用户名: 密码: 验证码:
水溶性量子点和量子点/分子筛纳米复合材料的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光发光二极管(白光LED)由于其寿命长、环保、效率高等优点,将成为新一代固体照明光源。目前,商业白光LED主要是通过荧光转换法将Y3A15O12:Ce3+(YAG:Ce)黄色荧光粉涂于蓝光LED芯片上来实现,但是由于缺乏红色成分导致白光LED的显色指数不高,发光效率低等缺陷,所以寻求一种发光效率高、稳定性好的荧光材料成为白光LED研究中的一个热点。量子点作为一种新型的纳米材料,由于存在量子限域效应,使其表现出独特的荧光性能。相对于有机染料而言,量子点存在很多优点,如激发光谱宽、颜色可调、抗光漂白等。由于这些独特的性质,量子点在生物医学、光电器件以及催化等领域表现出很好的应用前景。目前,大多数商业用量子点都是通过传统的有机金属法合成,其合成过程毒性较大。本文从应用的要求出发,采用绿色环保的巯基水相法合成适用于LED用的量子点。对所合成的量子点的结构组成、形貌特征、光谱性能等进行了表征。将实验所合成的部分量子点应用于白光LED中,并对所组装白光LED的相关技术指标进行了详细地讨论。除此之外,还通过采用Y型分子筛作为主体材料,在Y型分子筛中合成规则有序的量子点,并对其光催化性能进行详细地研究。具体开展了以下工作:
     (1)在水相体系中,通过一步水相法成功地合成了巯基乙胺(CA)稳定的CdTe量子点。CA-CdTe量子点为近球形的闪锌矿结构;通过控制体系的反应时间来调节CdTe量子点的发射波长,结果表明,随着回流时间的延长,其最大荧光发射波长发生明显的红移现象,表现出明显的量子尺寸效应。通过对反应温度、前驱体溶液的pH值、Cd与Te的物质的量比等条件的优化,得到了一个巯基乙胺稳定CdTe量子点水相合成的最优合成方案:n(Cd):n (Te2-):n(CA)=1:0.05:2,pH为5.85,温度为100℃,并且最大荧光量子产率可以达到10.73%。
     (2)用巯基乙酸作为稳定剂,通过一锅水相法成功地合成了一系列不同Mn离子量掺杂的CdTe纳米粒子。XRD和HRTEM结果表明,样品具有闪锌矿结构CdTe量子点的特征峰,说明Mn离子的加入并没有改变CdTe量子点的晶体结构;并且样品为近球型形状,直径约为3nm。Mn离子的加入使得CdTe量子点的荧光发射光谱发生明显的红移现象,使得更加容易得到红光发射的量子点,可将其应用于商业白光LED以弥补商业荧光粉的缺陷。
     (3)以Na2TeO3为碲源,分别以硫普罗宁(TP)、L-半胱氨酸(Cys)和巯基丁二酸(MSA)作为稳定剂,在水相体系中合成水溶性的CdTe量子点。XRD和HRTEM结果表明三种不同稳定剂稳定的CdTe量子点都呈球状的闪锌矿结构,且分散均匀。实验结果表明,分别用三种稳定剂稳定的CdTe量子点均在碱性条件下合成,并且稳定剂的种类对量子点在水相介质中的尺寸分布和生长率有很大的影响。从它们的荧光发射峰可以看出,MSA稳定的CdTe量子点的生长速度最快,当回流到7h时其最大荧光发射达到了650nm的红光发射。TP稳定的CdTe量子点的生长速度最慢,当回流7h时的最强发射波长只有586nm。
     (4)分别以ZnCl2、CdCl2、TeO2为Zn源,Cd源和Te源,采用一锅水相法合成水溶性蓝光发射的ZnxCd(1-x)Te量子点。实验结果表明,通过改变Zn2+/Cd2+摩尔比可以调节合金化合物的发光颜色。随着Zn2+/Cd2+摩尔比的增加,ZnxCd(1-x)Te合金型量子点的发射波长发生明显的蓝移现象,当Zn2+/Cd2+摩尔比为70:2时,ZnxCd(1-x)Te合金型量子点发出460nm左右的蓝光。通过对实验合成的ZnCdTe量子点的表面进行修饰,在ZnCdTe量子点的外表面再生长一层CdSe量子点壳,生成黄光发射的ZnCdTe/CdSe核/壳型纳米晶体,可作为白光LED用黄色荧光粉。
     (5)采用荧光转换法,用单核的巯基丙酸(MPA)稳定的CdTe量子点与商用的YAG黄光荧光粉混合封装于蓝光LED芯片上,获得RYB三光色复合白光LED,有效地提高了光谱中红光的成分,改善了YAG的显色性,显色指数从原来的62.6提高到了75。其次,将红光发射的Cd(1-x)MnxTe量子点作为荧光粉封装于近紫外发光的LED芯片上,获得发光性能较好的红光量子点LED,说明Cd(1-x)MnxTe量子点可用于LED的封装。并且考察了将少量的Cd(1-x)MnxTe量子点加入到商业YAG黄色荧光粉中,弥补商业YAG荧光粉的缺陷,提高商业用白光LED的发光性能,将显色指数从原来的62.6提高到了78,这比单核CdTe量子点的效果更佳。最后,将ZnCdTe/CdSe核/壳型量子点作为荧光粉封装在蓝光LED芯片上,获得20mA工作电流下显色指数为51.1的白光LED;由于ZnCdTe/CdSe量子点白光LED缺乏绿光的成分导致显色指数低,为了提高其显色指数,将绿光发射的Ca8Mg(SiO4)4Cl2:Eu2+荧光粉与ZnCdTe/CdSe量子点按照合适的比例混合均匀封装在蓝光LED芯片上,获得显示指数较高的白光LED。当Ca8Mg(SiO4)4Cl2:Eu2+荧光粉与ZnCdTe/CdSe量子点的质量比为1:1.5时,获得20mA工作电流下显色指数为88.2的优质白光LED。
     (6)通过离子交换法,用Y型分子筛作为主体材料,成功的合成了CdTe/Y纳米复合材料,并讨论了实验条件对合成CdTe/Y纳米复合材料的影响及其合成样品的光催化性能。结果表明,CdTe纳米粒子的负载并没有改变主体分子筛材料的骨架结构,并且所合成的CdTe/Y催化剂具有较好的光催化性能,在紫外光照30分钟时,对甲基蓝的最高降解率达到了87.7%。
White light-emitting diodes (LEDs) is considered as a new generation solid lighting source because of their advantages, such as long service life, high efficiency and environmental protection. At present, the mostly method to realize white LED is the phosphor-converted-LED (pc-LED), which coats the yellow light-emitting phosphor, Y3Al5O12:Ce3+(YAG:Ce) on a blue LED chip. Although this type of white LED has been commercialized, it exhibits low luminous efficiency and low color rendering index (CRI) because of its red spectral deficiency. Therefore, to find a fluorescent material with high luminous efficiency and good stability will become a research hotspot in the white light LED. Quantum Dots (QDs) is a new-style nanometer materials exhibiting distinctive photoluminescence (PL) properties due to the quantum confinement effect. Having many advantages over organic dyes, such as broad excitation, color-tunable, resistance to photobleaching and so on. At present, the excellent properties show great promise for use in the fields of biomedicine, light-emitting diodes (LEDs), solar cells, catalysis and other prospects. Most commercial quantum dots are synthesized by the traditional organic metal method, but the synthesis process with large toxicity. In this study, according to the requirements of applications, our research was mainly focused on the greener synthesis route of quantum dots for light-emitting diodes in an aqueous system. The crystalline structure, component, morphology and size, and optical properties of as-prepared QDs were characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), Energy dispersive spectrometer (EDS), photoluminescence spectrum (PL), and UV-Vis absorption spectrum (UV-Vis), respectively. A part of as-prepared quantum dots were used as phosphor for white LED, and the performance of the fabricated W-LED was evaluated. In addition, CdTe/Y nanocomposites were synthesised in an ion exchange method using zeolites Y as hosts. The photocatalytic activities of the CdTe/Y nanocomposites were also investigated systematically. The main contributions were as follows:
     (1) Cysteamine (CA)-CdTe QDs were successfully synthesized using a one-step aqueous method. XRD and TEM results show that CdTe QDs with CA modification exhibit a zinc-blended crystal structure in a sphere-like shape. The maximum emission wavelength of CdTe quantum dots could be changed by controlling the reaction time, and the results show that the maximum emission peak exhibited an evident red shift with increasing reflux time due to the quantum size effect. The influences of the reflux temperature, the precursor Cd/Te molar ratios and the pH of the original solution on the luminescence property of the obtained CdTe QDs were investigated systematically. An optimization program of synthesis CdTe QDs was obtained:the precursor Cd/Te molar ratio is1:0.05, the pH of the original solution is5.85, and the reflux temperature is100℃, with a maximum photoluminescence QY of10.73%.
     (2) A series of Mn-doped CdTe nanocrystals (NCs) with different concentration of Mn ion were synthesised through a one-step approach in an aqueous medium using thioglycollic acid (TGA) as stabilizer. The obtained Mn-doped CdTe nanocrystals were consistent with the zinc-blended CdTe crystal structure, with approximately spherical aspect of about3.0nm. A red-shift in the emission peak wavelength was observed by doping Mn2+ions into the CdTe QDs to substitute some Cd2+ions. Therefor, the red emission QDs will be more likely obtained by doping Mn2+ions into the CdTe QDs, and red emission QDs is a promising candidate that can be applied in WLEDs.
     (3) The obtained CdTe QDs using Na2TeO3as Te source, and three different sulfhydryl compound as ligands, namely tiopronin (TP), L-cysteine (Cys) and mercaptosuccinic acid (MSA). The as-synthesis CdTe with different ligands were zinc-blended structure and approximately spherical. In an aqueous medium, the size-distribution and growth rate of CdTe quantum dots (QDs) are shown to depend on the type of ligands. The growth rate of MSA coated QDs are faster than Cys-and TP-coated QDs. The maximum emission wavelength of MSA-CdTe QDs up to650nm, while the TP-CdTe QDs was586nm at the refluxing time was7h. So larger-size QDs can be synthesized more easily when MSA is chosen as ligand.
     (4) A one-step of blue light emission cysteine-capped ZnxCd(1-x)Te alloy QDs has been accomplished by reacting a mixture of ZnCl2and CdCl2with TeO2and using cysteine as surface-stabilizing agent. Without changing the particle size, the fluorescence emissions of QDs can be determined by controlling the Zn2+/Cd2+molar ratio. An evident blue shift was exhibited on the maximum emission peak with increasing the Zn molar ration in the mixture. The ZnxCd(1-X)Te alloy QDs had a blue emission when the Zn/Cd molar ratio was fixed at70:2. The ZnxCd(1-x)Te alloy QDs surface were modified by growth a thin CdSe semiconductor shell on the outer surface of the ZnCdTe NCs. The yellow emission ZnCdTe/CdSe core-shell nanocrystals were prepared to use for white LED.
     (5) The RYB "three-band" white LED was fabricated by combining a blue InGaN chip with YAG:Ce and MPA-CdTe QDs used as hybrid phosphors. The WLED showed improved color rendering of light in red with color rendering index (CRI) was increased from62.2to75under20mA forward bias current. A red-light QDs-LED was obtained by encapsulating the red-emiting Cd(1-x)MnxTe onto a blue LED chip, which proved the Cd(1-x)MnxTe QDs available for LED application. Then the white LED was fabricated by combining a blue InGaN chip with YAG:Ce and Cd(1-x)MnxTe QDs used as hybrid phosphors. Because the enhancement of the red spectrum from Cd(1-x)MnxTe QDs can broaden the white emission band, the resultant CRI increased to78at20mA, which is better than single core CdTe QDs. The other white LED consisted of ZnCdTe/CdSe QDs as the phosphor with a blue InGaN chip as the excitation source and showed a low color rendering index (CRI) of51.1caused by the lack of green emissions under a working current of20mA. White LED with a high CRI was obtained with the addition of Ca8Mg(SiO4)4Cl2:Eu2+phosphor, and the CRI of the hybridphosphor white LED was improved to88.2when the mass ratio of Ca8Mg(SiO4)4Cl2:Eu2+phosphor and ZnCdTe/CdSe QDs was1:1.5.
     (6) The CdTe/Y nanocomposites were successful synthesized through the ion exchange method, using zeolite Y as host material. The influences of the experimental conditions on photocatalytic activity of the CdTe/Y were investigated systematically. The results showed that the framework structure of zeolite Y was not destroyed and that CdTe QDs were successfully introduced into zeolite Y. Approximately87.7%degradation rate was achieved within30min of irradiation of20mg·L-1methyl blue solution in the presence of CdTe/Y under UV light.
引文
[1]Smith A. M., Gao X., Nie S. Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging [J]. Photochemistry and photobiology,2004,80(3):377-385.
    [2]Jamieson T., Bakhshi R., Petrova D., et al. Biological applications of quantum dots [J]. Biomaterials,2007,28(31):4717-4732.
    [3]Zhong W., Liang J., Yu J. Systematic study of the interaction of cobalt ions with different-sized CdTe quantum dots [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74(3):603-606.
    [4]Xu X., Wang Y., Gule T., et al. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application [J]. Materials Research Bulletin, 2013,48(3):983-987.
    [5]Jang H. S., Yang H., Kim S. W., et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce3+, Li+ phosphors [J]. Advanced Materials,2008,20(14):2696-2702.
    [6]Gao X. F., Li H. B., Sun W. T., et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes [J]. The Journal of Physical Chemistry C,2009,113(18):7531-7535.
    [7]Gan J., Zhai T., Lu X., et al. Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs [J]. Materials Research Bulletin,2012,47(3):580-585.
    [8]Iversen T. G, Skotland T., Sandvig K. Endocytosis and intracellular transport of nanoparticles:present knowledge and need for future studies [J]. Nano Today,2011,6(2): 176-185.
    [9]李倩.新型高效半导体量子点的制备、光学性质及其光学功能薄膜组装研究[D].内蒙古:内蒙古大学,2010.
    [10]宋国利杨幼桐,孙凯霞,等.量子点的电子结构及量子效应[J].黑龙江大学自然科学学报,2002,1(19):80-83.
    [11]许智祥.荧光量子点的制备及应用研究[D].武汉:华中科技大学,2007.
    [12]彭英才.半导体量子点的电子结构[J].固体电子学研究与进展,1997,2(5):165-172.
    [13]钱留琴.CdS及其掺杂纳米结构的制备与表征[D].浙江:浙江理工大学,2009.
    [14]Ma F., Xu K. Quantum size effect of electron density in ultra-thin metal films and its influence on the interlayer relaxation [J]. Applied Surface Science,2008,254(15): 4415-4420.
    [15]Reiss P., Protiere M., Li L. Core/shell semiconductor nanocrystals [J]. small,2009,5(2): 154-168.
    [16]Shiohara A., Hoshino A., Hanaki K., et al. On the Cyto-toxicity Caused by Quantum Dots [J]. Microbiology and immunology,2004,48(9):669-675.
    [17]Gagne F., Auclair J., Turcotte P., et al. Ecotoxicity of CdTe quantum dots to freshwater mussels:impacts on immune system, oxidative stress and genotoxicity [J]. Aquatic Toxicology,2008,86(3):333-340.
    [18]Murray C., Norris D. J., Bawendi M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [19]Peng Z. A., Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. Journal of the American Chemical Society,2001,123(1):183-184.
    [20]Rogach A., Katsikas L., Kornowski A., et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1996,100(11):1772-1778.
    [21]Liao P., Yan Z. Y., Xu Z. J., et al. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(5):1066-1070.
    [22]Tian J., Liu R., Zhao Y., et al. Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid [J]. Journal of colloid and interface science,2009,336(2):504-509.
    [23]Li M., Zhou H., Zhang H., et al. Preparation and purification of L-cysteine capped CdTe quantum dots and its self-recovery of degenerate fluorescence [J]. Journal of Luminescence,2010,130(10):1935-1940.
    [24]Qin H., Jian W., Zhang Y, et al. A simple and novel route for the synthesis of water soluble ZnSe quantum dots using the Nano-Se as the reaction intermediate [J]. Materials Letters,2012,67(1):28-31.
    [25]Peng H., Zhang L., Soeller C., et al. Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability [J]. Journal of Luminescence,2007,127(2): 721-726.
    [26]Dabbousi B., Rodriguez Viejo J., Mikulec F. V., et al. (CdSe) ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallite s[J]. The Journal of Physical Chemistry B,1997,101(46):9463-9475.
    [27]Chen H. S., Lo B., Hwang J. Y., et al. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO [J]. The Journal of Physical Chemistry B,2004, 108(44):17119-17123.
    [28]Hines M. A., Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals [J]. The Journal of Physical Chemistry,1996,100(2): 468-471.
    [29]Talapin D. V., Mekis I., Gotzinger S., et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals [J]. The Journal of Physical Chemistry B,2004,108(49): 18826-18831.
    [30]Zhou X., Kobayashi Y., Romanyuk V., et al. Preparation of silica encapsulated CdSe quantum dots in aqueous solution with the improved optical properties [J]. Applied Surface Science,2005,242(3):281-286.
    [31]Bruchez M., Moronne M., Gin P., et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385):2013-2016.
    [32]Chan W. C., Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [33]Estrada C. R., Salanga M., Bielenberg D. R., et al. Behavioral profiling of human transitional cell carcinoma ex vivo [J]. Cancer research,2006,66(6):3078-3086.
    [34]Kim S., Lim Y. T., Soltesz E. G, et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping [J]. Nature biotechnology,2004,22(1):93-97.
    [35]Jiaran L., Wenying Z., Junsheng Y. Application of quantum dots (QDs) as fluoresent probes in quantitative analysis [J]. Progress in Chemistry,2008,20(09):1385-1390.
    [36]Wu X., Liu H., Liu J., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nature biotechnology,2003, 21(1):41-46.
    [37]Gu H. Y., Chen Z., Sa R. X., et al. The immobilization of hepatocytes on 24nm-sized gold colloid for enhanced hepatocytes proliferation [J]. Biomaterials,2004,25(17): 3445-3451.
    [38]O'regan B., Grfitzeli M. A low-cost, high-efficiency solar cell based on dye-sensitized [J]. Nature,1991,353:737-740.
    [39]Vogel R., Pohl K., Weller H. Sensitization of highly porous, poly crystal line TiO2 electrodes by quantum sized CdS [J]. Chemical Physics Letters,1990,174(3):241-246.
    [40]Vogel R., Hoyer P., Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J]. The Journal of Physical Chemistry,1994,98(12):3183-3188.
    [41]Zaban A., Micic O., Gregg B., et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir,1998,14(12):3153-3156.
    [42]Yu P., Zhu K., Norman A. G, et al. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots [J]. The Journal of Physical Chemistry B,2006,110(50):25451-25454.
    [43]Strasfeld D. B., Dorn A., Wanger D. D., et al. Imaging Schottky barriers and ohmic contacts in PbS quantum dot devices [J]. Nano letters,2012,12(2):569-575.
    [44]Hoyer P., Konenkamp R. Photoconduction in porous TiO2 sensitized by PbS quantum dots [J]. Applied physics letters,1995,66(3):349-351.
    [45]Robel I., Subramanian V., Kuno M., et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. Journal of the American Chemical Society,2006,128(7):2385-2393.
    [46]Fan S. Q., Kim D., Kim J. J., et al. Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications [J]. Electrochemistry communications,2009, 11(6):1337-1339.
    [47]Tachibana Y, Akiyama H. Y, Ohtsuka Y, et al. CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells [J]. Chemistry Letters,2007,36(1):88-89.
    [48]Weller H. Quantum sized semiconductor particles in solution and in modified layers [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1991,95(11):1361-1365.
    [49]Chen H., Zhu L., Liu H., et al. Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells [J]. Nanotechnology,2012,23(7):075402.
    [50]Zhou Z. J., Fan J. Q., Wang X., et al. Solution fabrication and photoelectrical properties of CuInS2 nanocrystals on TiO2 nanorod array [J]. ACS applied materials & interfaces, 2011,3(7):2189-2194.
    [51]Chang C. H., Lee Y. L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Applied physics letters, 2007,91(5):053503.
    [52]Niitsoo O., Sarkar S. K., Pejoux C., et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. Journal of Photochemistry and Photobiology A:chemistry, 2006,181(2):306-313.
    [53]Shen Q., Kobayashi J., Diguna L. J., et al. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells [J]. Journal of Applied Physics, 2008,103(8):084304.
    [54]Lee Y. L., Lo Y. S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe [J]. Advanced Functional Materials,2009,19(4):604-609.
    [55]Santra P. K., Kamat P. V. Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5%[J]. Journal of the American Chemical Society,2012,134(5): 2508-2511.
    [56]Nakamura S., Pearton S., Fasol G, et al. The blue laser diode [M]. Berlin:Springer, 1996,2-5.
    [57]Wang Z., Liang H., Gong M., et al. Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure [J]. Journal of alloys and compounds, 2007,432(1):308-312.
    [58]Zhu C., Xiao S., Ding J., et al. Synthesis and photoluminescent properties of Eu3+-doped (1-x)CaO-xLi2O-WO3 phosphors [J]. Materials Science and Engineering:B,2008,150(2): 95-98.
    [59]Narendran N., Gu Y., Freyssinier-Nova J., et al. Extracting phosphor-scattered photons to improve white LED efficiency [J]. physica status solidi (a),2005,202(6):R60-R62.
    [60]Xie R. J., Hirosaki N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review [J]. Science and Technology of Advanced Materials,2007,8(7):588-600.
    [61]Shur M. S., Zukauskas A. Solid-state lighting:toward superior illumination [J]. Proceedings of the IEEE,2005,93(10):1691-1703.
    [62]Gao J., Dane J. Planar polymer light-emitting electrochemical cells with extremely large interelectrode spacing [J]. Applied physics letters,2003,83(15):3027-3029.
    [63]Steigerwald D. A., Bhat J. C, Collins D., et al. Illumination with solid state lighting technology [J]. IEEE Journal on Selected Topics in Quantum Electronics,2002,8(2): 310-320.
    [64]Sheu J. K., Chang S. J., Kuo C., et al. White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors [J]. IEEE Photonics Technology Letters,2003,15(1):18-20.
    [65]Song H., Lee S. Red light emitting solid state hybrid quantum dot-near-UV GaN LED devices [J]. Nanotechnology,2007,18(25):255202.
    [66]Colvin V., Schlamp M., Alivisatos A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polyme r[J]. Nature,1994,370(6488): 354-357.
    [67]Bera D., Qian L., Tseng T. K., et al. Quantum dots and their multimodal applications:a review [J]. Materials,2010,3(4):2260-2345.
    [68]Achermann M., Petruska M. A., Kos S., et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well [J]. Nature,2004,429(6992):642-646.
    [69]Ahn J. H., Bertoni C., Dunn S., et al. White organic light-emitting devices incorporating nanoparticles of Ⅱ-Ⅵ semiconductors [J]. Nanotechnology,2007,18(33):335202.
    [70]Smet P. F., Moreels I., Hens Z., et al. Luminescence in sulfides:a rich history and a bright future [J]. Materials,3(4):2834-2883.
    [71]Dai J., Ji Y., Xu C., et al. White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes [J]. Applied physics letters,2011,99(6): 063112-063113.
    [72]Thoma S. G, Abrams B. L., Rohwer L. S., et al. Encapsulation of nanoparticles for the manufacture of solid state lighting devices; proceedings of the Proceedings of SPIE, F, 2004.
    [73]Bowers M. J., Mcbride J. R., Rosenthal S. J. White-light emission from magic-sized cadmium selenide nanocrystals [J]. Journal of the American Chemical Society,2005, 127(44):15378-15379.
    [74]Liu X., Jiang Y., Wang C, et al. White-ligh-emitting CdSe quantum dots with"magic size" via one-pot synthesis approach [J]. physica status solidi (a),2010,207(11): 2472-2477.
    [75]Chen H. S., Wang S. J. J., Lo C. J., et al. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes [J]. Applied physics letters,2005,86(13):131905.
    [76]Chen H. S., Yeh D. M., Lu C. F., et al. White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode [J]. IEEE Photonics Technology Letters,2006,18(13):1430-1432.
    [77]Nizamoglu S., Mutlugun E., zel T., et al. Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation [J]. Applied physics letters,2008, 92(113110):1-3.
    [78]Chung W, Yu H. J., Park S. H., et al. YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index [J]. Materials Chemistry and Physics,2011,126(1):162-166.
    [79]Jang H. S., Yang H., Kim S. W, et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce3+, Li+ phosphors [J]. Advanced Materials,2008,20(14):2696-2702.
    [80]Song W. S., Kim H. J., Kim Y. S., et al. Synthesis of Ba2Si308:Eu2+ phosphor for fabrication of white light-emitting diodes assisted by ZnCdSe/ZnSe quantum dot [J]. Journal of The Electrochemical Society,2010,157(10):J319-J323.
    [81]陈伟,王占国,林兰英,等.沸石分子筛中半导体量子纳米团簇的组装及应用前景[J].物理学进展,1997,17(1):83-99.
    [82]乔健.ZSM-5型沸石分子筛的合成[D].山西:山西大学,2013.
    [83]上海试剂五厂.分子筛制备与应用[M].上海:人民出版社,1976,72-73.
    [84]马莉,黄长虹,王建波,等.Y型沸石分子筛中cdse半导体纳米团簇的制备及透射电镜的研究[J].材料导报,2004,18(5):103-105.
    [85]Hannus I., Kiricsi I., Beres A., et al. Characterization of alkali metal cluster-containing faujasites by thermal, IR, ESR, multi-nmr and test reaction studies [J]. Studies in Surface Science and Catalysis,1995,98:81-82.
    [86]Simon M. W., Edwards J. C., Suib S. L. Characterization and catalytic studies on defect sites formed upon the thermal decomposition of sodium ionic clusters in NaX zeolite [J]. The Journal of Physical Chemistry,1995,99(13):4698-4709.
    [87]Kim H. S., Jeong N. C., Yoon K. B. Photovoltaic effects of CdS and PbS quantum dots encapsulated in zeolite Y [J]. Langmuir,2011,27(23):14678-14688.
    [88]Wang Y., Herron N. Optical properties of cadmium sulfide and lead (Ⅱ) sulfide clusters encapsulated in zeolites [J]. Journal of Physical Chemistry,1987,91(2):257-260.
    [89]Herron N., Wang Y, Eddy M. M., et al. Structure and optical properties of cadmium sulfide superclusters in zeolite hosts [J]. Journal of the American Chemical Society,1989, 111(2):530-540.
    [90]Moyo T., Maruyama K., Endo H. Photodarkening and photobleaching of CdS microclusters grown in zeolites [J]. Journal of Physics:Condensed Matter,1992,4(26): 5653.
    [91]Wang Y, Herron N. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites [J]. The Journal of Physical Chemistry,1988,92(17):4988-4994.
    [92]Moller K., Bein T., Herron N., et al. Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural analysis with x-ray absorption spectroscopy [J]. Inorganic Chemistry,1989,28(15):2914-2919.
    [93]Liu X., Thomas J. Formation and photophysical properties of cadmium sulfide in zeolites with cages and channels [J]. Langmuir,1989,5(1):58-66.
    [94]Brigham E. S., Weisbecker C. S., Rudzinski W. E., et al. Stabilization of intrazeolitic cadmium telluride nanoclusters by ion exchange [J]. Chemistry of materials,1996,8(8): 2121-2127.
    [95]Brulhwiler D., Seifert R., Calzaferri G. Quantum-sized silver sulfide clusters in zeolite A [J]. The Journal of Physical Chemistry B,1999,103(31):6397-6399.
    [96]Jentys A., Grimes R. W., Gale J. D., et al. Structural properties of cadmium oxide and cadmium sulfide clusters in zeolite Y [J]. The Journal of Physical Chemistry,1993,97(51): 13535-13538.
    [97]Peng H., Liu S., Ma L., et al. Growing process of CdS nanoclusters in zeolite Y studied by positron annihilation [J]. Journal of Crystal growth,2001,224(3):274-279.
    [98]Sugimoto N., Koiwai A., Hyodo S.-A., et al. Nonresonant third-order nonlinear optical susceptibility of CdS clusters encapsulated in zeolite A and X [J]. Applied physics letters, 1995,66(8):923-925.
    [99]Moller K., Eddy M. M., Stucky G. D., et al. Stabilization of cadmium selenide molecular clusters in zeolite Y:EXAFS and x-ray diffraction studies [J]. Journal of the American Chemical Society,1989,111(7):2564-2571.
    [100]Jeong N. C, Kim H. S., Yoon K. B. New insights into CdS quantum dots in zeolite-Y [J]. The Journal of Physical Chemistry C,2007,111(28):10298-10312.
    [101]Seifert R., Kunzmann A., Calzaferri G. The Yellow Color of Silver-containing Zeolite A [J]. Angewandte Chemie International Edition,1998,37(11):1521-1524.
    [102]Choi S., Dickson R. M., Yu J. Developing luminescent silver nanodots for biological applications [J]. Chemical Society Reviews,2012,41(5):1867-1891.
    [103]Zhang W., Pauly T. R., Pinnavaia T. J. Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S°I°) assembly pathwa y[J]. Chemistry of materials,1997,9(11):2491-2498.
    [104]Macquarrie D. J., Jackson D. B., Tailland S., et al. Organically modified hexagonal mesoporous silicas (HMS)-remarkable effect of preparation solvent on physical and chemical propertie s[J]. J Mater Chem,2001,11(7):1843-1849.
    [105]Talapin D. V., Haubold S., Rogach A. L., et al. A novel organometallic synthesis of highly luminescent CdTe nanocrystals [J]. The Journal of Physical Chemistry B,2001, 105(12):2260-2263.
    [106]Zhang H., Zhou Z., Yang B., et al. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. The Journal of Physical Chemistry B,2003,107(1):8-13.
    [107]Dagtepe P., Chikan V., Jasinski J., et al. Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots [J]. The Journal of Physical Chemistry C, 2007,111(41):14977-14983.
    [108]Washington Ii A. L., Strouse G F. Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes [J]. Journal of the American Chemical Society,2008,130(28): 8916-8922.
    [109]Zhao K., Li J., Wang H., et al. Stoichiometric ratio dependent photoluminescence quantum yields of the thiol capping CdTe nanocrystals [J]. The Journal of Physical Chemistry C,2007,111(15):5618-5621.
    [110]He Y., Sai L. M., Lu H. T., et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution [J]. Chemistry of materials,2007,19(3):359-365.
    [111]He Y., Lu H. T., Sai L. M., et al. Synthesis of CdTe nanocrystals through program process of microwave irradiation [J]. The Journal of Physical Chemistry B,2006,110(27): 13352-13356.
    [112]Gaponik N., Talapin D. V., Rogach A. L., et al. Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes [J]. The Journal of Physical Chemistry B, 2002,106(29):7177-7185.
    [113]Liu Y, Chen W., Joly A. G, et al. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen [J]. The Journal of Physical Chemistry B,2006,110(34): 16992-17000.
    [114]Ali E. M., Zheng Y, Yu H. H., et al. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots [J]. Anal Chem,2007,79(24):9452-9458.
    [115]Yang W. H., Li W. W., Dou H. J., et al. Hydrothermal synthesis for high-quality CdTe quantum dots capped by cysteamine [J]. Materials Letters,2008,62(17):2564-2566.
    [116]Crosby G A., Demas J. N. Measurement of photoluminescence quantum yields [J]. The Journal of Physical Chemistry,1971,75(8):991-1024.
    [117]尤晓刚,贺蓉,高峰,等.核/壳型CdTe@SiO2荧光纳米复合粒子的制备与表征[J].化学学报,2007,65(6):561-565.
    [118]王益林,童张法,陆建平,等.以TeO2为碲源水相合成CdTe量子点及其表征[J].化工学报,2011,62(3):875-879.
    [119]Yu W. W., Qu L., Guo W., et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chemistry of materials,2003,15(14): 2854-2860.
    [120]王益林,杨摇昆,潘华桥,等.高质量CdSe量子点的水相制备与表征[J].高等化学学报,2012,33(12):2604-2608.
    [121]Liu Y. F., Yu J. S. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots:the effect of ligands [J]. Journal of colloid and interface science,2009, 333(2):690-698.
    [122]Feng X., Shang Q., Liu H., et al. Photoluminescence properties of a novel conjugate of water-soluble CdTe quantum dots to guanine [J]. Journal of Luminescence,2010,130(4): 648-653.
    [123]Yang W. J., Luo L., Chen T. M., et al. Luminescence and energy transfer of Eu-and Mn-coactivated CaAl2SiO8 as a potential phosphor for white-light UVLED [J]. Chemistry of materials,2005,17(15):3883-3888.
    [124]Park J. K., Choi K. J., Kim K. N., et al. Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry [J]. Applied physics letters,2005,87(3):031108.
    [125]Lee J. H., Kim Y. J. Photoluminescent properties of Sr2 SiO4:Eu+ phosphors prepared by solid-state reaction method [J]. Materials Science and Engineering:B,2008,146(1): 99-102.
    [126]Ye S., Xiao F., Pan Y, et al. Phosphors in phosphor-converted white light-emitting diodes:Recent advances in materials, techniques and properties [J]. Materials Science and Engineering:R:Reports,2010,71(1):1-34.
    [127]Xie R. J., Hirosaki N., Mitomo M., et al. Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors [J]. Applied physics letters, 2006,88(10):101104.
    [128]Heliotis G, Stavrinou P., Bradley D., et al. Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films [J]. Applied physics letters,2005,87(10): 103505.
    [129]Tamborra M., Striccoli M., Comparelli R., et al. Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer [J]. Nanotechnology,2004, 15(4):S240-S244.
    [130]Empedocles S. A., Norris D., Bawendi M. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots [J]. Physical Review Letters,1996,77(18):3873-3876.
    [131]Sapra S., Prakash A., Ghangrekar A., et al. Emission properties of manganese-doped ZnS nanocrystals [J]. The Journal of Physical Chemistry B,2005,109(5):1663-1668.
    [132]Qu S., Zhou W., Liu F., et al. Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water-methanol solution [J]. Applied physics letters,2002, 80(19):3605-3607.
    [133]Dubertret B., Skourides P., Norris D. J., et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science,2002,298(5599):1759-1762.
    [134]Kongkanand A., Tvrdy K., Takechi K., et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. Journal of the American Chemical Society,2008,130(12):4007-4015.
    [135]Klimov V., Mikhailovsky A. A., Xu S., et al. Optical gain and stimulated emission in nanocrystal quantum dots [J]. Science,2000,290(5490):314-317.
    [136]Bao H. B., Gong Y. J., Li Z., et al. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core-shell structure [J]. Chemistry of materials,2004,16(20):3853-3859.
    [137]Li L., Qian H., Ren J. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature [J]. Chemical communications,2005,4:528-530.
    [138]Zhang H., Wang L., Xiong H., et al. Hydrothermal Synthesis for High-quality CdTe Nanocrystals [J]. Advanced Materials,2003,15(20):1712-1715.
    [139]Gao M., Kirstein S., Mohwald H., et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification [J]. The Journal of Physical Chemistry B,1998,102(43): 8360-8363.
    [140]杭州大学化学系分析化学教研室.分析化学手册·第一分册(第二版)[M].北京:化学工业出版社,1996,148.
    [141]Guo J., Yang W., Wang C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. The Journal of Physical Chemistry B,2005,109(37):17467-17473.
    [142]刘应凡,于俊生.生物相容性的高荧光CdTe量子点的合成和表征[J].无机化学学报,2009,25(5):787-793.
    [143]Wang Y., Yang H., Xia Z., et al. One-pot synthesis of CdSe quantum dots using selenium dioxide as a selenium source in aqueous solution [J]. Bull Korean Chem Soc, 2011,32(7):2316-2318.
    [144]Wang R. F., Wang Y. L., Feng Q. L., et al. Synthesis and characterization of cysteamine-CdTe quantum dots via one-step aqueous method [J]. Materials Letters,2012, 66(1):261-263.
    [145]Hines M. A., Guyot-Sionnest P. Bright UV-blue luminescent colloidal ZnSe nanocrystals [J]. The Journal of Physical Chemistry B,1998,102(19):3655-3657.
    [146]Shen C. C., Tseng W. L. One-step synthesis of white-light-emitting quantum dots at low temperature [J]. Inorganic Chemistry,2009,48(18):8689-8694.
    [147]Bhattacharyya S., Estrin Y, Moshe O., et al. Highly Luminescent ZnxCd1-x Se/C Core/Shell Nanocrystals:Large Scale Synthesis, Structural and Cathodoluminescence Studies[J]. ACS nano,2009,3(7):1864-1876.
    [148]Zhong X., Han M., Dong Z., et al. Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability [J]. Journal of the American Chemical Society,2003, 125(28):8589-8594.
    [149]Protiere M., Reiss P. Highly luminescent Cd1-xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range [J]. small,2007,3(3):399-403.
    [150]Liu F. C., Cheng T. L., Shen C. C., et al. Synthesis of Cysteine-Capped ZnxCd1-xSe Alloyed Quantum Dots Emitting in the Blue-Green Spectral Range [J]. Langmuir,2008, 24(5):2162-2167.
    [151]Kimura N., Sakuma K., Hirafune S., et al. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode [J]. Applied physics letters,2007,90(5):051109.
    [152]Mueller A. H., Petruska M. A., Achermann M., et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers [J]. Nano letters,2005,5(6):1039-1044.
    [153]梁娜,李宗珊,吴尚进,等.YAG:Ce3+超细荧光粉的合成与发光性质的研究[J].沈阳化工学院学报,2008,3(22):226-230.
    [154]Shen C.-Y., Li K., Hou Q. L., et al. White LED Based on YAG:Ce, Gd Phosphor and CdSe-ZnS Core/Shell Quantum Dots [J]. IEEE Photonics Technology Letters,2010, 22(12):884-886.
    [155]Park J. K., Choi K. J., Yeon J. H., et al. Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor [J]. Applied physics letters,2006, 88(4):043511.
    [156]Wang Z. L., Liang H. B., Zhou L. Y, et al. NaEuo.96Sm0.04(MoO4)2 as a promising red-emitting phosphor for LED solid-state lighting prepared by the Pechini process [J]. Journal of Luminescence,2008,128(1):147-154.
    [157]Steckel J. S., Zimmer J. P., Coe-Sullivan S., et al. Blue luminescence from (CdS) ZnS core-shell nanocrystals [J]. Angewandte Chemie International Edition,2004,43(16): 2154-2158.
    [158]Steckel J. S., Snee P., Coe-Sullivan S., et al. Color-saturated Green-emitting QD-LEDs [J]. Angewandte Chemie International Edition,2006,45(35):5796-5799.
    [159]Wang H., Lee K. S., Ryu J. H., et al. White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins [J]. Nanotechnology,2008,19(14):145202.
    [160]O'connor., O'riordan A., Doyle H., et al. Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays [J]. Applied physics letters,2005,86(20): 201114.
    [161]Wang J., Han H. Hydrothermal synthesis of high-quality type-Ⅱ CdTe/CdSe quantum dots with near-infrared fluorescence [J]. Journal of colloid and interface science,2010, 351(1):83-87.
    [162]Rogach A. L., Gaponik N., Lupton J. M., et al. Light-Emitting Diodes with Semiconductor Nanocrystals [J]. Angewandte Chemie International Edition,2008,47(35): 6538-6549.
    [163]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chemical Reviews,1989,89(8): 1861-1873.
    [164]Chauhan R., Kumar A., Chaudhary R. P. Visible-light photocatalytic degradation of methylene blue with Fe doped CdS nanoparticles [J]. Applied Surface Science,2013, 270(655-660.
    [165]Jiang R., Zhu H., Yao J., et al. Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity [J]. Applied Surface Science,2012,258(8):3513-3518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700