用户名: 密码: 验证码:
节杆菌黄嘌呤氧化酶生物合成调控与酶稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄嘌呤氧化酶(Xanthine oxidase,EC1.17.3.2,XOD)属于黄素蛋白氧化酶类中较为复杂的多亚基蛋白,其底物催化机理复杂,除需辅因子FAD,还需钼蝶呤及铁硫簇辅因子。这三种辅因子以严格的比例及特定的顺序排布于XOD结构内部,联合最终电子受体(分子氧),共同催化嘌呤类物质的降解。相比于黄嘌呤脱氢酶(Xanthinedehydrogenase,EC1.17.1.4,XDH),XOD在医学诊断、食品检测、工业催化及环境保护中的应用价值更为广泛。
     本论文以一株拥有自主知识产权的XOD产生株—节杆菌(Arthrobacter)M3为研究对象,探讨发酵合成XOD的调控技术;合成筛选含特异性配体的亲和介质,创建简易亲和纯化XOD的方法,并分析酶热不稳定机理;探寻可有效提高XOD稳定性的技术;研究次黄嘌呤/黄嘌呤降解代谢产物与XOD合成的关系,利用等离子体诱变,半定向筛选代谢产物抑制得到衰减的突变株。主要研究结果如下:
     考察次黄嘌呤(诱导物)及辅因子添加对XOD合成的影响,发现,次黄嘌呤最佳诱导浓度为3.6g L-1,而添加辅因子前体核黄素(0.30mg L-1)及硫胺素(6.0mg L-1)可分别使XOD平均产率提高17.0%和16.3%。根据不同pH值控制下Arthrobacter M3的发酵过程曲线和动力学参数变化,提出了分段式pH调控技术,即在发酵前期以初始pH8.6进行自然发酵,待菌体密度至2.0g L-1时,控制发酵液pH值为7.6。该分段式pH调控技术的应用,使XOD平均产率(1229.7U g-1)比单独使用恒pH7.6发酵和自然pH发酵(初始pH8.6)时分别提高了86.3%和89.4%;酶活水平(7415.3U L-1)分别提高了75.0%和91.0%。以Logistic方程和Luedeking-Piret方程描述了分段式pH发酵过程中菌体生长、XOD积累以及基质(残糖)消耗的模型,模型相关系数(R2)均大于0.97。
     分别以鸟嘌呤(黄嘌呤结构类似物)及核黄素(FAD前体)为配体,合成了亲和介质(琼脂糖为载体)。吸附分析表明,琼脂糖-鸟嘌呤亲和介质对XOD的吸附能力较佳(2.0mg g-1介质),并利用液质联用技术证实了鸟嘌呤配体与琼脂糖载体的成功偶联。采用硫酸铵盐析、琼脂糖-鸟嘌呤亲和层析及DEAE-Sepharose CL-4B离子交换层析共3步法,简易地纯化了Arthrobacter M3XOD,比酶活为1033.2U mg-1,纯化倍数为120.1,回收率为36.1%。研究Arthrobacter M3XOD的酶学性质则表明:XOD为含有两个亚基(100kDa和35kDa)的异质二聚体蛋白,相对分子质量135kDa,与Arthrobacter sp. FB24XDH的匹配度较高(肽质量指纹图谱分析);最适反应温度为37℃,最适反应pH为7.5,且对不同金属离子(2.0mmol L-1)的耐受性具有差异,对黄嘌呤的动力学常数Km为0.67mmol L-1。对50℃保温不同时间的XOD酶液进行分析,发现XOD热不稳定机理主要为疏水基团暴露引起的蛋白集聚。
     以XOD的热不稳定机理为指导,针对性的添加了海藻糖和甜菜碱等保护剂。结果表明,添加1.0mol L-1海藻糖可使XOD半衰期(50℃)延长至6.9h(对照组仅为0.84h),凝胶过滤色谱分析表明海藻糖的加入有效抑制了蛋白集聚。分别选用阴离子交换树脂(201×4、D201及D354)离子吸附固定化、聚丙烯酰胺及海藻酸钠物理包埋固定化、疏水性载体(D840)及亲水性载体(含不同间隔臂长度的琼脂糖)共价偶联固定化处理XOD,不同程度提高了酶热稳定性。其中,以海藻酸钠物理包埋的固定化酶酶活回收率较高(17.3%);50℃保温2h,以琼脂糖-乙二胺载体共价偶联的固定化酶相对酶活保留率较高(90.9%)。将琼脂糖-乙二胺载体固定化的酶与游离酶比较,固定化酶于不同pH和温度下的耐受性均提高,半衰期延长至5.5h(50℃),重复使用8次后,相对酶活仍保留41.2%。
     研究次黄嘌呤/黄嘌呤降解代谢途径中关键代谢产物(自由基、尿酸、尿素及铵根离子)与XOD合成的关系,发现,在XOD发酵合成过程中,嘌呤代谢含氮终产物—铵根离子是抑制XOD合成的关键因子;积累的代谢中间产物尿素对XOD合成基本无影响,且积累浓度(1.10g L-1)远低于其抑制XOD合成的浓度(≥15.0g L-1)。为减弱次黄嘌呤/黄嘌呤降解代谢途径中尿素向铵根离子的降解,采用等离子体诱变,经三级筛选平板初筛,半定向选育了一株低产尿素降解酶的突变株Arthrobacter M605,与出发菌株Arthrobacter M3相比,其尿素降解酶平均产率降低了49.3%。补料分批发酵条件下,突变株Arthrobacter M605的XOD平均产率及酶活水平提高至1168.5U g-1和12970.6U L-1,分别比出发菌株Arthrobacter M3提高了38.6%和42.5%。
As one of the flavoprotein oxidases, xanthine oxidase (EC1.17.3.2, XOD) has acomplicate quaternary structure and contains multi-cofactors including one molybdenumcofactor,[2Fe–2S] clusters and one FAD cofactor. The above cofactors sequentially act oncatalyzing purine degradation with oxygen. The application of XOD is wider than that ofxanthine dehydrogenase (EC1.17.1.4, XDH) in the field of medical diagnosis, food detection,industrial catalysis, and environmental protection.
     In this dissertation, the XOD-producing strain (Arthrobacter M3) with independentintellectual property rights was employed. First, fermentation control protocols to improveXOD average yield were investigated. Then, the affinity medium was synthesized withguanine as ligand, and the simple affinity protocol for purification of XOD was explored. Themechanism of XOD thermal instability from Arthrobacter M3was analyzed. Some targetedapproaches were discussed to improve XOD stability. Finally, plasma mutagenesis wasemployed to semi-directionally screen a mutant strain with the inhibitional attenuation ofmetabolite in purine degradation. The main results are listed as follows,
     It was found that the optimum additive concentration of hypoxanthine (inducer) was3.6g L-1. The average yields of XOD by adding riboflavin (0.30mg L-1) and thiamine (6.0mg L-1)were17.0%and16.3%higher than those without adding these two substances. Based on theanalysis of kinetic parameters under various pH conditions, a pH-shift strategy in batchfermentation was implemented to enhance XOD biosynthesis. In this strategy, the initialculture pH was set at8.6without control, then pH was maintained at7.6after the biomassreached2.0g L-1. Compared with results from constant pH fermentation (pH7.6) anduncontrolled pH fermentation (initially at pH8.6), XOD average yield (1229.7U g-1) usingthis pH-shift strategy increased by86.3%and89.4%, and its production (7415.3U L-1)increased by75.0%and91.0%, respectively. Then, Logistic equation and Luedeking-Piretequation were introduced to describe cell growth, XOD accumulation, and substrateconsumption. The correlation coefficients (R2) of these models were all more than0.97.
     The result of adsorption analysis showed that Sepharose-guanine affinity medium (2.0mg g-1medium) had the optimum adsorption to XOD among the affinity mediumssynthesized, moreover, the successful coupling of guanine to Sepharose medium was furtherconfirmed by high performance liquid chromatography-mass spectrometry (HPLC-MS). Thesimple protocol for XOD purification was developed, which consisted of only three steps(ammonium sulfate precipitation, affinity extraction, and DEAE ion-exchangechromatography). The specific activity, purification fold, and activity recovery of purifiedXOD were1033.2U mg-1,120.1, and36.1%, respectively. XOD from Arthrobacter M3wasdetermined as a heterodimer containing two subunits (100kDa and35kDa) with a molecularweight of135kDa. The optimal reaction temperature and pH for XOD are37℃and7.5,respectively. The tolerances of XOD to various metals (2.0mmol L-1) are different. The Kmvalue of XOD for xanthine is0.67mmol L-1. The mechanism of XOD thermal instability fromArthrobacter M3mainly involves the exposure of hydrophobic residues and formation of aggregates (50℃).
     Based on the above mechanism of XOD thermal instability from Arthrobacter M3, itsstability was significantly enhanced by the addition of corresponding additives such astrehalose (cosolute) and betaine (osmolyte). Preferably, the half-life of XOD activity in thepresence of1.0mol L-1trehalose was increased to6.9h, and the control was only0.84h(50℃). The profiles of SEC about samples with trehalose further confirmed the inhibitioneffect of trehalose on XOD aggregation. On the other hand, ion exchange resins (201×4, D201,D354), polyacrylamide, sodium alginate, the hydrophobic carrier (D840), and hydrophiliccarriers with different spacer length were employed to immobilize XOD. Compared with theabove methods, the optimum activity recovery of immobilization was achieved by usingsodium alginate (17.3%); after incubation at50℃for2h, the relative activity of XODimmobilized onto the Sepharose-ethanediamine carrier (Sepharose-ethanediamine-XOD,90.9%) was shown to be optimum. Compared with the free XOD, Sepharose-ethanediamine-XOD had more favorable tolerance for acid-alkali and temperature, and half-life of thisimmobilized XOD increased to5.5h at50℃. Sepharose-ethanediamine-XOD still kept41.2%of initial activity after it was repeatedly used8times.
     The effects of metabolites (free radicals, uric acid, urea, and ammonium) inhypoxanthine/xanthine degradation pathway on XOD biosynthesis were first investigated, andit was found that ammonium (the end product) was the key factor inhibiting XODbiosynthesis. However, urea accumulated in batch fermentation (1.10g L-1) almost had noeffect on XOD biosynthesis, moreover, this concentration (1.10g L-1) was far below the ureaconcentration inhibiting XOD biosynthesis (≥15.0g L-1). In order to attenuate the degradationof urea to ammonium, the mutant strain (Arthrobacter M605) producing low urea-degradingenzyme was screened semi-directionally by plasma mutagenesis. Compared with the result bythe starting strain Arthrobacter M3, the average yield of urea-degrading enzyme by themutant strain Arthrobacter M605decreased by49.3%. XOD average yield (1168.5U g-1) andproduction (12970.6U L-1) by Arthrobacter M605were38.6%and42.5%higher than thoseby Arthrobacter M3in fed-batch fermentation.
引文
[1] Dijkman W P, de Gonzalo G, Mattevi A, et al. Flavoprotein oxidases: classification and applications[J].Appl Microbiol Biot,2013,97(12):5177-5188.
    [2] Hille R, Nishino T. Flavoprotein structure and mechanism.4. xanthine oxidase and xanthinedehydrogenase[J]. Faseb J,1995,9(11):995-1003.
    [3] Nishino T, Okamoto K, Kawaguchi Y, et al. Mechanism of the conversion of xanthine dehydrogenase toxanthine oxidase: Identification of the two cysteine disulfide bonds and crystal structure of anon-convertible rat liver xanthine dehydrogenase mutant[J]. J Biol Chem,2005,280(26):24888-24894.
    [4] Margolin Y, Behrman H R. Xanthine oxidase and dehydrogenase activities in rat ovarian tissues[J]. AmJ Physiol,1992,262(2): E173-E178.
    [5] Pritsos C A. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzymesystem[J]. Chem-Biol Interact,2000,129(1-2):195-208.
    [6] Sarnesto A, Linder N, Raivio K O. Organ distribution and molecular forms of human xanthinedehydrogenase xanthine oxidase protein[J]. Lab Invest,1996,74(1):48-56.
    [7] Nathans G R, Hade E P. Bovine milk xanthine oxidase: purification by ultrafiltration and conventionalmethods which omit addition of proteases: some criteria for homogeneity of native xanthine oxidase[J].Biochim Biophys Acta,1978,526(2):328-344.
    [8] McManaman J L, Neville M C, Wright R M. Mouse mammary gland xanthine oxidoreductase:Purification, characterization, and regulation[J]. Arch Biochem Biophys,1999,371(2):308-316.
    [9] McManaman J L, Shellman V, Wright R M, et al. Purification of rat liver xanthine oxidase and xanthinedehydrogenase by affinity chromatography on benzamidine-sepharose[J]. Arch Biochem Biophys,1996,332(1):135-141.
    [10] Andres R Y. Aldehyde oxidase and xanthine dehydrogenase from wild-type Drosophila melanogasterand immunologically cross-reacting material from ma-1mutants. Purification by immunoadsorption andcharacterization[J]. Eur J Biochem,1976,62(3):591-600.
    [11] Hayden T J, Duke E J. Purification and characterization of xanthine dehydrogenase from Locustamigratoria L[J]. Insect Biochem Molec,1979,9(6):583-588.
    [12] Sauer P, Frebortova J, Sebela M, et al. Xanthine dehydrogenase of pea seedlings: a member of theplant molybdenum oxidoreductase family[J]. Plant Physiol Bioch,2002,40(5):393-400.
    [13] Zarepour M, Kaspari K, Stagge S, et al. Xanthine dehydrogenase AtXDH1from Arabidopsis thalianais a potent producer of superoxide anions via its NADH oxidase activity[J]. Plant Mol Biol,2010,72(3):301-310.
    [14] Hesberg C, Hansch R, Mendel R R, et al. Tandem orientation of duplicated xanthine dehydrogenasegenes from Arabidopsis thaliana: Differential gene expression and enzyme activities[J]. J Biol Chem,2004,279(14):13547-13554.
    [15] Triplett E W. Intercellular nodule localization and nodule specificity of xanthine dehydrogenase insoybean[J]. Plant Physiol,1985,77(4):1004-1009.
    [16] Darlington AJ, Scazzocchio C. Use of analogues and the substrate-sensitivity of mutants in analysis ofpurine uptake and breakdown in Aspergillus nidulans[J]. J Bacteriol,1967,93(3):937-940.
    [17] Scazzocchio C, Sdrin N, Ong G. Positive regulation in a eukaryote, a study of the uaY gene ofAspergillus nidulans: I. Characterization of alleles, dominance and complementation studies, and a finestructure map of the uaY--oxpAcluster[J]. Genetics,1982,100(2):185-208.
    [18] Gorfinkiel L, Diallinas G, Scazzocchio C. Sequence and regulation of the uapA gene encoding a uricacid-xanthine permease in the fungus Aspergillus nidulans[J]. J Biol Chem,1993,268(31):23376-23381.
    [19] Lyon E S, Garrett R H. Regulation, purification, and properties of xanthine dehydrogenase inNeurospora crassa[J]. J Biol Chem,1978,253(8):2604-2614.
    [20] Tsao T F, Marzluf G A. Genetic and metabolic regulation of purine base transport in Neurosporacrassa[J]. Mol Gen Genet,1976,149(3):347-355.
    [21] Perezvicente R, Cardenas J, Pineda M. Distinction between hypoxanthine and xanthine transport inChlamydomonas reinhardtii[J]. Plant Physiol,1991,95(1):126-130.
    [22] Dietzel U, Kuper J, Doebbler J A, et al. Mechanism of substrate and inhibitor binding of Rhodobactercapsulatus xanthine dehydrogenase[J]. J Biol Chem,2009,284(13):8759-8767.
    [23] Leimkuhler S, Stockert A L, Igarashi K, et al. The role of active site glutamate residues in catalysis ofRhodobacter capsulatus xanthine dehydrogenase[J]. J Biol Chem,2004,279(39):40437-40444.
    [24] Woolfolk C A, Downard J S. Distribution of xanthine oxidase and xanthine dehydrogenase specificitytypes among bacteria[J]. J Bacteriol,1977,130(3):1175-1191.
    [25] Ohe T, Watanabe Y. Purification and properties of xanthine dehydrogenase from Streptomycescyanogenus[J]. J Biochem,1979,86(1):45-53.
    [26] Ivanov N V, Hubalek F, Trani M, et al. Factors involved in the assembly of a functionalmolybdopyranopterin center in recombinant Comamonas acidovorans xanthine dehydrogenase[J]. Eur JBiochem,2003,270(23):4744-4754.
    [27] Ivanov N V, Trani M, Edmondson D E. High-level expression and characterization of a highlyfunctional Comamonas acidovorans xanthine dehydrogenase in Pseudomonas aeruginosa[J]. ProteinExpres Purif,2004,37(1):72-82.
    [28] Koenig K, Andreesen J R. Xanthine dehydrogenase and2-furoyl-coenzyme A dehydrogenase fromPseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition[J].J Bacteriol,1990,172(10):5999-6009.
    [29] Woolfolk C A. Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase fromPseudomonas putida40[J]. J Bacteriol,1985,163(2):600-609.
    [30] Parschat K, Canne C, Huttermann J, et al. Xanthine dehydrogenase from Pseudomonas putida86:specificity, oxidation-reduction potentials of its redox-active centers, and first EPR characterization[J].BBA-Protein Struct and M,2001,1544(1-2):151-165.
    [31] Self W T. Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridiumpurinolyticum in response to purines, selenium, and molydenum[J]. J Bacteriol,2002,184(7):2039-2044.
    [32] Self W T, Stadtman T C. Selenium-dependent metabolism of purines: A selenium-dependent purinehydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum andcharacterized[J]. PNatl Acad Sci USA,2000,97(13):7208-7213.
    [33] Wagner R, Andreesen J R. Selenium requirement for active xanthine dehydrogenase from Clostridiumacidiurici and Clostridium cylindrosporum[J].Arch Microbiol,1979,121(3):255-260.
    [34] Schrader T, Rienhofer A, Andreesen J R. Selenium-containing xanthine dehydrogenase fromEubacterium barkeri[J]. Eur J Biochem,1999,264(3):862-871.
    [35] Enroth C, Eger B T, Okamoto K, et al. Crystal structures of bovine milk xanthine dehydrogenase andxanthine oxidase: Structure-based mechanism of conversion[J]. P Natl Acad Sci USA,2000,97(20):10723-10728.
    [36] Okamoto K, Kawaguchi Y, Eger B T, et al. Crystal structures of urate bound form of xanthineoxidoreductase: substrate orientation and structure of the key reaction intermediate[J]. J Am Chem Soc,2010,132(48):17080-17083.
    [37] Cao H N, Pauff J M, Hille R. Substrate orientation and catalytic specificity in the action of xanthineoxidase: the sequential hydroxylation of hypoxanthine to uric acid[J]. J Biol Chem,2010,285(36):28044-28053.
    [38] Kelley E E, Khoo N K H, Hundley N J, et al. Hydrogen peroxide is the major oxidant product ofxanthine oxidase[J]. Free Radical Bio Med,2010,48(4):493-498.
    [39] Nishino T, Okamoto K. The role of the [2Fe-2S] cluster centers in xanthine oxidoreductase[J]. J InorgBiochem,2000,82(1-4):43-49.
    [40] Lovstad R A. A kinetic study on iron stimulation of the xanthine oxidase dependent oxidation ofascorbate[J]. Biometals,2003,16(3):435-439.
    [41] Motonaka J, Miyata K, Faulkner L R. Micro enzyme-sensor with osmium complex and a porouscarbon for measuring uric acid[J].Anal Lett,1994,27(1):1-13.
    [42] McKelvey T G, H llwarth M E, Granger D N, et al. Mechanisms of conversion of xanthinedehydrogenase to xanthine oxidase in ischemic rat liver and kidney[J]. Am J Physiol,1988,254(5Pt1):G753-G760.
    [43] Ghei M, Mihailescu M, Levinson D. Pathogenesis of hyperuricemia: Recent advances[J]. CurrRheumatol Rep,2002,4(3):270-274.
    [44] Pfeffer K D, Huecksteadt T P, Hoidal J R. Xanthine dehydrogenase and xanthine oxidase activity andgene expression in renal epithelial cells. Cytokine and steroid regulation[J]. J Immunol,1994,153(4):1789-1797.
    [45] Nishino T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzymein reperfusion Injury[J]. J Biochem,1994,116(1):1-6.
    [46] Robert A M, Robert L. Xanthine oxido-reductase, free radicals and cardiovascular disease. A criticalreview[J]. Pathol Oncol Res,2014,20(1):1-10.
    [47] Flaishon R, Szold O, Weinbroum A A. Acute lung injury following pancreas ischaemia-reperfusion:role of xanthine oxidase[J]. Eur J Clin Invest,2006,36(11):831-837.
    [48] Zweier J L, Talukder M AH. The role of oxidants and free radicals in reperfusion injury[J]. CardiovascRes,2006,70(2):181-190.
    [49] Vorbach C, Harrison R, Capecchi M R. Xanthine oxidoreductase is central to the evolution andfunction of the innate immune system[J]. Trends Immunol,2003,24(9):512-517.
    [50] Martin H M, Hancock J T, Salisbury V, et al. Role of xanthine oxidoreductase as an antimicrobialagent[J]. Infect Immun,2004,72(9):4933-4939.
    [51] Muraoka S, Miura T. Inhibition by uric acid of free radicals that damage biological molecules[J].Pharmacol Toxicol,2003,93(6):284-289.
    [52] de Groot H, de Groot H, Noll T. Enzymic determination of inorganic phosphates, organic phosphatesand phosphate-liberating enzymes by use of nucleoside phosphorylase-xanthine oxidase(dehydrogenase)-coupled reactions[J]. Biochem J,1985,230(1):255-260.
    [53] Lawal A T, Adeloju S B. Polypyrrole based amperometric and potentiometric phosphate biosensors: Acomparative study B[J]. Biosens Bioelectron,2013,40(1):377-384.
    [54] Heinz F, Pilz R, Reckel S, et al. A new spectrophotometric method for the determination of5'-nucleotidase[J]. J Clin Chem Clin Biochem,1980,18(11):781-788.
    [55] Sun Y, Oberley L W, Li Y. A simple method for clinical assay of superoxide dismutase[J]. Clin Chem,1988,34(3):497-500.
    [56] Fulbert J C, Succari M, Cals M J. Semiautomated assay of erythrocyte Cu-Zn superoxide-dismutaseactivity[J]. Clin Biochem,1992,25(2):115-119.
    [57] Hori N, Uehara K, Mikami Y. Effects of xanthine oxidase on synthesis of5-methyluridine by theribosyl transfer reaction[J].Agr Biol Chem Tokyo,1991,55(4):1071-1074.
    [58] Hori N, Uehara K, Mikami Y. Enzymatic synthesis of5-methyluridine from adenosine and thyminewith high efficiency[J]. Biosci Biotech Bioch,1992,56(4):580-582.
    [59] Pal S, Nair V. Enzymatic synthesis of thymidine using bacterial whole cells and isolated purinenucleoside phosphorylase[J]. Biocatal Biotransfor,1997,15(2):147-158.
    [60] Harrison R. Structure and function of xanthine oxidoreductase: Where are we now?[J]. Free RadicalBio Med,2002,33(6):774-797.
    [61] Nakatani H S, dos Santos L V, Pelegrine C P, et al. Biosensor based on xanthine oxidase formonitoring hypoxanthine in fish meat[J]. Am J Biochem Biotechnol,2005,1(2):85-89.
    [62] Machida Y, Nakanishi T. Purification and properties of xanthine oxidase from Enterobacter cloacae[J].Agr Biol Chem Tokyo,1980,45(2):425-432.
    [63]李忠琴.节杆菌黄嘌呤氧化酶的发酵、纯化、特性及基因研究[D]:[博士学位论文].无锡:江南大学生物工程学院,2007.
    [64]夏小花,李忠琴,秦广雍,等.氮离子束诱变提高黄嘌呤氧化酶产生菌产酶能力[J].食品与生物技术学报,2007,26(6):81-85.
    [65]夏小花,杨海麟,王武.产黄嘌呤氧化酶节杆菌X7产酶条件优化[J].河南工业大学学报(自然科学版本),2007,28(2):51-54.
    [66] Nishino T, Amaya Y, Kawamoto S, et al. Purification and characterization of multiple forms of rat liverxanthine oxidoreductase expressed in baculovirus-insect cell system[J]. J Biochem,2002,132(4):597-606.
    [67] Yamaguchi Y, Matsumura T, Ichida K, et al. Human xanthine oxidase changes its substrate specificityto aldehyde oxidase type upon mutation of amino acid residues in the active site: Roles of active siteresidues in binding and activation of purine substrate[J]. J Biochem,2007,141(4):513-524.
    [68] Doyle W A, Burke J F, Chovnick A, et al. Engineering and expression in Drosophila melanogaster of axanthine dehydrogenase (rosy) variant.[J]. Biochem Soc T,1996,24(1):31S.
    [69] Adams B, Smith AT, Doyle W A, et al. Expression of wild-type and mutated Drosophila melanogasterxanthine dehydrogenases in Aspergillus nidulans[J]. Biochem Soc T,1997,25(3):520S.
    [70] Adams B, Lowe D J, Smith AT, et al. Expression of Drosophila melanogaster xanthine dehydrogenasein Aspergillus nidulans and some properties of the recombinant enzyme[J]. Biochem J,2002,362:223-229.
    [71] Neumann M, Schulte M, Junemann N, et al. Rhodobacter capsulatus XdhC is involved inmolybdenum cofactor binding and insertion into xanthine dehydrogenase[J]. J Biol Chem,2006,281(23):15701-15708.
    [72] Leimkuhler S, Klipp W. Role of XDHC in molybdenum cofactor insertion into xanthinedehydrogenase of Rhodobacter capsulatus[J]. J Bacteriol,1999,181(9):2745-2751.
    [73] Leimkuhler S, Hodson R, George G N, et al. Recombinant Rhodobacter capsulatus xanthinedehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria I inhumans[J]. J Biol Chem,2003,278(23):20802-20811.
    [74]李忠琴,许小平,夏小花,等.黄嘌呤氧化酶产生菌的产酶条件优化[J].中国医药工业杂志,2007,38(12):842-845.
    [75]王静.提高节杆菌(Arthrobacter X7)产黄嘌呤氧化酶水平的研究[D]:[硕士学位论文].无锡:江南大学生物工程学院,2008.
    [76] Bradshaw W H, Barker H A. Purification and properties of xanthine dehydrogenase from Clostridiumcylindrosporum[J]. J Biol Chem,1960,23(5):3620-3629.
    [77] Wagner R, Cammack R, Andreesen J R. Purification and characterization of xanthine dehydrogenasefrom Clostridium acidiurici grown in the presence of selenium[J]. BBA-Protein Struct and M,1984,791(1):63-74.
    [78] Woolfolk C A, Downard J S. Bacterial xanthine oxidase from Arthrobacter S-2[J]. J Bacteriol,1978,135(2):422-428.
    [79] Amini K, Sorouraddin M-H, Rashidi M-R. Activity and stability of rat liver xanthine oxidase in thepresence of pyridine[J]. Can J Chem,2010,89(1):1-7.
    [80] Johnson D, Coughlan M. Studies on the stability of immobilized xanthine oxidase and urate oxidase[J].Biotechnol Bioeng,1978,20(7):1085-1095.
    [81] Polizzi K M, Bommarius A S, Broering J M, et al. Stability of biocatalysts[J]. Curr Opin Chem Biol,2007,11(2):220-225.
    [82] Zold, aacute, k G, et al. Irreversible thermal denaturation of glucose oxidase from Aspergillus niger isthe transition to the denatured state with residual structure[J]. J Biol Chem,2004,279(46):47601-47609.
    [83] Fu D, Li C, Lu J, et al. Relationship between thermal inactivation and conformational change ofYarrowia lipolytica lipase and the effect of additives on enzyme stability[J]. J Mol Catal B-Enzym,2010,66(1–2):136-141.
    [84] Chen S, Ye F, Chen Y, et al. Biochemical analysis and kinetic modeling of the thermal inactivation ofMBP-fused heparinase I: Implications for a comprehensive thermostabiliztion strategy[J]. BiotechnolBioeng,2011,108(8):1841-1851.
    [85] Tomita S, Nagasaki Y, Shiraki K. Different mechanisms of action of poly(ethylene glycol) and arginineon thermal inactivation of lysozyme and ribonucleaseA[J]. Biotechnol Bioeng,2012,109(10):2543-2552.
    [86] Singleton M, Isupov M, Littlechild J. X-ray structure of pyrrolidone carboxyl peptidase from thehyperthermophilic archaeon Thermococcus litoralis[J]. Structure,1999,7(3):237-244.
    [87] Vieille C, Zeikus G J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms forthermostability[J]. Microbiol Mol Biol Rev,2001,65(1):41-43.
    [88] Kabashima T, Li Y, Kanada N, et al. Enhancement of the thermal stability of pyroglutamyl peptidase Iby introduction of an intersubunit disulfide bond[J]. BiochimBiophys Acta,2001,1547(2):214-220.
    [89] Tamura A, Kojima S, Miura K, et al. Effect of an intersubunit disulfide bond on the stability ofStreptomyces subtilisin inhibitor[J]. Biochemistry-Us,1994,33(48):14512-14520.
    [90] Costa S A, Tzanov T, Filipa Carneiro A, et al. Studies of stabilization of native catalase usingadditives[J]. Enzyme Microb Tech,2002,30(3):387-391.
    [91] Bolen D W. Effects of naturally occurring osmolytes on protein stability and solubility: issuesimportant in protein crystallization[J]. Methods,2004,34(3):312-322.
    [92] Timasheff S N, Arakawa T. Mechanism of protein precipitation and stabilization by co-solvents[J]. JCryst Growth,1988,90(1–3):39-46.
    [93] Yan J, Gui X, Wang G, et al. Improving stability and activity of cross-linked enzyme aggregates basedon polyethylenimine in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids[J]. ApplBiochem Biotechnol,2012,166(4):925-932.
    [94] Gallivan J P, Dougherty D A. Cation-pi interactions in structural biology[J]. Proc Natl Acad Sci U S A,1999,96(17):9459-9464.
    [95] Caves M S, Derham B K, Jezek J, et al. The mechanism of inactivation of glucose oxidase fromPenicillium amagasakiense under ambient storage conditions[J]. Enzyme Microb Technol,2011,49(1):79-87.
    [96] Caves M S, Derham B K, Jezek J, et al. Thermal inactivation of uricase (urate oxidase): mechanismand effects of additives[J]. Biochemistry-Us,2013,52(3):497-507.
    [97] Singer M A, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo[J].Molecular Cell,1998,1(5):639-648.
    [98] Sola-Penna M, Meyer-Fernandes J R. Stabilization against thermal inactivation promoted by sugars onenzyme structure and function: Why is trehalose more effective than other sugars?[J]. Arch BiochemBiophys,1998,360(1):10-14.
    [99] Natalello A, Liu J, Ami D, et al. The osmolyte betaine promotes protein misfolding and disruption ofprotein aggregates[J]. Proteins,2009,75(2):509-517.
    [100] Timasheff S N. Control of protein stability and reactions by weakly interacting cosolvents: thesimplicity of the complicated[J]. Adv Protein Chem,1998,51:355-432.
    [101] Arakawa T, Timasheff S. Stabilization of protein structure by sugars[J]. Biochemistry-Us,1982,21(25):6536-6544.
    [102] Kerwin B, Heller M, Levin S, et al. Effects of Tween80and sucrose on acute short-term stability andlong-term storage at-20℃of a recombinant hemoglobin[J]. J Pharm Sci,1998,87(9):1062-1068.
    [103] Tanaka H, Chinami M, Mizushima T, et al. X-ray crystalline structures of pyrrolidone carboxylpeptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant[J]. J Biochem,2001,130(1):107-118.
    [104] Ogasahara K, Ishida M, Yutani K. Stimulated interaction between and subunits of tryptophansynthase from hyperthermophile enhances its thermal stability[J]. J Biol Chem,2003,278(11):8922-8928.
    [105] Williams J, Zeelen J, Neubauer G, et al. Structural and mutagenesis studies of leishmaniatriosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzymewithout losing catalytic power[J]. Protein Eng,1999,12(3):243-250.
    [106] Waldburger C, Schildbach J, Sauer R. Are buried salt bridges important for protein stability andconformational specificity?[J]. Nat Struct Biol,1995,2(2):122-128.
    [107] Gokhale R, Agarwalla S, Francis V, et al. Thermal stabilization of thymidylate synthase byengineering two disulfide bridges across the dimer interface[J]. J Mol Biol,1994,235(1):89-94.
    [108] Velanker S, Gokhale R, Ray S, et al. Disulfide engineering at the dimer interface of Lactobacilluscasei thymidylate synthase: crystal structure of the T155C/E188C/C244T mutant[J]. Protein Sci,1999,8(4):930-933.
    [109] Montes T, Grazú V, López-Gallego F, et al. Genetic modification of the penicillin G acylase surfaceto improve its reversible immobilization on ionic exchangers[J]. Appl Environ Microbiol,2007,73(1):312-319.
    [110] Bolivar J, Rocha-Martin J, Mateo C, et al. Coating of soluble and immobilized enzymes with ionicpolymers: full stabilization of the quaternary structure of multimeric enzymes[J]. Biomacromolecules,2009,10(4):742-747.
    [111] Andersson M, Breccia J, Hatti-Kaul R. Stabilizing effect of chemical additives against oxidation oflactate dehydrogenase[J]. Biotechnol Appl Biochem,2000,32(3):145-153.
    [112] Andersson M M, Hatti-Kaul R. Protein stabilising effect of polyethyleneimine[J]. J Biotechnol,1999,72(1–2):21-31.
    [113] Ball E G. Xanthine oxidase: purification and properties[J]. J Biol Chem,1939,128:51-67.
    [114] Nishino T, Okamoto K, Eger B T, et al. Mammalian xanthine oxidoreductase-mechanism oftransition from xanthine dehydrogenase to xanthine oxidase[J]. Febs J,2008,275(13):3278-3289.
    [115] Poss W B, Huecksteadt T P, Panus P C, et al. Regulation of xanthine dehydrogenase and xanthineoxidase activity by hypoxia[J]. AmJ Physiol-Lung C,1996,270(6): L941-L946.
    [116] Higgins P, Dawson J, Lees K R, et al. Xanthine oxidase inhibition for the treatment of cardiovasculardisease: a systematic review and meta-analysis[J]. Cardiovasc Ther,2012,30(4):217-226.
    [117] Higgins P, Ferguson L D, Walters M R. Xanthine oxidase inhibition for the treatment of strokedisease: a novel therapeutic approach[J]. Expert Rev Cardiovasc Ther,2011,9(4):399-401.
    [118]房耀维,余勃,刘姝,等.有机溶剂稳定性蛋白酶发酵动力学研究[J].食品科学,2012,33(23):240-243.
    [119] Ricklefs R E. A graphical method of fitting equations to growth curves[J]. Ecology,1967,48(6):978-983.
    [120] Tsoularis A, Wallace J. Analysis of logistic growth models[J]. Math Biosci,2002,179(1):21-55.
    [121] Nandasana A D, Kumar S. Kinetic modeling of lactic acid production from molasses usingEnterococcus faecalis RKY1[J]. BiochemEng J,2008,38(3):277-284.
    [122] Luedeking R, Piret E L. A kinetic study of the lactic acid fermentation. Batch process at controlledpH[J]. Biotechnol Bioeng,1959,1(4):393-412.
    [123] Li B, Chen X, Ren H, et al. Kinetic models of ribonucleic acid fermentation and continuous cultureby Candida tropicalis no.121[J]. Bioproc Biosyst Eng,2012,35(3):415-422.
    [124] Xin Y, Yang H, Xia X, et al. Affinity purification of a cholesterol oxidase expressed in Escherichiacoli[J]. J Chromatogr B,2011,879(13–14):853-858.
    [125]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2001.77-123.
    [126] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72(1–2):248-254.
    [127] Adachi T, Fukushima T, Usami Y, et al. Binding of human xanthine oxidase to sulfatedglycosaminoglycans on the endothelial-cell surface[J]. Biochem J,1993,28(9):523-527.
    [128] Xin Y, Dong D, Wang T, et al. Affinity purification of serine proteinase from Deinagkistrodon acutusvenom[J]. J Chromatogr B,2007,859(1):111-118.
    [129] Samborska K, Guiavarc'H Y, Van Loey A, et al. The thermal stability of Aspergillus oryzaealpha-amylase in presence of sugars and polyols[J]. J Food Process Eng,2006,29(3):287-303.
    [130]伍学勤,吴岑,凌晓红,等.一种安全制备活化琼脂糖树脂的方法[J].生物化学与生物物理进展,2002,29(2):328-331.
    [131]韩丽梅.壳聚糖固定化蚯蚓纤溶酶研究[D]:[硕士学位论文].保定:河北大学生命科学学院,2008.
    [132]张红.蛋白质交联研究概况[J].粮食与油脂,2004(12):16-19.
    [133] López-Alonso J, Diez-García F, Font J, et al. Carbodiimide EDC induces cross-links that stabilizeRNase A C-dimer against dissociation: EDC adducts can affect protein net charge, conformation, andactivity[J]. Bioconjug Chem,2009,20(8):1459-1473.
    [134] Wang C. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and thefollowing amidation reactions[J]. Langmuir,2011,27(19):12058-12068.
    [135] Nakajima N. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media[J].Bioconjug Chem,1995,6(1):123-130.
    [136] Hernandez K, Garcia-Galan C, Fernandez-Lafuente R. Simple and efficient immobilization of lipaseB from Candida antarctica on porous styrene-divinylbenzene beads[J]. Enzyme Microb Technol,2011,49(1):72-78.
    [137] Reis P, Holmberg K, Watzke H, et al. Lipases at interfaces: a review[J]. Adv Colloid Interfac,2009,147-148:237-250.
    [138] Chen Y, Xin Y, Yang H L, et al. Immobilization and stabilization of cholesterol oxidase on modifiedsepharose particles[J]. Int J Biol Macromol,2013,56(0):6-13.
    [139] Nouaimi M, M schel K, Bisswanger H. Immobilization of trypsin on polyester fleece via differentspacers[J]. Enzyme Microb Tech,2001,29(8–9):567-574.
    [140] Reinert W R, Marzluf G A. Regulation of the purine catabolic enzymes in Neurospora crassa[J].Arch Biochem Biophys,1975,166(2):565-574.
    [141] Cooper T G. Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the lastintermediate of the pathway[J]. Proc Natl Acad Sci U SA,1973,70(8):2340-2344.
    [142] Reinert W, Marzluf G. Genetic and metabolic control of the purine catabolic enzymes of Neurosporacrasse[J]. Mol Gen Genet,1975,139(1):39-55.
    [143]朱鸿,李想韵,邓玉,等.芦荟过氧化氢酶的分离纯化和性质研究[J].食品科学,2010,31(5):206-210.
    [144]熊居宏.苯酚-次氯酸盐分光光度法测定游泳池水中尿素[J].中国科技信息,2005(22):65.
    [145] Ngo T T, Phan A P H, Yam C F, et al. Interference in determination of ammonia with thehypochlorite-alkaline phenol method of Berthelot[J]. Anal Chem,1982,54(1):46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700