用户名: 密码: 验证码:
卟啉及荧光素衍生物模拟的分子逻辑器件的设计,制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从分子逻辑的布尔逻辑被阐述以来,分子逻辑器件以其优于传统电子逻辑器件的诸多优势得到了广泛的发展,首先我们可以通过改变构成分子逻辑器件的分子的结构来改变分子逻辑器件的逻辑功能,换言之我们可以通过分子设计来实现对目标逻辑功能的模拟,然后我们也可以通过自组装等方式得到各向同性的分子阵列来实现传统意义上的功能化集成。分子逻辑器件在很多方面都取得了优异的成果,例如二进制计算器,分子键盘锁,加码解码器等。
     分子逻辑器件就其功能而论分成两种逻辑器件:组合逻辑器件以及时序逻辑器件,前者在操作过程中不考虑输出历史且不具有记忆功能,而后者在操作过程中要考虑历史且具有记忆功能。本文设计并合成了卟啉类衍生物以及荧光素酰腙类衍生物来模拟这两种逻辑器件。
     1、我们将具有氨基功能团的不对称中位四苯基卟啉以共价嫁接的形式固载到介孔二氧化硅薄膜上,由于卟啉化合物对酸碱的特异性响应,当我们将含有卟啉化合物的介孔薄膜材料置于酸性或碱性溶液中并取出时,卟啉在酸性或碱性介质中的状态会被完整的保存下来,进而实现对具有逻辑记忆功能的RS触发器的模拟,因为卟啉化合物是通过共价嫁接的形式固载到介孔薄膜材料上,所以使得分子逻辑器件兼具了介孔薄膜材料的优异性质:
     a.相对较大的表面积,不但有利于输入介质与响应单元更有效的接触,还有益于输入介质的彻底清除,避免其残留下来影响下次逻辑输入。
     b.周期性排布的均一孔道结构,更加有利于器件的后期加工。
     c.高的透过性使得该分子逻辑器件的输出(output)更容易被光学检测仪器所监听。
     2、为了提高已知分子逻辑器件的安全性,我们设计并合成了荧光素酰腙类衍生物,对已知由荧光素模拟的二进制计算器逻辑功能进行逻辑加密,并且由于自毁装置的存在使得这种逻辑加密更加安全,这一逻辑功能是由荧光素酰腙类衍生物在二价铜离子催化下,与酸反应部分分解并生成二价铜离子配合物,而与碱反应完全分解并释放出具有模拟二进制计算器逻辑功能的荧光素分子,进而实现了对已知分子逻辑器件进行加密,在酸性介质中生成了稳定的二价铜离子配合物,既不会还原成原化合物,在加入过量碱时也不会释放出荧光素,所以不能对该分子逻辑器件进行暴力破解。
Since the concept of Boolean logic of molecular logic has been depicted, lots ofefforts has been carried out and achieved viarious of developments due to itsadvantagements over traditional electronic device. They appear at that we can firelydesign molecular with special structure to achieve aim logic function, we can alsofunctionally integrate these molecular logic via self-asssembling process et al.Molecular logic device achieves lots of considerable results at different aspects, eg:elementary arithmetic, key-pad lock, and coder-decoder et al.
     Based on the function of logic device, it can be categorized into two types:combinational logic device and sequential logic device. During processing, the laterone different from the former one needs to take operational history or outputs inconsideration, like the functions of memory. Herein, we design and synthesiscorresponding porphyrin and fluorescein derivatives to mimic these two types oflogic device.
     1. Here, an asymmetric porphyrin derivative of5-(4-aminophenyl)-10,15,20-triphenyl-porphyrin (H2ATPP) has been successfully covalently connected tophoto-permeable mesoporous silica thin films as a unit to mimic logic function. Thishybrid mesoporous structure is not only advantageous to the interaction between inputs and response materials, but also to separation of the response materials andinputs without information lost. Then several molecular logics with the function ofmemory, based on its characteristic of being sensitive to acid and base, are achieved.With different initial states, it could be handily described as feedback loop andRS-latch for sequential logic.
     2, Afluorescein derivative named fluorescein hydrizido4-imidophenol (FHP) hasbeen designed to build a molecular logic device. The device is composed of two parts:lock-part and calculate-part. In this derivative, fluorescein is reffered to ascalculate-part owing to it was previously adopted to mimic calculator. And the restportion of this derivative is reffered to as lock-part. The operational principle of thisdevice is that if input combination is optimal, calculate-part fluorescein is releasedand ready for calculating; if not, calculate-part remains locked. It effectively improvesthe security of calculator simulated by molecular logic. In addition, lock-part will betotally destroyed like self-distruction under a special input combination, resulting inthat calculate-part can’t be unlocked at all events. Hence, it’s more sufficient to makebrute-force attack on this device unrealistic.
引文
[1] de Silva A P. Gunaratne H Q N, McCoy C P. A MOLECULAR PHOTOIONICAND GATE BASED ON FLUORESCENT SIGNALING[J]. Nature,1993,364(6432):42-44.
    [2] Jablonski A. über den Mechanisms des Photolumineszenz vonFarbstoffphosphoren[J]. Z Phys,1935,94:38-46.
    [3] Berlman I B. Handbook of fluorescence spectra of aromatic molecules[M],2nded. Academic Press, New York,1971.
    [4] Stokes G G. On the change of refrangibility of light[J]. Phil. Trans. R. Soc.,1852,142:463-562.
    [5] Kasha M. Characterization of electronic transitions in complex molecules[J]. Disc.Faraday. Soc.,1950,9:14-19.
    [6] Kasha M. Paths of molecular excitation[J]. Radiation Res,1960,(2):243-275.
    [7] Birks J B. Photophysics of aromatic molecules[M]. John Wiley&Sons, NewYork,1970.
    [8] F rster Th. Intermolecular energy migration and fluorescence (Transl RS Knox)[J]. Ann. Phys.(Leipzig)1948,2:55–75.
    [9] Dexter D L. Atheory of sensitized luminescence in solids[J]. J Chem Phys,1953,21:936-938
    [10]樊美公等.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001
    [11]Feynman R P. Eng. Sci.[J],1960,23,22.
    [12]Rodgers P.'Plenty of room' revisited[J]. Nature Nanotechnol.,2009,4:781-781.
    [13]Wiesendanger R. Scanning Probe Microscopy and Spectroscopy[M], CambridgeUniversity Press, Cambridge,1994.
    [14]Aviram A, Molecules for memory, logic, and amplification[J]. J. Am. Chem. Soc.,1988,110(17):5687-5692.
    [15]Aviram A, A view of the future of molecular electronics[J]. Mol. Cryst. Liq.Cryst.,1993,234,13.
    [16]Kumar A, Abbott L N, Kim E, et al., Patterned Self-Assembled Monolayers andMeso-Scale Phenomena[J]. Acc. Chem. Res.,1995,28(5):1995.
    [17]Shirakawa H. The Discovery of Polyacetylene Film: The Dawning of an Era ofConducting Polymers[J]. Angew. Chem. Int. Ed.,2001,40:2575-2580.
    [18]MacDiarmid A G."Synthetic Metals": A Novel Role for Organic Polymers[J].Angew. Chem. Int. Ed.,2001,40:2581-2590.
    [19]Heeger A J. Semiconducting and Metallic Polymers: The Fourth Generation ofPolymeric Materials[J]. Angew. Chem. Int. Ed.,2001,40(14):2591-2611.
    [20]Kanazawa K K, Diaz A F, Gill W D, et al., Polypyrrole: An ElectrochemicallySynthesized Conducting Organic Polymer[J]. Synth. Met.,1980,1,329.
    [21]Reimers J R, Bilic A, Cai Z L, et al., Molecular Electronics: From BasicChemical Principles to Photosynthesis to Steady-State Through-MoleculeConductivity to Computer Architectures[J]. Aust. J. Chem.,2004,57,1133-1135.
    [22]Farazdel A, Dupuis M, Clementi E, et al., Electric-field induced intramolecularelectron transfer in spiro.pi.-electron systems and their suitability as molecularelectronic devices. A theoretical study[J]. J. Am. Chem. Soc.,1990,112(11):4206-4214.
    [23]Tour J M. Conjugated Macromolecules of Precise Length and Constitution.Organic Synthesis for the Construction of Nanoarchitectures[J]. Chem. Rev.,1996,96(1):537-554.
    [24]Shirai Y, Guerrero J M, Sasaki T, et al., Fullerene/Thiol-Terminated Molecules[J].J. Org. Chem.,2009,74(20):7885-7897.
    [25]Donhauser Z J, Mantooth B A, Kelly K F, et al., Conductance Switching in SingleMolecules Through Conformational Changes[J]. Science,2001,292(5525):2303-2307
    [26]Bumm L A, Arnold J J, Cygan M T, et al., Are Single Molecular WiresConducting[J]? Science,1996,271:1705-1707.
    [27]Collier C P, Wong E W, Belohradsky M, et al., Electronically ConfigurableMolecular-Based Logic Gates[J]. Science,1999,285:391-394.
    [28]He J, Fu Q, Lindsay S, et al., Electrochemical Origin of Voltage-ControlledMolecular Conductance Switching[J]. J. Am. Chem. Soc.,2006,128(46):14828-14835.
    [29]He J, Chen B, Flatt AK, et al., Metal-free silicon–molecule–nanotube testbed andmemory device[J]. Nature Mater.,2006,5:63-68.
    [30]Service R F. Next-Generation Technology Hits an Early Midlife Crisis[J]. Science,2003,302:556-559.
    [31]Borlaug N E. International Agricultural Research[J]. Science,2004,303:1137-1138
    [32]Tour J M. Molecular Electronics. Synthesis and Testing of Components[J]. Acc.Chem. Res.,2000,33(11):791-804.
    [33]Tour J M, in Stimulating Concepts in Chemistry[M], Wiley-VCH, Weinheim,2000, p.237.
    [34]Bachtold A, Hadley P, Nakanishi T, et al. Logic Circuits with Carbon NanotubeTransistors[J]. Science,2001,294:1317-1320.
    [35]Song H, Kim Y, Jang Y H, et al. Molecular transistors scrutinized[J]. Nature,2009,462,1039-1043.
    [36]Avouris P, Chen Z, Perebeinos V. Carbon-based electronics[J]. NatureNanotechnol.,2007,2:605-615.
    [37]Geim A K, Novoselov K S. The rise of graphene[J]. Nature Mater.,2007,6:183-191.
    [38]Aviram A and Ratner M L, Molecular rectiers[J]. Chem. Phys. Lett.,1974,29,277-283.
    [39]Metzger R M. Unimolecular electronics[J]. J. Mater. Chem.,2008,18:4364-4396.
    [40]Martin AS, Sambles J R and Ashwell G J, Molecular rectifier[J]. Phys. Rev. Lett.,1993,70,218-221.
    [41]Stabel A, Herwig P, Müllen K, et al., Diodelike Current–Voltage Curves for aSingle Molecule–Tunneling Spectroscopy with Submolecular Resolution of anAlkylated, peri-Condensed Hexabenzocoronene[J]. Angew. Chem. Int. Ed.,1995,34(15):1609-1611.
    [42]Metzger R M, Chen B, H pfner U, et al., Unimolecular Electrical Rectification inHexadecylquinolinium Tricyanoquinodimethanide[J]. J. Am. Chem. Soc.,1997,119:10455-10466.
    [43]Collier C P, Wong E W, Belohradsky M, et al., Electronically ConfigurableMolecular-Based Logic Gates[J]. Science,1999,285:391-394.
    [44]Collier C P, Mattersteig G, Wong E W, et al., A Catenane-Based Solid StateElectronically Reconfigurable Switch[J]. Science2000,289:1172-1175.
    [45]Jortner J and Ratner M (ed.), Molecular Electronics[M], Blackwell, Oxford,1997.
    [46]Schwarz J A, Contescu C and Putyera K (ed.), Encyclopedia of Nanoscience andNanotechnology[M], Dekker, New York,2004.
    [47]Rodgers P (ed.), Nanoscience and Nanotechnology[M], World Scientific andMacMillan, Singapore and London,2010.
    [48]Carter F L (ed.), Molecular Electronic Devices[M], Dekker, New York,1982.
    [49]Carter F L, Siatkowski R E and Wohltjen H (ed.), Molecular ElectronicDevices[M], Elsevier, Amsterdam,1988.
    [50]www.nano.gov
    [51]Wild U P, Bernet S, Kohler B, et al., Pure. Appl. Chem.[J],1992,64,1335-1337.
    [52]Moerner W E, Basché T. Optical Spectroscopy of Single Impurity Molecules inSolids[J]. Angew. Chem. Int. Ed.,1993,32:457-476.
    [53]R. Jankowiak J M H, G. J. Small. Spectral hole-burning spectroscopy inamorphous molecular solids and proteins[J]. Chem. Rev.,1993,93(4):1471-1502.
    [54]Ao R, Kümmerl L, Haarer D. Present limits of data storage using dye moleculesin solid matrices[J]. Adv. Mater.,1995,7(5):495-499.
    [55]Friedrich J, in Encyclopedia of Spectroscopy and Spectrometry[M], Academic,San Diego,2000, p.826.
    [56]Pimentel G C, Opportunities in Chemistry[M], National Research Council,National Academy Press, Washington, DC,1985.
    [57]Birge R R, in Nanotechnology; Research and Perspectives[M], MIT Press,Cambridge, MA,1992, p.156.
    [58]Ball P. Chemistry meets computing[J]. Nature,2000,406:118-120.
    [59]Lukas AS, Bushard P J, Wasielewski M R. Ultrafast Molecular Logic Gate Basedon Optical Switching between Two Long-Lived Radical Ion Pair States[J]. J. Am.Chem. Soc.,2001,123(10):2440-2441.
    [60]Gust D, Moore T A, Moore AL. Molecular switches controlled by light[J]. Chem.Commun.,2006:1169-1178.
    [61]Andréasson J, Pischel U. Smart molecules at work—mimicking advanced logicoperations[J]. Chem. Soc. Rev.,2010,39:174-188.
    [62]de Silva A P, McClenaghan N D and McCoy C P, in Electron Transfer inChemistry[M]. Wiley-VCH, Weinheim,2001, vol.5, p.156.
    [63]de Silva A P, McClenaghan N D and McCoy C P, in Molecular Switches[M].Wiley-VCH, Weinheim,2001, p.339.
    [64]Raymo F M. Digital Processing and Communication with Molecular Switches[J].Adv. Mater.,2002,14(6):401-414.
    [65]Balzani V, CrediAand Venturi M, ChemPhysChem[J],2003,4,49-52
    [66]de Silva A P, McClenaghan N D. Molecular-Scale Logic Gates[J]. Chem. Eur. J.2004,10(3):574-586.
    [67]Balzani V, CrediAand Venturi M, Nano Today[J],2007,2,18.
    [68]de Silva A P, Uchiyama S. Molecular logic and computing[J]. NatureNanotechnol.,2007,2:399-410.
    [69]Ballardini R, Ceroni P, Credi A, et al., Molecular Photochemionics[J]. Adv. Func.Mater.,2007,17(5):740-750.
    [70]Pischel U. Chemical Approaches to Molecular Logic Elements for Addition andSubtraction[J]. Angew. Chem. Int. Ed.,2007,46(22):4026-4040.
    [71]Credi A. Molecules That Make Decisions[J]. Angew. Chem. Int. Ed.,2007,46(29):5472-5475.
    [72]Balzani V, Credi A, Venturi M. Processing Energy and Signals by Molecular andSupramolecular Systems[J]. Chem. Eur. J.,2008,14(1):26-39.
    [73]Szaci owski K. Digital Information Processing in Molecular Systems[J]. Chem.Rev.,2008,108(9):3481-3548.
    [74]Balzani V, Venturi M and Credi A, Molecular Devices and Machines[M],Wiley-VCH, Weinheim,2nd ed,2008.
    [75]BenensonY, Mol. Biosyst.[J],2009,5,675.
    [76]Katz E, Privman V. Enzyme-based logic systems for information processing[J].Chem. Soc. Rev.,2010,39:1835-1857.
    [77]Amelia M, Zou L and CrediA, Coord. Chem. Rev.[J],2010,254,2267-2272.
    [78]Pischel U, Aust. J. Chem.[J],2010,63,148-150.
    [79]Ceroni P, CrediA, Venturi M, et al., Photobiol. Sci.[J],2010,9,1561-1568.
    [80]Tian H. Data Processing on a Unimolecular Platform[J]. Angew. Chem. Int. Ed.,2010,49(28):4710-4712.
    [81]Minko S, Katz E, Motornov M, et al. J. Comput. Theor. Nanosci.[J],2011,8,356-360.
    [82]de Silva AP, Chem. Asian. J.[J],2011,6,750-761.
    [83]de Silva A P, Vance T P, Wannalerse B, et al. in Molecular Switches[M],Wiley-VCH, Weinheim,2nd edn,2011, p.669.
    [84]de Ruiter G, Milko E, Van der Boom. Surface-Confined Assemblies and Polymersfor Molecular Logic [J]. Acc. Chem. Res.,2011,44(8):563-573.
    [85]Malvino A P and Brown J A, Digital Computer Electronics[M], Glencoe, LakeForest,3rd ed,1993.
    [86]Millman J and Grabel A, Microelectronics[M], McGraw-Hill, New York,2nd ed,1988.
    [87]Gregg J R, Ones and Zeros[M], IEEE Press, New York,1998.
    [88]Sedra A L and Smith K C, Microelectronic Circuits[M], Oxford University Press,Oxford,5th ed,2003.
    [89]Maxfield C, From Bebop to Boolean Boogie[M], Newnes, Oxford,2009.
    [90]Fromherz P, Chem. Phys. Lett.[J],1974,26,221-226.
    [91]Fromherz P, Arden W. pH-modulated pigment antenna in lipid bilayer onphotosensitized semiconductor electrode[J]. J. Am. Chem. Soc.,1980,102(20):6211-6218.
    [92]Williams K A. Three-dimensional structure of the ion-coupled transport proteinNhaA[J]. Nature,2000,403:112-115.
    [93]ArkinAand Ross J, Biophys. J.[J],1994,67,560.
    [94]Bray D, Protein molecules as computational elements in living cells[J]. Nature,2002,376,307-312.
    [95]de Silva A P, McClenaghan N D. Simultaneously Multiply-Configurable orSuperposed Molecular Logic Systems Composed of ICT (Internal ChargeTransfer) Chromophores and Fluorophores Integrated with One-or Two-IonReceptors[J]. Chem. Eur. J.,2002,8:4935-4945.
    [96]Nielsen M A and Chuang I L, Quantum Computation and QuantumInformation[M], Cambridge University Press, Cambridge,2000.
    [97]Zubay G L, Parsons W W and Vance D E, Principles of Biochemistry[M],Dubuque, Iowa,1995.
    [98]Berg J M, Tymoczko J L and Stryer L, Biochemistry, Freeman[M], New York,6thed,2006.
    [99]Adleman L. Molecular computation of solutions to combinatorial problems[J].Science,1994,286:1021-1024.
    [100] Adleman LM, Computing with DNA[J]. Sci. Am.,1998,279,54-61.
    [101] Margulies D, Felder C E, Melman G, et al., A Molecular Keypad Lock: APhotochemical Device Capable of Authorizing Password Entries[J]. J. Am. Chem.Soc.,2007,129:347-354.
    [102] Brasselet S and Moerner WE, Single Molec[J].,2000,1,17-19.
    [103] Zang L, Liu R, Holman M W, et al., A Single-Molecule Probe Based onIntramolecular Electron Transfer[J]. J. Am. Chem. Soc.,2002,124(36):10640-10641.
    [104] Holman M W andAdams D M, ChemPhysChem[J],2004,5,1831-1834.
    [105] Ameloot R, Roeffaers M, Baruah M, et al., Photochem. Photobiol. Sci.[J],2009,8,453-459.
    [106] Elstner M, Weisshart K, Müllen K, et al., Molecular Logic with a SaccharideProbe on the Few-Molecules Level[J]. J. Am. Chem. Soc.,2012,134(19):8098-8100.
    [107] Collier C P, Wong E W, Belohradsky M, et al., Electronically ConfigurableMolecular-Based Logic Gates[J]. Science,1999,285:391-394.
    [108] Collier C P, Mattersteig G, Wong E W, et al., A Catenane-Based Solid StateElectronically Reconfigurable Switch[J]. Science2000,289:1172-1175.
    [109] Boole G, An Investigation of the Laws of Thought[M], Dover, New York,1958.
    [110] Monod J, Chance and Necessity[M], Knopf, New York,1971.
    [111] Bray D. Protein molecules as computational elements in living cells[J].Nature,1995,376:307-312.
    [112] Williams K A. Three-dimensional structure of the ion-coupled transportprotein NhaA[J]. Nature,2000,403:112-115.
    [113] Jones R. Computing with molecules[J]. Nature Nanotechnology,2009,4:207.
    [114] Hasty J, McMillen D, Collins J J. Engineered gene circuits[J]. Nature,2002,420:224-230.
    [115] Istrail S, Ben-Tabou De-Leon S and Davidson E H, Developmental Biol[J],2007,310,187-189.
    [116] Aviram A. Molecules for memory, logic, and amplification[J]. J. Am. Chem.Soc.,1988,110(17):5687-5692.
    [117] Michalet X, Pinaud F F, Bentolila L A, et al., Quantum Dots for Live Cells, inVivo Imaging, and Diagnostics[J]. Science,2005,307:538-544.
    [118] Lehn J M, Supramolecular Chemistry[M], VCH, Weinheim,1995
    [119] Hughes E, Electrical Technology[M], Longman, Burnt Mill,6th ed,1990.
    [120] Raymo F M, Alvarado R J, Giordani S, et al., Memory Effects Based onIntermolecular Photoinduced Proton Transfer[J]. J. Am. Chem. Soc.,2003,125(8):2361-2364.
    [121] de Ruiter G, Tartakovsky E, Oded N, et al., Sequential Logic Operations withSurface-Confined Polypyridyl Complexes Displaying Molecular Random AccessMemory Features[J]. Angew. Chem. Int. Ed.,2010,49(1):169-172.
    [122] Langford S J, Yann T. Molecular Logic: A Half-Subtractor Based onTetraphenylporphyrin[J]. J. Am. Chem. Soc.,2003,125(37):11198-11199.
    [123] Margulies D, Melman G, Shanzer A. Fluorescein as a model molecularcalculator with reset capability[J]. Nat. Mater.,2005,4(10):768-771.
    [124] Margulies D, Melman G, Shanzer A. A Molecular Full-Adder andFull-Subtractor, an Additional Step toward a Moleculator[J]. J. Am. Chem. Soc.,2006,128(14):4865-4871.
    [125] Margulies D, Felder C E, Melman G, et al., A molecular keypad lock: Aphotochemical device capable of authorizing password entries[J]. J. Am. Chem.Soc.,2007,129(2):347-354.
    [126] Zou Q, Li X, Zhang J J, et al., Unsymmetrical diarylethenes as molecularkeypad locks with tunable photochromism and fluorescence via Cu(2+) and CN(-)coordinations[J]. Chem. Commun.,2012,48(15):2095-2097.
    [127] Yang X F, Wu D B, Li H. Sensitive determination of cobalt(II) using a spirofluorescein hydrazide as a chemiluminogenic reagent[J]. Microchimica Acta,2005,149(1-2):123-129.
    [128] Jiang L, Wang L, Guo M, et al., Fluorescence turn-on of easily preparedfluorescein derivatives by zinc cation in water and living cells[J]. Sens. Actuators,B,2011,156(2):825-831.
    [129] Chen X, Li Z, Xiang Y, et al., Salicylaldehyde fluorescein hydrazone: Acolorimetric logic chemosensor for pH and Cu(II)[J]. Tetrahedron Lett.,2008,49(32):4697-4700.
    [130] Hyman L M, Stephenson C J, Dickens M G, et al., Toward the developmentof prochelators as fluorescent probes of copper-mediated oxidative stress[J].Dalton Trans.,2010,39(2):568-576.
    [131] Dujols V, Ford F, Czarnik A W. A Long-Wavelength FluorescentChemodosimeter Selective for Cu(II) Ion in Water[J]. J. Am. Chem. Soc.,1997,119(31):7386-7387.
    [132] Pischel U. Advanced Molecular Logic with Memory Function[J]. Angew.Chem. Int. Ed.,2010,49(8):1356-1358.
    [133] Andréasson J, Pischel U, Straight S D, et al., All-Photonic MultifunctionalMolecular Logic Device[J]. J. Am. Chem. Soc.,2011,133(30):11641-11648.
    [134] Gust D, Andreasson J, Pischel U, et al., Data and signal processing usingphotochromic molecules[J]. Chem. Commun.,2012,48(14):1947-1957.
    [135] Andreasson J, Pischel U. Smart molecules at work-mimicking advanced logicoperations[J]. Chem. Soc. Rev.,2010,39(1):174-188.
    [136] de Ruiter G, van der Boom M E. Surface-Confined Assemblies and Polymersfor Molecular Logic[J]. Acc. Chem. Res.,2011,44(8):563-573.
    [137] de Silva P A, Gunaratne N H Q, McCoy C P. A molecular photoionic ANDgate based on fluorescent signalling[J]. Nature,1993,364(6432):42-44.
    [138] Langford S J, Yann T. Molecular Logic: A Half-Subtractor Based onTetraphenylporphyrin[J]. J. Am. Chem. Soc.,2003,125(37):11198-11199.
    [139] Margulies D, Melman G, Shanzer A. Fluorescein as a model molecularcalculator with reset capability[J]. Nat. Mater.,2005,4(10):768-771.
    [140] Pischel U. Chemical Approaches to Molecular Logic Elements for Additionand Subtraction[J]. Angew. Chem. Int. Ed.,2007,46(22):4026-4040.
    [141] Andréasson J, Straight S D, Moore T A, et al., Molecular All-PhotonicEncoder Decoder[J]. J.Am. Chem. Soc.,2008,130(33):11122-11128.
    [142] Ceroni P, Bergamini G, Balzani V. Old Molecules, New Concepts:
    [Ru(bpy)3]2+as a Molecular Encoder–Decoder[J]. Angew. Chem. Int. Ed.,2009,48(45):8516-8518.
    [143] Amelia M, Baroncini M, Credi A. A Simple UnimolecularMultiplexer/Demultiplexer[J]. Angew. Chem. Int. Ed.,2008,47(33):6240-6243.
    [144] Raymo F M, Alvarado R J, Giordani S, et al., Memory Effects Based onIntermolecular Photoinduced Proton Transfer[J]. J. Am. Chem. Soc.,2003,125(8):2361-2364.
    [145] Baron R, Onopriyenko A, Katz E, et al., An electrochemical/photochemicalinformation processing system using a monolayer-functionalized electrode[J].Chem. Commun.,2006,(20):2147-2149.
    [146] Pita M, Strack G, MacVittie K, et al., Set Reset Flip-Flop Memory Based onEnzyme Reactions: Toward Memory Systems Controlled by BiochemicalPathways[J]. J. Phys. Chem. B,2009,113(49):16071-16076.
    [147] Periyasamy G, Collin J-P, Sauvage J-P, et al., Electrochemically DrivenSequential Machines: An Implementation of Copper Rotaxanes[J]. Chem. Eur. J.,2009,15(6):1310-1313.
    [148] Pischel U, Andreasson J. A simplicity-guided approach toward molecularset-reset memories[J]. New J. Chem.,2010,34(12):2701-2703.
    [149] de Ruiter G, van der Boom M E. Sequential logic and random access memory(RAM): a molecular approach[J]. J. Mater. Chem.,2011,21(44):17575-17581.
    [150] Remón P, B lter M, Li S, et al., An All-Photonic Molecule-Based DFlip-Flop[J]. J. Am. Chem. Soc.,2011,133(51):20742-20745.
    [151] de Ruiter G, Tartakovsky E, Oded N, et al., Sequential Logic Operations withSurface-Confined Polypyridyl Complexes Displaying Molecular Random AccessMemory Features[J]. Angew. Chem. Int. Ed.,2010,49(1):169-172.
    [152] Sanchez C, Lebeau B, Chaput F, et al., Optical properties of functional hybridorganic-inorganic nanocomposites[J]. Adv. Mater.,2003,15(23):1969-1994.
    [153] De la Luz V, Garcia-Sanchez M A, Campero A. Luminescentporphyrinosilica obtained by the sol-gel method[J]. J. Non-Cryst. Solids,2007,353(22-23):2143-2149.
    [154] Lu Y F, Ganguli R, Drewien C A, et al., Continuous formation of supportedcubic and hexagonal mesoporous films by sol gel dip-coating[J]. Nature,1997,389(6649):364-368.
    [155] Kruper W J, Chamberlin T A, Kochanny M. Regiospecific aryl nitration ofmeso-substituted tetraarylporphyrins-a simple route to bifunctionalporphyrins[J]. J. Org. Chem.,1989,54(11):2753-2756.
    [156] Lei B F, Li B, Zhang H R, et al., Mesostructured silica chemically doped withRu-II as a superior optical oxygen sensor[J]. Adv. Funct. Mater.,2006,16(14):1883-1891.
    [157] Tao S Y, Li G T, Zhu H S. Metalloporphyrins as sensing elements for therapid detection of trace TNT vapor[J]. J. Mater. Chem.,2006,16(46):4521-4528.
    [158] De Silva A P, Gunaratne H Q N, McCoy C P. A MOLECULARPHOTOIONIC AND GATE BASED ON FLUORESCENT SIGNALING[J].Nature,1993,364(6432):42-44.
    [159] Andréasson J, Pischel U. Smart molecules at work-mimicking advanced logicoperations[J]. Chem. Soc. Rev.,2010,39(1):174-188.
    [160] de Ruiter G, van der Boom M E. Surface-Confined Assemblies and Polymersfor Molecular Logic[J]. Acc. Chem. Res.,2011,44(8):563-573.
    [161] Gust D, Andréasson J, Pischel U, et al., Data and signal processing usingphotochromic molecules[J]. Chem. Commun.,2012,48(14):1947-1957.
    [162] Andréasson J, Pischel U, Straight S D, et al., All-Photonic MultifunctionalMolecular Logic Device[J]. J. Am. Chem. Soc.,2011,133(30):11641-11648.
    [163] Pischel U. Chemical approaches to molecular logic elements for addition andsubtraction[J]. Angew. Chem. Int. Ed.,2007,46(22):4026-4040.
    [164] Andréasson J, Straight S D, Kodis G, et al., All-Photonic MolecularHalf-Adder[J]. J. Am. Chem. Soc.,2006,128(50):16259-16265.
    [165] Margulies D, Melman G, Shanzer A. Fluorescein as a model molecularcalculator with reset capability[J]. Nat. Mater.,2005,4(10):768-771.
    [166] Margulies D, Melman G, Shanzer A. A Molecular Full-Adder andFull-Subtractor, an Additional Step toward a Moleculator[J]. J. Am. Chem. Soc.,2006,128(14):4865-4871.
    [167] Margulies D, Felder C E, Melman G, et al., A molecular keypad lock: Aphotochemical device capable of authorizing password entries[J]. J. Am. Chem.Soc.,2007,129(2):347-354.
    [168] Andréasson J, Straight S D, Moore T A, et al., An All-Photonic MolecularKeypad Lock[J]. Chem. Eur. J.,2009,15(16):3936-3939.
    [169] Zou Q, Li X, Zhang J J, et al., Unsymmetrical diarylethenes as molecularkeypad locks with tunable photochromism and fluorescence via Cu(2+) and CN(-)coordinations[J]. Chem. Commun.,2012,48(15):2095-2097.
    [170] Li K, Xiang Y, Wang X, et al., Reversible Photochromic System Based onRhodamine B Salicylaldehyde Hydrazone Metal Complex[J]. J. Am. Chem. Soc.,2014,136(4):1643-1649.
    [171] Rout B, Milko P, Iron M A, et al., Authorizing Multiple Chemical Passwordsby a Combinatorial Molecular Keypad Lock[J]. J. Am. Chem. Soc.,2013,135(41):15330-15333.
    [172] Lee S, Rao B A, Son Y-A. Colorimetric and “turn-on” fluorescentdetermination of Hg2+ions based on a rhodamine–pyridine derivative[J]. Sens.Actuators, B,2014,196(0):388-397.
    [173] Sun W, Zhou C, Xu C H, et al., A fluorescent-switch-based computingplatform in defending information risk[J]. Chem. Eur. J.,2008,14(21):6342-6351.
    [174] Yang X F, Wu D B, Li H. Sensitive determination of cobalt(II) using a spirofluorescein hydrazide as a chemiluminogenic reagent[J]. Microchimica Acta,2005,149(1-2):123-129.
    [175] Adamczyk M, Grote J. Synthesis of novel spirolactams by reaction offluorescein methyl ester with amines[J]. Tetrahedron Lett.,2000,41(6):807-809.
    [176] Li T, Yang Z, Li Y, et al., A novel fluorescein derivative as a colorimetricchemosensor for detecting copper(II) ion[J]. Dyes Pigment.,2011,88(1):103-108.
    [177] Chen X, Ma H. Aselective fluorescence-on reaction of spiro form fluoresceinhydrazide with Cu(II)[J]. Anal. Chim. Acta,2006,575(2):217-222.
    [178] Dujols V, Ford F, Czarnik A W. A Long-Wavelength FluorescentChemodosimeter Selective for Cu(II) Ion in Water[J]. J. Am. Chem. Soc.,1997,119(31):7386-7387.
    [179] Nakahara R, Fujimoto T, Doi M, et al., Fluorophotometric Determination ofHydrogen Peroxide and Other Reactive Oxygen Species with FluoresceinHydrazide (FH) and Its Crystal Structure[J]. Chem. Pharm. Bull.,2008,56(7):977-981.
    [180] Jiang L, Wang L, Guo M, et al., Fluorescence turn-on of easily preparedfluorescein derivatives by zinc cation in water and living cells[J]. Sens. Actuators,B,2011,156(2):825-831.
    [181] Batistela V R, Cedran J D, de Oliveira H P M, et al., Protolytic fluoresceinspecies evaluated using chemometry and DFT studies[J]. Dyes Pigment.,2010,86(1):15-24.
    [182] Chen X, Li Z, Xiang Y, et al., Salicylaldehyde fluorescein hydrazone: Acolorimetric logic chemosensor for pH and Cu(II)[J]. Tetrahedron Lett.,2008,49(32):4697-4700.
    [183] Hyman L M, Stephenson C J, Dickens M G, et al., Toward the developmentof prochelators as fluorescent probes of copper-mediated oxidative stress[J].Dalton Trans.,2010,39(2):568-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700