用户名: 密码: 验证码:
HRB400E抗震钢筋研制与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑结构的快速发展对建筑用钢材提出了越来越高的要求。特别是在汶川地震后,高强度、高性能抗震钢筋的生产开发成为国内外的研究热点。根据地震时高应变低周疲劳的受力特点,抗震钢筋要求在具有同级别普通钢筋的强度水平外,还需要满足对实测抗拉强度与实测屈服强度特征值之比≥1.25,实测屈服强度与屈服强度特征值之比≤1.30,钢筋的总伸长率不小于9%的条件。
     细晶强化是通过细化晶粒而使金属材料力学性能提高的方法。根据Hall-Petch公式,晶粒细化是目前唯一可以做到既提高强度,又改善塑性和韧性的方法。在钢筋的生产中,普遍采用微合金化和控制轧制的方式来实现晶粒的细化,以获得良好的综合性能,因此,本文研制的HRB400E抗震钢筋将在生产HRB400高强度钢筋的基础上利用钒氮微合金化技术调整钢的化学成分,并通过控制精轧温度与轧后水冷+空冷的冷却方式得到室温细小的铁素体+珠光体组织。
     本论文在转炉冶炼过程中进行钒氮微合金化,随后按照钢坯加热-粗轧-中轧-精轧-冷却的方式控制轧制。为防止出现轧制纤维组织和得到具有大量变形带的奥氏体未再结晶晶粒,从而相变以后能得到细小的铁素体晶粒组织,精轧最后一个道次即终轧温度控制在Ar3即910℃附近。N元素的加入可以促进V元素的析出,通过电解相测得钢筋中的析出钒比例为31.82%。一方面析出钒为奥氏体向铁素体的相变提供较多的非均匀形核位置,有利于奥氏体中先共析铁素体的析出,同时水冷+轧后空冷使钢筋再结晶大部分在珠光体和细片状珠光体转变温度区间进行,可一定程度提高钢筋中珠光体组织的比例,从而改善组织均匀性;另一方面析出钒通过在钢中奥氏体晶界的沉淀钉扎作用达到细化晶粒的目的。
     通过平均截线法测得钢筋的平均晶粒度约为11级,组织均为先共析铁素体+珠光体,由于边部冷却速度较快引起珠光体形核率增加,使珠光体边部含量较心部多,且粗轧温度在890-910℃,可能造成1150℃开轧时的奥氏体成分不均,从而在空冷时产生网状先共析铁素体。
     利用XRF测定了研制出的钢筋的主要化学成分为:(wt%):C=0.24,Mn=1.31,V=0.036,N=0.008,碳当量Ceq=0.47;室温拉伸试验得到钢筋母材的屈服强度为475MPa,抗拉强度632MPa,实测抗拉强度与实测屈服强度特征值之比为1.33,钢筋的实测屈服强度与屈服强度特征值之比1.19,总延伸率约26%;焊接件的平均屈服强度和抗拉强度分别为Rel=473MPa,Rm=610MPa,断裂位置在焊缝,成脆性断裂;钢筋具有良好的反弯性能以及钢筋的表面质量、尺寸精度。所有条件都符合抗震钢筋的国家标准,故通过本文的钒氮微合金化+控制轧制的方式可以成功生产出HRB400E,对工业生产具有较好的指导意义。
The quick development of build structure has a much higher requirement for build-steels. High strength and high capability aseismic reinforcement steel is becoming a hot point home and aboard, especially after Wen Chuan earthquake. According to the high strain and low periodic fatigue stress during earthquake, aseismic reinforcement steel’s strength level must be as same as the distinctive normal steel bar. Besides, the ratio of test tensile strength to yield strength shouldn’t be smaller than 1.25 and yield strength to its eigenvalue shouldn’t be bigger than 1.30, while the total elongation should be equal to 9% or even bigger.
     Refined grain strength can elevate the metal material’s mechanism performances with refining the grains. Based the Hall-Petch formula, it’s the only way to get high strength and good plasticity. Nowadays, micro alloying and control rolling is adopted to obtain good colligate capabilities in producing steel bar. As a result, we use V-N micro alloying to adjust the chemistry composition based on the HRB400, and control the last pass temperature to get fine ferrite and pearlite structure.
     The main content are as follows: convertor melting (V-N micro alloying)-Heat billet- Rough rolling-Mill rolling-Final rolling-Cold. For avoiding appearing the fibre structure and get mass deformed strip austenite non-recrystallization grain in order to get fine ferrite after phase transition, the final rolling temperature is controlled at about Ar3,that is 910℃nearby. The element Nitrogen can promote Vanadium to separate out. By electrolysis phase, proportion of vanadium precipitates is about 31.82%。On the one hand, vanadium precipitate provide more non-uniform nucleation sites which is propitious to separate out proeutectoid ferrite in austenite. Meanwhile, water cold and air cold after rolling makes steel bar’s recrystallization occur at the temperature range of shred ferrite and pearlite transformation. It can increase pearlite to a certain extent and improve the structure’s uniformity. On the other hand, vanadium precipitate has deposition pinning effect on the austenite grain boundary to refine grain.
     Steel bar’s average grain size is about 11 levels with the average line length method. The final structure is proeutectoid ferrite+pearlite. The faster cold rate at edge makes pearlite nucleation rate increase, so pearlite content is much more than that at center. As the rough rolling temperature is 890~910℃, it may cause austenite component be uneven when initial rolling temperature is 1150℃, which result in reticulation proeutectoid ferrite during air cold.
     The main chemistry composition of productive steel bar with XRF is: (wt%):C=0.24,Mn=1.31,V=0.036,N=0.008,Ceq=0.47.Through the room temperature tensile experiment, the yield strength, tensile strength and elongation ratio of master material are approximately 475MPa, 632MPa and 26% respectively. The ratio of test tensile strength to yield strength is 1.33 and yield strength to its eigenvalue is 1.19. The average yield strength (Rel) and tensile strength (Rm) of weldment are 473MPa and 610MPa respectively. Steel bar own good bending capability, surface quality and size precision. All conditions are accord with the nation standard of aseismic reinforcement. Accordingly, this paper’s produce method that is V-N micro alloying + control rolling can obtain HRB400E successfully. It has some guiding significance for industry manufacture.
引文
[1]庞玉华.金属塑性加工学[M].西北工业士学出版社,2005.
    [2]吴承建,陈国良,温文江.金属材料学[M].冶金工业出版,2006.
    [3]殷瑞钰等.中国钢铁工业的崛起与技术进步[M].冶金工业出版社,2004.
    [4]中国金属学. 2006~2020年中国钢铁工业科学与技术发展指南[M].中国钢铁工业协会,2006.
    [5]龚士弘,盛光敏.高性能钢筋的开发与应用[C].全国螺纹钢筋技术交流暨新三级钢筋推广应用研讨会论文集2000:19-27.
    [6]谢仕柜.应加速推进我国高强钢筋的发展[J].轧钢, 2000,(03).
    [7]谢仕柜.推进高强钢筋的发A.新三级钢筋推广暨钒微合金化技术研讨会文集[C].成都:华冶信息研究所,2002:12 -14.
    [8]孙决定,丁世学.我国400MPaⅢ级钢筋的生产与应用[J].武钢技术, 2005,(04).
    [9]梁爱生,孙斌煜,李玉贵,杨晓明.轧钢生产新技术600问[M].冶金工业出版社,2004.
    [10]王总辉,陈冬,李莹.钢筋砼结构钢筋种类的合理选择[J].山东建材学院学报, 2000,(04).
    [11]王厚昕,李正邦.我国热轧钢筋的发展和现状[J].材料与冶金学报, 2006,(02).
    [12]王国臣.冷轧带肋钢筋的发展概况及应用前景[J].黑龙江科技信息,2009,(16).
    [13] Erasmus L A, PussegodaL N Strum Age Embitterment of Reinforcing Steels New Zealand Engmeenng,1977,32(8):178-183.
    [14]盛光敏,龚士弘,鄢如恢,工程结构钢在地震载荷下的高应变低周疲劳性能[J].钢铁钒钛1991 12(1):31-38.
    [15]波戈尔热耳斯基著,王有铭译.控制轧制[M].冶金工业出版社,1982.
    [16]龚士弘,抗震设计用钢探讨[J].工程抗震,1996(3):37-38.
    [17] Gong Shihong,Sheng GuangMin,Effect of V-Ti micro alloys on Antisemic Properties of Building Structural Steel. Proceeding of the third international conference on HSLA Steel, October 25-28, 1995: 468-473.
    [18]王栓柱.金属疲劳[M].福建科技出版社,1985:95-97.
    [19]龚士弘,盛光敏.建筑结构用钢的抗震性能问题[C].防震建筑钢筋的推广应用论文文集,1995:29.
    [20]聂雨青, HRB335E和HRB400E抗震钢筋开发[J].金属材料与冶金工程,2009(10).
    [21]中华人民共和国国家标准,GB1499.2—2007《钢筋混凝土用钢第二部分热轧带肋钢筋》及本标准第1号修改单.
    [22] Erasmus L A .The strain Aging characterities of reinforcing steel with a range of Vanadiumcontents metallurgical transactrons.1980 (IIA): 231-237.
    [23] Samil J S.Keown S R. Erasmus L A Effect of Titanium addition on strain-aging character ties and mechanical properties of Carbon-Manganese reinforcing steel metal technology, 1976(4):194-201.
    [24]王占学.控制轧制与控制冷却队[M].冶金工业出版社,1999.
    [25]山内太之,腾本盛久等.日本共同大型耐震试验研究[C].建筑学会大会演讲.
    [26]叶爱君.桥梁抗震[M].北京:人民交通出版社,2002.
    [27]杨雄.V-N微合金化HRB-400钢筋研制[D].北京科技大学硕士论文集2001.
    [28] FB皮克林.高强度低合金钢十年的进展钢的微合金化及控眨轧制[M].冶金工业出版1984:11-39.
    [29]刘瑞宁,王福明,李强.微合金非调质钢的发展及现状[J].河北冶金,2006,(01).
    [30]徐佐仁.中碳微合金非调质结构钢的发展及应用概况[J].热处理, 1996,(04).
    [31]海恩里希·鲍姆加特,杜游.微合金结构钢板的应用和加工[J].宽厚板,1998,(01).
    [32]赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔并工业大学出版社,2003:216-218.
    [33]钢中合金元素的作用[J].特殊钢, 1986,(01).
    [34]刘兴乾.钒在钢中的应用[J].钢铁钒钛,1983,(04).
    [35]卢文增.低合金钢中的钒[J].钢铁钒钛,1984,(04).
    [36]王青江,王仪康.微合金控制轧制钢[J].焊管,1994,(04).
    [37]杨作宏,陈伯春.谈微合金元素Nb、V、Ti在钢中的作用[J].甘肃冶金, 2000,(04)
    [38] Park J J, Lee S J. Design of rolling pass schedules to improve grain 2size uniformity in thickness [J].. Journal of Materials Processi ng Technology, 2003, 140 (1/ 2/ 3):454 - 459.
    [39] Fernandez J , Illescas S , Guilemany J M. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel [J]. . Materials Let ters, 2007, 61(11/ 12):2389 - 2392.
    [40] Misa R D K, Nathani H , Hartmann J E , et al . Microst ructural evolution in a new 770 MPa hot rolled Nb2Ti microalloyed steel [J].. Materials Science and Engi neeri ng a, 2005, 394 (1/ 2):339 - 352.
    [41] Pet rov R , Kestens L , Houbaert Y. Characterization of microst ructure and t ransformation behaviour of st rained and nonst rained austenite in Nb2V2alloyed C2Mn steel [J]. .Materials Characterizat ion,2004,53 (1) :51-61.
    [42]张冬宇,张艳龙.微合金元素在控制轧制中的作用[J].金属世界,2007,(06).
    [43]王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程[J].东北大学学报(自然科学版),2009(07).
    [44]邱邦全.用控制轧制生产高强度高韧性钢板[J].钢铁研究,1974,(01).
    [45] T.Tanaka,张展文.钢的控制轧制[J].兵器材料科学与工程,1985,(Z1).
    [46]党军.南钢宽中厚板/卷项目控制轧制工艺研究[J].江苏冶金,2006,(02).
    [47]万太全.控制轧制的机理[J].鞍钢技术,1980,(03).
    [48]邵章.线材控制冷却的目的[J].轧钢,1987,(03).
    [49]王有铭等.钢材的控制轧制与控制冷却队[M].冶金工业出版社,1993.
    [50]陈寿梁.地震区建筑用钢探讨[J].工程抗震.1986,(2):4-8.
    [51] R. Liasko, Th Kabanos, S. Karkabounas et al., Beneficial effects of a vanadium complex with cysteine administered at low doses on benzo(α)pyrene-induced leiomyosarcomas in Wistar rats. Anticancer Res. 18 (1998):3609–3614.
    [52] D.W. Zeng, C.S. Xie and K.C. Yung, Materials Science and Engineering A333 (2002): 223–231.
    [53]陈队志,王昕.Si/C比变化对高碳当量灰铸铁组织性能的影响[J].兰州交通大学学报, 2003,(06).
    [54] A. AbdAlAal, K.M. Ibrahim and Z. AbdElHamid, Wear 260 (2006):1070–1075.
    [55]华建社,周继良.蓄热式加热炉的热工特点分析[J].钢铁研究,2004(5).
    [56] A. Rindly and K. Janssens, Microbeam XRF. In: R. Van Grieken and A. Markowicz, Editors, Handbook of X-ray Spectrometry, Marcel Dekker, New York (2002) Chapter 11.
    [57] P. Lechner, C. Fiorini, R. Hartmann, J. Kemmer, N. Krause, P. Leutenegger, A. Longoni, H. Soltau, F. Stotter, R. Stotter, L. Struder and U. Weber. Nucl. Instrum. Meth. Phys. Res. A 458 (2001):281.
    [58]徐生林,俞杰,杨成忠.基于生产过程自动化数据的转炉炼钢成本分析[J].中国水运(下半月),2008,(09).
    [59]谢宝木,欧伏岭.莱钢转炉炼钢生产工艺流程系统优化[J].山东冶金, 2008,(04).
    [60]李保,卫贺友多.顶吹转炉内金属液滴的产生、运动及传热的数学模型[J].金属学报, 1995,(16).
    [61] Adem Bakkaloglu .Effect of processing parameters on the microstructure and properties of an Nb microalloyed steel .October 2002 Materials Letters 56(2002):263~272.
    [62]廖红军.水钢HRB400钢筋的抗震性能与生产工艺研究[D].69-70.
    [63]刘相华,白光润.微计算机辅助孔型设计系统MARDS[J].微计算机应用,1987,(02).
    [64]赵新,张丽晶,于波.计算机辅助孔型设计的发展[J].黑龙江冶金,2001,(03).
    [65]赵继武,徐杰,张鉴湖,吉学军.控制冷却生产HRB400小规格螺纹钢筋的试验研究[J].河北冶金, 2006,(02).
    [66]赵继武,徐杰,张鉴湖,吉学军.控冷生产HRB400小规格螺纹钢筋的试验研究[J].天津冶金, 2006,(01).
    [67]鲁献辉,常海峰,孙志溪.控制轧制及控制冷却在棒材生产中的应用[J].河北冶金,2004,(06).
    [68]郝德锐,郭立新.热连轧带钢控制轧制和控制冷却工艺[J].山西冶金,2001,(02).
    [69]徐铭熙,李海拉,程保国,耿连如,崔永娟.钢中第二相的分离和固溶钒的测定[J].重庆大学学报(自然科学版) , 1990,(03).
    [70]雍歧龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].机械工业出版社1989:498, 409.
    [71] F.B.Pickering等(李述创,向德渊译).高强度低合金钢十年来的进展:钢的微合金化及控制轧制[M].冶金工业出版社1984:11~39.
    [72]斯坦尼什洛·扎雅克.含钒钢的沉淀和晶粒细化.钒应用技术国际研讨会论文集,北京2001:282.
    [73]孙邦明,季怀忠,杨才福等.V-N微合金化钢筋中钒的析出行为[J].钢铁2001,36(2):44.
    [74]王全礼,杨雄,鲁丽燕等.V-N微合金化HRB400钢筋的生产实践.国际钒应用技术研讨会论集,北京2001:360.
    [75]朱丽娟,吴迪,赵宪明等.带钢热轧过程组织演变规律的研究[J].2003中国钢铁年会论文集,北京2003:267.
    [76]冯运莉等.VN微合金化HRB400热轧钢筋的研究[J].河北冶金2002(6):14.
    [77] Barnak J P,Sprecher A F,Conrad H. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J].Scripts Metallurgica et Materialia,1995,32(6):879-884.
    [78]刘宗昌.珠光体转变与退火[M]..北京:化学工业出版社,2007:23-70.
    [79]刘天模,周守则,左汝林,梅东生,邓建辉.钒含量对PD3钢碳化钒的影响[J].重庆大学学报2001 24(6):78-81.
    [80] Farrar R G.Garmson P L Runes Acicular. Ferrite m Carbon-manganese Weld metals an Overview Journal materials 1987,(12): 3812-3820.
    [81]王青江,王仪康.微合金控制轧制钢[J].焊管, 1994,(04) .
    [82]王青江,单以银,滕华元,王仪康.重载车辆结构用微合金控轧高强钢的组织和韧性[J].兵器材料科学与工程, 1991,(04).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700