用户名: 密码: 验证码:
大容量汽轮发电机转子槽楔铜合金研制及高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的高速发展,我国对电力的需求迅猛增长,而超(超)临界汽轮发电机组因热效率高、煤耗低、产生的污染少,受到国内的高度重视与发展。铜合金槽楔是汽轮发电机组核心构件转子的重要结构件之一,长期在高温下连续工作,为了确保发电机组的安全可靠运行,研制综合性能优良的超(超)临界汽轮发电机用槽楔铜合金,替代进口产品,实现国产化,具有重要的工程应用价值。
     本文利用我国资源丰富、不用或少用贵重元素、对环境产生污染少的元素,研制了一系列的槽楔铜合金,并运用万能材料试验机、硬度机和涡流导电仪等手段来研究热处理过程中铜合金力学性能和电学性能的变化,运用金相显微镜、SEM、XRD等仪器来研究合金元素的加入对材料微观结构的影响和变化规律,并从理论上分析和解释其相关机制。同时,考虑到实际工程中的应用,对部分合金的高温性能作了初步的研究。研究结果表明:
     (1)新研制的9种合金,经(950±10℃)×1.5h固溶+30~40%冷变形+(480±20℃)×3~4h时效可获得较佳的综合性能,在室温性能研究中,CuNiCrSiBeZr系2#合金、CuNiCoCrBeZr系4#、5#、6#合金均达到了0#合金的性能指标,2#合金的硬度达到HB 225,导电率为47.24 %IACS,抗拉强度达到831 MPa,屈服强度达到765 Mpa,延伸率为16.09 %;在427℃高温拉伸试验中,CuNiCoCrBeZr系4#、5#和6#合金均达到了0#合金指标性能,其中,4#合金的抗拉强度σb为531MPa,屈服强度σ0.2为529MPa,延伸率δ5达到了11.5 %。
     (2)室温拉伸断口分析表明,CuNiCrSiBeZr系3#合金和CuNiCoCrBeZr系6#合金为韧性断裂,CuNiCrBeSiZr系7#合金为韧性的准解理断裂;高温拉伸断口分析表明,CuNiCrSiBeZr系3#合金为沿晶脆性断裂,CuNiCoCrBeZr系6#合金为较多微孔聚集型韧窝和较少准解理断裂组成的混合断裂;而且5#和6#合金的软化温度分别达到了616℃、606℃,具有较高的抗软化性能。
     (3)经过分析,CuNiCrSiBeZr系合金的时效析出相为Cr、Cr2Zr、Cu3Zr、Ni5Si2,可能含有CuBe、NiBe、ZrBe等细小粒子,CuNiCoCrBeZr系合金的时效析出相为Cr、Cr2Zr、Ni11Zr9、Co0.52Cu0.48,可能含有CuBe、NiBe、ZrBe、CoBe等细小粒子,CuNiCrBeSiZr系合金的析出相为Cr、Cr2Zr、Cu3Cr、Ni10Zr7、NiSi,可能含有CuBe、NiBe、ZrBe等细小粒子。这些多种第二相化合物的析出,正是合金中多元微量元素交互作用的结果,使合金获得比较好的强化效果。
     (4)CuNiCoCrBeZr系的4#、5#和6#合金的高温硬度比0#合金CuCo2BeZr的高温硬度高,且4#、5#和6#合金的高温硬度依次增加;在427℃,250MPa的条件下,CuNiCoCrBeZr系6#合金与0# CuCo2BeZr合金相比具有较好的抗蠕变性能,断裂时间长达149.7 h,稳态蠕变速率为4.96×10~(-5) h~(-1),裂纹呈沿晶断裂为主,部分穿晶断裂的混合断裂模式。
     (5)对新研制的CuNiCoCrBeZr系6#合金进行高温蠕变试验,但CuNiCoCrBeZr系4#、5#和6#合金,均能满足汽轮发电机组转子在高温恶劣条件下的使用要求,其中,6#合金的硬度达到HB 247,导电率为52.93 %IACS,抗拉强度达到861 MPa,屈服强度达到805 Mpa,延伸率为15.08 %;在427℃高温拉伸试验中,其抗拉强度σb为596MPa,屈服强度σ0.2为590MPa,延伸率δ5达到了10.2 %。
With the rapid development of the national economy, China's electricity demands have rapid growth, while the (ultra) supercritical turbine generator unit for high thermal efficiency, lower coal consumption, less pollution has been given great attention and been developed in China. Copper alloy slot wedge is one of the important structural components of turbine rotor, long-term continuous work at high temperature, in order to ensure safe and reliable operation of generating units, developing a good overall performance with (ultra) supercritical turbine-generator wedge of copper alloy, to replace imported products, to achieve localization has important engineering application value.
     This paper manufactured a series of slot wedge copper alloys with rich in natural resources, not or less of precious elements and elements of less pollution to the environment, universal testing machines, hardness machines and means of eddy current conductivity meter are used to study the copper alloys the mechanical and electrical properties in different heat treatment process, investigated impact of the microstructure when alloy elements added through metallographic microscope, SEM, XRD, and other equipments, and then analzyed and explained in theory. At the same time, taking into account the practical engineering application, it made a preliminary study about high temperature properties of some alloys. The results are shown as follows:
     (1) The new developed nine kinds of alloys got a better overall performance after solid solution at (950±10℃)×1.5 h and 30~40 % cold deformation and ageing at (480±20℃)×3~4 h. 2# alloy of CuNiCrSiBeZr series, 4#, 5# and 6# alloys of CuNiCoCrBeZr series all reached a performance index 0# alloy in the performance test of room temperature, and the values of hardness and electrical conductivity of 2# alloy are HB 225 and 47.24 %IACS, it’s tensile strength, yield strength and elongation can reach 831 MPa, 765 Mpa and 16.09 %; 4#, 5# and 6# alloys of CuNiCoCrBeZr series all reached a performance index 0# alloy in the high temperature tensile test at 427℃, thereinto, tensile strength, yield strength and elongation of 6# alloy can reach 596 MPa, 590 Mpa and 10.2 %.
     (2) Tensile fracture of room temperature analysis show that 3# and 6# alloys are ductile rupture, and 7# alloy is tough quasi-cleavage rupture; Tensile fracture of high temperature analysis show that 6# alloy has a mixed fracture with plenty of microvoid accumulation dimples and less quasi-cleavage rupture; Moreover softening temperature of 5# and 6# alloys reached 616℃and 606℃, and has a high resistance to softening performance.
     (3) The analysis show that, precipitates in alloys of CuNiCrSiBeZr series are Cr, Cr2Zr, Cu3Zr and Ni5Si2, may contain CuBe, NiBe, ZrBe and other small particles; Precipitates in alloys of CuNiCoCrBeZr series are Cr, Cr2Zr, Ni11Zr9 and Co0.52Cu0.48, may contain CuBe, NiBe, ZrBe, CoBe and other small particles; Precipitates in alloys of CuNiCrBeSiZr series are Cr, Cr2Zr, Cu3Cr, Ni10Zr7 and NiSi, may contain CuBe, NiBe, ZrBe and other small particles; Because interaction of multiple trace elements in the alloys result in various precipitation of second phase compounds, and gain good strengthening effect.
     (4) High temperature hardness of 4#, 5# and 6# alloys are higher than 0# alloy, and high temperature hardness of 4#, 5# and 6# alloys increase in turn; 6# alloy of CuNiCoCrBeZr series compared with 0# CuCo2BeZr alloy has good creep resistance, fracture time of 6# alloy is up to 149.7 h, steady-state creep rate is 4.96×10~(-5) h~(-1), cracks are mixed fracture modes with mainly intergranular fracture and partial transgranular fracture.
     (5) We only researched high temperature creep of 6# alloy of the new developed CuNiCoCrBeZr series, but 4#, 5# and 6# alloys of CuNiCoCrBeZr series can meet the turbine generator rotor at high temperature using requirement under bad conditions, in the performance test of room temperature, and the values of hardness and electrical conductivity of 6# alloy are HB 247 and 52.93 %IACS, it’s tensile strength, yield strength and elongation can reach 861 MPa, 805 Mpa and 15.08 %; in the high temperature tensile test at 427℃, tensile strength, yield strength and elongation of 6# alloy can reach 596 MPa, 590 Mpa and 10.2 %.
引文
[1]张静媛,刘明福.关于超临界超超临界发电机组的发展[J].山西科技, 2006, 4: 7-8,10.
    [2]肖汉才,周臻.超临界机组和超超临界机组的优势及在我国大力发展的广阔前景[J].电站系统工程, 2004, 20(5): 8-10.
    [3]杜秋平编译.现实地看待超临界和超超临界电厂[J].国际电力, 2004, 8(6): 16-19.
    [4]毛雪平,王罡,马志勇.超超临界机组汽轮机材料发展状况[J].现代电力, 2005 ,22(1): 69-75.
    [5]陈永阳,林荣文.对于超超临界机组效率提高以及可行性的探讨[J].上海大中型电机, 2005, (1): 40-44.
    [6]孙爱俊,王冀恒,谢春生.新型槽楔合金CuNiCrSi合金时效析出与时效相变动力曲线研究[J].农业装备技术, 2008, 34(1): 25-26.
    [7]赵德文,赵志业,张强. 600MW大电机转子槽楔冷轧工艺研究[J].钢铁研究, 1993(3): 24-27.
    [8]王庆娟,徐长征,郑茂盛,等.高强高导电铜合金的研究现状[J].西安建筑科技大学学报(自然科学版), 2006, 38(5): 731-736.
    [9]何启基.金属力学性能[M].北京:冶金工业出版社, 1982: 193.
    [10]田莳.材料物理性能[M].北京:北京航空航天大学出版社, 2004: 46.
    [11]陈一胜,韩宝军.高强高导铜合金的研究进展[J].南方冶金学院学报, 2004, 25(2): 17-20.
    [12]于永泗,齐民.机械工程材料[M].辽宁:大连理工大学出版社, 2005: 61-62.
    [13]张生龙,尹志明.高强高导铜合金设计思路及其应用[J].材料导报, 2003, 17(11): 26-29.
    [14] Szablewski J, Haimant R. Heat-mechanical treatment for copper alloy [J]. Materials Science and Technology, 1985(1): 1053-1059.
    [15]谢春生,翟启明,徐文清,等.高强度高导电性铜合金强化理论的研究与应用发展[J].金属热处理, 2007, 32(1): 15-16.
    [16]刘技文,等.新型高导电Be2Ni2Cu合金性能研究[J].金属热处理, 1996, 21(1): 39-41.
    [17]董明水,孙爱俊,迟永祥,等. CuCoBeTiZr合金强化工艺与组织和性能研究[J].金属热处理, 2003, 28(8): 25-26.
    [18]孙景明,张华威,胡得胜,等.热处理工艺对CuNiCrBeTi合金组织和性能的影响[J].金属热处理, 2007, 32(8): 81-82.
    [19]冯端.金属物理学(第一卷)[M].北京:科学出版社, 1987: 154.
    [20]崔兰,季小娜.高强高导纯铜线材及铜基材料的研究进展[J].稀有金属, 2004, 28(5): 917-920.
    [21]郑雁军,姚家,李国俊.高强高导电铜合金的研究现状及展望[J].材料导报, 1997, 11(6): 52-55.
    [22] Kim Chang Joo. Effect of element Cr on the conductivity of Cu-Cr alloy [J]. Mater. Por. Manu. Sci, 1994, 2(3): 324-327.
    [23]刘技文.稀土铜铬锆合金性能的研究[J].上海金属(有色分册), 1993, 14(5): 10-13.
    [24]李润霞,李荣德,李晨曦,等.热处理对铸造AlSiCuMg合金硅相形貌及力学性能的影响[J].材料工程, 2003(7): 26-30.
    [25] D L Zhang, L Zheng. The quench sensitivity of cast Al-7wt Pct Si-0.4wt Pct Mg alloy [J]. Metall Mater Trans A, 1996, 27A: 3983-3991.
    [26]温宏权,毛协民,等.高强高导电性铜合金研究现状与展望[J].功能材料, 1995(6): 553-556.
    [27]赵祖德.铜及铜合金材料手册[M].北京:科学出版社, 1993.
    [28]左孝青,王吉坤.有色金属矿产资源的开发及加工技术(加工部分)[M].昆明:云南科技出版社, 1993.
    [29] Funkenbusch P D, Lee J K, Courtney T H. Ductile two-phase alloys: prediction of strengthening at high strains [J]. Metall. Trans., 1987, 18A: 1249-1256.
    [30] Dew-Haughes D. Application of Cu-Nd Composite [J]. Mater Sci & Eng (A), 1993, 168: 35-40.
    [31] Verhoeven J D, Grant N J. Research of Ta Volume in Cu-Ta Alloy [J]. Mater Eng, 1990, 12(2): 127-139.
    [32] Raabe D, Schroch J G Ser. Plastic Deformation of Cr phase in Cu-Cr Composite Rolling [J]. Metall Mater, 1992, 27(2): 211-216.
    [33] Spitzig W A, Sanin V K. Research of Cu-Ta Alloy [J]. Metall Trans (A), 1993, 24A (1): 7-13.
    [34] Jerman G A, Kneller E. Research of Cu-Nd Composite [J]. Metall Trans (A), 1933, 24A (1): 35-42.
    [35] Spilzig W A. Characterization of the strength and microstructure of heavily cold worded Cu-Nb composite [J]. Acta Metall, 1987, 35(10): 24-27.
    [36]曾松岩.一种新型制备金属基复合材料的方法——接触反应法[J].宇航材料工艺, 1995, (5): 26-28.
    [37]楼宏青,眭润舟,任合,等.铜镍铍合金性能及断裂机理研究[J].华东船舶工业学院学报. 1995, (4): 46-49.
    [38]李宏磊,娄花芬,等.铜合金生产技术问答[M].北京:冶金工业出版社. 2008: 51-85.
    [39]刘平,田保红,赵冬梅.铜合金功能材料[M].北京:科学出版社. 2004: 12.
    [40] TU J P, QI W X, YANG Y Z, et al. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy[J]. Wear, 2002, (249): 1021-1027.
    [41] DAVIS J W, KAL1N1N G M. Material properties and design requirements for copper alloys used in ITER[J]. Journal of Nuclear Materials, 1998, 258(263): 323-328.
    [42] Takao H. Performance of EFTEC-64TC alloy in high-strengh and high-conductivity for lead-frame[J]. Journal of the Japan Copper and Brass Rearch Association, 1997, (36): 87-93.
    [43] Rdzawski Z, Stobrawa J. The Mechanical Processing of Cu-Ni-Si-Cr-Mg Alloy[J]. Materials Science and Technology, 1993, 9(2): 142-148.
    [44] Rdzawski Z, Stobrawa J. The Mechanical Processing of Cu-Ni-Si-Cr-Mg Alloy[J]. Materials Science and Technology, 1993, 9(2): 142-148.
    [45]谢春生,周健,任合,周海良.稀土铬锆铜合金强化工艺研究[J].金属热处理, 2001, (6): 12-14.
    [46]《有色金属及其热处理》编写组.有色金属及其热处理[M].北京:国防工业出版社出版, 1981: 5-6.
    [47] ISO5182: 2008, Welding-materials for resistance welding electrodes and ancillary equipment[S].
    [48]姚光远,王振朝,王雨春,等.铜合金QAL10-4-4锻造工艺[J].一重技术, 2006, (3): 31-32.
    [49]罗丰华,尹志民,左铁镛. CuZn(Cr, Zr)合金的热变形行为[J].中国有色金属学报, 2000, 10(1): 12-16.
    [50]周天乐,谢春生,董明水.新型无钴低铍铜基电阻焊电极合金性能研究[J].华东船舶工业学院学报(自然科学版), 2002, 16(2): 21-26.
    [51]刘喜波,董企铭,刘平,等.固溶和时效工艺对接触线用Cu-Ag-Cr合金组织与性能的影响[J].理化检验-物理分册, 2004, 40(8): 379-382,406.
    [52]田荣璋.金属热处理[M].北京:冶金工业出版社, 1985: 186-188.
    [53] [德] R. W.卡恩, P.哈森.材料的相变[M].北京:科学出版社. 1998, 245-267.
    [54]徐玉松,李学浩,陈菊飞,等.热处理工艺对CuNiTiBe合金组织及性能的影响[J].机械工程材料, 2008, 32(10): 31-34, 39.
    [55]行如意,康布喜,苏娟华,等.时效对Cu-Cr-Sn-Zn合金硬度和导电率的影响[J].有色金属, 2004, 56(4): 18-20.
    [56]刘技文,王子元.新型高导电Be-Ni-Cu合金性能研究[J].金属热处理, 1996, (1): 39-41.
    [57]金属机械性能编写组.金属机械性能(修订本)[M].北京:机械工业出版社, 1982, 84-104.
    [58] Orowan E. Symposium on internal stress in metals and alloys[C], institute of metals, 1948: 451.
    [59] Uthanna S. Physical investigations of DC magnetron sputtered indium-tin oxide films[J]. Vacuum, 1996, 47(1): 91-93.
    [60]姚言升. ITO靶材的研制[A]. 94秋季中国材料研讨会论文集[C],北京: C-MRS, 1994:1381.
    [61]李元元,郭国文,张卫文,等. Zr和V对铝铜合金力学性能的影响[J].特种铸造及有色合金, 2002(3): 4-7.
    [62]上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社, 1995, 110-114.
    [63]张廷杰,刘建章,丁旭,等. Ta-12W合金的高温拉伸特性[J].稀有金属材料与工程, 1999, 28(6): 345-348.
    [64]杨宜科,吴天禄,江先美,等编著.金属高温强度及试验[M].上海:上海科学技术出版社, 1986: 57.
    [65]彭成章,钟掘,黄辉.合金元素对铍铜合金的高温力学性能的影响[J].矿山机械, 2001, (12): 42-43.
    [66] J. M. Zhang, Z. Y. Gao, J. Y. Zhuang, et al. Strain-rate Hardening Behavior of Super alloy IN718[J]. Journal of Materials Processing Technology, 1997, (70): 252-257.
    [67] G. Shen, S. L. Semiatin, R. Shivpuri. Modeling Microstructural Developing during the Forging of Waspaloy[J]. Metallurgy and Materials Transaction A. 1995, (36): 1795-1804.
    [68] C. Devadas. The Thermal and Metallurgical State of Steel Strip during Hot Rolling: Part 3. Microstructual Evolution[J]. Metallurgical Transactions A, 2006, (22): 335-342.
    [69]胡建平. IN718合金和Gatorized Waspaloy合金热加工过程的数值模拟[D].冶金部钢铁研究总院博士学位论文. 1999: 126-130.
    [70] S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier, et al. Modeling Grain Size during Hot Deformation of IN 718[J]. Scripta Materialia. 2000, 42(1): 17-23.
    [71]苏德达.原始组织对T10A钢奥氏体晶粒长大的影响[J].金属制品. 2004, 30(4): 45-50.
    [72] V. I. Igoshev, J. I. Kleiman, D. Shangguan, et al. Microstructure Changes in Sn-3.5Ag Solder Alloy During Creep[J]. Journal of Electronic Materials,1998, 27(12): 1367-1371.
    [73] Z. Mei, D. Grivas, M. C. Shine, et al. Superplastic Creep of Eutectic Tin-Lead Solder Joints[J]. Journal of Electronic Materials, 1990, 19(11): 1273-1280.
    [74] G.亨利, D.豪斯特曼.宏观断口学及显微断口学[M].北京:机械工业出版社, 1990: 39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700