土木工程学报,2000,33(5):57-61.
    [185]Cao Y H, Xiang H F, Zhou Y. Simulation of stochastic wind velocity field on long-span bridges[J]. Engineering Mechanics, ASCE,2000,126(1):1-6.
    [186]建筑结构荷载规范[S].北京:中国建筑工业出版社,2006.
    [187]肖勇刚,朱素红.车桥耦合系统的非线性动力分析[J],振动与冲击,2007,26(8):104-108
    [188]刘正兴,孙雁,王国庆.计算固体力学[M].上海:上海交通大学出版社,2000.
    [189]刘锦阳,崔麟.热荷载作用下大变形柔性梁刚柔耦合动力学分析[J].振动工程学报,2009,22(1):49-53.
    [190]秦荣.工程结构非线性[M].北京:科学出版社,2006.
    [191]潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2004.
    [192]刘星庚,伍小平.大跨度桥梁中的几何非线性问题[J].湖南工程学院学报,2003, 13(4):64-67.
    [193]徐洪涛、廖海黎等.坝凌河大桥节段模型风洞试验研究[M].世界桥梁,2009,4:30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700