用户名: 密码: 验证码:
耐高温聚硅氧烷增容剂的制备及其在PC/ABS合金中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程塑料的改性过程中,由于不同的聚合物之间、聚合物与玻纤或无机功能填料之间存在极性和界面差别,所得聚合物合金或复合材料很难达到高的性能指标,因此工程塑料共混、复合化改性的关键是解决体系各组分的相容问题。适当地使用增容剂可以一定程度地解决该问题,但目前常用增容剂在250°C以下加工温度下使用效果很好,超过该温度则分解严重甚至炭化,因此耐高温增容剂是满足工程塑料高性能化和功能化改性的需要。
     聚二甲基硅氧烷(PDMS)由于Si-O主链及侧链的甲基的存在具有高弹性、高疏水性、低表面张力和极好的热稳定性而被广泛应用在航空航天、建筑、电子电器、汽车工业等领域。但其低表面能及与其他聚合物较低的相容性限制了它的应用范围。聚硅氧烷-丙烯酸酯共聚物能明显改善PDMS这一缺点,同时能维持其良好的耐热性和耐候性。因此近年来通过乳液聚合方法制备聚硅氧烷-丙烯酸酯共聚物是一研究热点。
     本文通过乳液聚合的方法合成了两种聚硅氧烷-丙烯酸酯共聚物,包括聚二甲基硅氧烷-甲基丙烯酸甲酯接枝共聚物(PDMS-g-PMMA)和聚二甲基硅氧烷-苯乙烯-甲基丙烯酸甲酯接枝共聚物(PDMS-St-MMA),并分别对其热稳定性进行了研究,分析其结构对热稳定性的影响。同时将这两种共聚物用于PC/ABS体系,观察这两种共聚物对于PC/ABS体系有无增容、阻燃作用等。
     1.通过D4和vD4的开环反应,制备侧链含有乙烯基的聚硅氧烷乳液,并与甲基丙烯酸甲酯反应以制备聚二甲基硅氧烷-甲基丙烯酸甲酯接枝共聚物。通过考察和优化合成过程中各个影响因素,确定了制备耐热性能较好的PDMS-g-PMMA适宜条件为,聚硅氧烷的分子量约为50000,聚硅氧烷和甲基丙烯酸甲酯单体的质量比为5:5,开环反应时间与接枝反应时间均为4h。通过TGA测试发现该条件下制备的PDMS-g-PMMA在氮气气氛下5%的热失重温度可达到357oC,且热失重过程明显分为两个阶段。通过TGA-FTIR和PY-GC-MS测试证明了在PDMS-g-PMMA的热失重过程中阶段I和阶段II分别代表着PMMA链段和PDMS链段的热分解,且在PDMS-g-PMMA热失重过程中主链PDMS链段的分解是在PMMA链段大部分分解完后才开始发生。
     2.在PDMS-g-PMMA的基础上引入耐热性能更好的苯乙烯,通过同样的乳液聚合方法制备了聚二甲基硅氧烷-苯乙烯-甲基丙烯酸甲酯接枝共聚物。通过TGA分析,发现PDMS-St-MMA在氮气气氛下的5%热失重温度高达373oC,且热失重过程也明显分为两个阶段。TGA-FTIR测试证明了在PDMS-St-MMA的热失重过程中阶段I和阶段II的热失重过程分别代表着St-MMA结构链段和PDMS链段的热分解,且在PDMS-St-MMA热失重过程中主链PDMS链段的分解是在St-MMA结构链段大部分分解完后才开始发生。
     3.将PDMS-g-PMMA和PDMS-St-MMA两种共聚物用于PC/ABS(90/10,质量比,下同)体系。通过TGA测试发现添加了PDMS-g-PMMA和PDMS-St-MMA后,PC/ABS合金的耐热性能得到了提高。通过力学性能测试发现,加入PDMS-St-MMA后PC/ABS合金的缺口冲击强度有明显的提升,而添加PDMS-g-PMMA-反而使得PC/ABS合金的缺口冲击强度大幅度下降。通过表面形态的观察发现,添加PDMS-St-MMA作为增容剂后,PC/ABS合金的低温脆断横截面比较平滑,ABS分散相的分散尺寸减小,而且分布均匀,相界面比较模糊不清;而PDMS-g-PMMA加入后PC/ABS合金的低温脆断面依然不平滑。
     4.将PDMS-St-MMA作为增容剂,应用在PC/ABS/PPSi(三(1-氧代-2,6,7-三氧杂-1-磷杂双环[2.2.2]辛烷-4-亚甲氧基)苯基硅烷)阻燃体系,结果表明,PDMS-St-MMA在提高PC/ABS合金的相容性的同时并不会影响原体系的阻燃性能;而市场上常用的增容剂MBS添加后会降低合金的阻燃性能。通过热稳定性分析发现,PDMS-St-MMA在增容的同时,也能有效提升阻燃剂PPSi和PC/ABS的分解温度,能有效降低ABS和PPSi的热分解速率,使得PC/ABS合金第一阶段分解完后的残炭量较高。通过对残炭形貌及元素分析发现,添加了PDMS-St-MMA的试样残炭表面孔洞明显消失,形成了一层致密的保护层,同时残炭表面硅元素明显增多,说明PDMS-St-MMA加入后,在燃烧时硅元素更多地向表面迁移,从而能够在表面形成致密稳定的含硅焦化炭保护层,加强了隔热、隔氧,阻止了聚合物热降解挥发物的逸出和防止熔滴出现等。
Due to the different polar and interface between different polymers, polymers and glassfiber, polymers and inorganic fillers in the modification process of engineering plastics, theresultant polymer alloy or composite materials are difficult to achieve high performance.Therefore, improving the compatibility between the components is the key to themodification. Adding compatibilizer appropriately can solve the problem to some extent.However, currently used compatibilizers only can be used below250oC because they candecompose seriously at high temperature. Thus, preparing high temperature resistantcompatibilizers is receiving more and more attention to meet the modification needs ofengineering plastics.
     Polydimethylsiloxane (PDMS) containing Si-O-Si main chain and methyl side groupsprocesses many excellent properties, such as high flexibility and hydrophobicity, low surfacetension and excellent thermal stability. It is widely used in the aerospace, construction,electronics, automotive and medical field as silicone, silicone oil and silicone rubber. But thelow surface energy, poor solvent resistance and poor compatibility with other polymers limitits applications to some degree. The combination of PDMS with polyacrylates cansubstantially increase the adhesion, strength, solvent resistance of PDMS, and also maintainthe original excellent heat resistance, weather resistance etc. The research onPDMS-polyacrylate copolymer has been of importance and much interest during the past fewdecades.
     In this paper, polydimethylsiloxane-graft-poly(methyl methacrylate) copolymer(PDMS-g-PMMA) and polydimethylsiloxane-g-styrene-g-methyl methacrylate copolymer(PDMS-St-MMA) were synthesized and the thermal stabilities were also studied. Then thecopolymers were used in PC/ABS and the compatibilization and flame retardancy wereinvestigated.
     1. The polysiloxane emulsion containing vinyl side chain was obtained by the ring-openingreaction of D4and vD4. Then the polysiloxane reacted with methyl methacrylate to obtainPDMS-g-PMMA. By making effort to optimize the experimental parameters of synthesizing PDMS-g-PMMA, the suitable experimental condition to synthesize PDMS-g-PMMA withgood heat resistance was obtained and showed as follow: the molecular weight ofpolysiloxane was about50000, the mass ratio of polysiloxane and methyl methacrylate was1:1, the ring-opening reaction and grafting reaction were both reacted for4hours. TGAanalyses indicated that PDMS-g-PMMA possesses greatly improved thermal stability, itsdegradation temperatures at5%weight loss were up to357°C. A two-stage thermaldegradation behavior due to PMMA graft chain and PDMS main chain was confirmed byTGA-FTIR and PY-GC-MS results, and the degradation of PDMS chain happens only afterPMMA chains decomposed mostly.
     2. PDMS-St-MMA was synthesized through the same preparing method ofPDMS-g-PMMA. TGA analyses indicated that PDMS-St-MMA possesses greatly improvedthermal stability than PDMS-g-PMMA, its degradation temperatures at5%weight loss wereup to373°C. A two-stage thermal degradation behavior due to PMMA graft chain and PDMSmain chain was also confirmed by TGA-FTIR result, and the degradation of PDMS chainhappens only after St-MMA chains decomposed mostly.
     3. PDMS-g-PMMA and PDMS-St-MMA were used inPolycarbonate-acrylonitrile-butadiene-styrene (PC/ABS=90/10), and improved thermalstability of PC/ABS alloy were found. The mechanical properties testing showed that theincorporation of5wt%PDMS-St-MMA leads to an increase in the impact strength ofPC/ABS, but the incorporation of5wt%PDMS-g-PMMA caused a sharply decrease of theimpact strength. SEM morphologies of the impact fractured section showed that the size ofdispersed ABS domains was reduced and the phase boundaries were difficult to be observedwith the addition of PDMS-St-MMA, but the fracture surface was also uneven with theaddition of PDMS-g-PMMA.
     4. PDMS-St-MMA was used as a compatibilizer in flame-retardant PC/ABS which usedPPSi as flame retardant. It is noticed that the adding of the commonly used compatibilizerMBS in PC/ABS/PPSi reduced the flame retardancy of PC/ABS. On the contrary, the impactstrength of PC/ABS was significantly improved by the aid of PDMS-St-MMA and moreover the flame retardancy was maintained. TGA analyses showed that the addition ofPDMS-St-MMA elevated the degradation temperature and decreases considerably the weightloss in the first degradation stage. Through SEM/EDX analysis of the residue surface, acoherent vitreous layer was formed after burning due to the loading of PDMS-St-MMA.Meanwhile a higher silicon percentage of the residue surface was found. The laye can shieldthe underlying polymer from attack by oxygen and radiant heat and also prevent the escape ofvolatiles, resulting in better flame retardancy.
引文
[1]庚晋,周洁,白木.塑料部件全攻略-汽车用塑料市场现状与发展发析[J].国外塑料,2003,5:15-20
    [2]杨宁.汽车用塑料的研究现状及发展趋势[J].塑料工业,2005,5:13-16
    [3] Stewart, Michael. Look for more developments as auto manufacturers turn to plasticglazing to save weight, Provide greater design freedom than glass[J]. Automotive Industries,2006,186(2)
    [4] Schroth, James G. Quick plastic forming simplifies aluminum auto partsmanufacture[J]. Advanced Materials and Processes,2004,162(8):57-58
    [5]肖军.车用塑料市场分析[J].上海塑料,2010,1:22-28
    [6]燕来荣.工程塑料开创汽车塑化新时代[J].橡塑资源利用,2009,1:26-33
    [7]钱志国,姚晓宁,景肃,李良,徐新民.工程塑料及其合金在汽车工业上的应用.工程塑料应用,2008,36(11):45-49
    [8]郑安呐等.可漆性聚丙烯桑塔纳轿车保险杠的研究[J].金山油化纤,1998,(4):8-12
    [9]韩宝乐等.聚氨酯在现代汽车工业中的应用[J].化学推进剂与高分子材料,2007,5(1):1-6
    [10]廖正品.中国塑料工业(2010)[J].中国塑料,2011,25(5):1-10
    [11]中蓝晨光化工研究设计院有限公司.2010-2011年世界塑料工业进展[J].塑料工业,2012,40(3):1-38
    [12]鲁东亮,汪俊祥,吴艳如.反应型相容剂在工程塑料合金中的应用[A].中国工程塑料工业协会第一届年会论文集[C],1998:75-78
    [13]徐新民.我国高性能工程塑料及合金的市场与技术开发热点[A].第二届中国国际工程塑料展览会论文集[C],2001:21-27
    [14]郑红娟.相容剂对PC/ABS共混体系性能影响的研究[J].塑料工业,2001,32(1):51-53
    [15]杨育农.增容剂及其应用现状[J].合成材料老化与应用,1992,2:24-29
    [16]吴培熙,张留城.聚合物共混改性[J].中国轻工业出版社,2001:207-208
    [17]王国建,喻刚.高分子合金增容剂的研究与发展[J].塑料工业,2004,32:31-40
    [18] Xanthos M. Interfacial agents for multiphase polymer systems recent advance[J].Polymer Engineering and Science,1988,28(21):1392-1399
    [19]曲蕾.聚合物共混物增容剂的研究[J].辽宁化工,2009(8):573-576
    [20] Ismail H, Hairunezam HM. The effect of a compatibilizer on curing characteristics,mechanical properties and oil resistance of styrene butadiene rubber/epoxidized naturalrubber blends[J]. European Polymer Journal,2001(37):39-44
    [21] Bhattacharyya A R, Ghosh A K, Misra A. Reactively compatibilised polymer blends: acase study on PA6/EVA blend system[J]. Polymer,200l,42(21):9143-9154
    [22] Villalpando-olmos J, Sanchez-Valdes S, Yanez-Flores I C. Performance ofpolyethylene/ethylene-vinyl alcohol copolymer/polyethylene multilayer films usingmaleated polyethylene blends[J]. Polymer Engineering and Science,1999,39(9):1597-1603
    [23] Nitz H, Semke H, Landers R, et al. Reactive extrusion of polycaprolactone compoundscontaining wood flour and lignin[J]. Journal of Applied Polymer Science,2001,81(8):1972-1984
    [24] Jeon B H, Yoon H, Hwang S S, et al. Enhancement of compatibility and toughening ofcommingled packaging film wastes[J]. Polymer Korea,2005,29(2):127-134
    [25] Petra P, Katrin W, Herbert S. Blends of thermoplastic polyurethane andmaleic-anhydride grafted polyethylene. I: Morphology and mechanical properties[J].Polymer Engineering and Science,1999,39(6):1035-1048
    [26] Lin J S, Sheu E Y, Jois Y H R. The effect of extruder temperature and maleatedpolypropylene on polypropylene/nylon-6,6blend: A small angle X-ray scattering study[J].Journal of Applied Polymer Science,1995,55(5):655-666
    [27] Kalfoglou N K, Samios C K, Papadopoulou C P. Compatibilization ofpoly(ethylene-co-vinyl alcohol)(EVOH) and EVOH–HDPE blends: Structure andproperties[J]. Journal of Applied Polymer Science,1998,68(4):589-596
    [28]谢静薇,刘强,谢文炳等. PA-6/ABS共混体系中加入SMA的反应型增容作用[J].高分子材料科学与工程,1999,15(5):87-90
    [29]陈力,蔡绪福. ABS/PA6共混体系的反应性增容研究[J].塑料科技,2005,(5):39-44
    [30] Steven C M, Robert B M. Reactive compatibilization of polypropylene andpolymide-6,6with carboxylated and maleated polypropylene[J]. Polymer Engineering andScience,1999,39(10):1921-1929
    [31] Kap J K, Hang W C, Kee J Y. Effect of P(MMA-co-MAA) compatibilizer on themiscibility of nylon6/PVDF blends[J]. European Polymer Journal,2003,39(6):1249–1265
    [32] Joel I, Piyada C, Tsuneo C, et al. Reactive blending of polysulfone with polyamide: apotential for solvent-free preparation of the block copolymer[J]. Polymer,1999,40(3):647-653
    [33]张宇,黄勇平,周燕坤等.反应性单体改性PP/PS共混物的增容作用[J].中山大学学报(自然科学版),2005,44(2):61-64
    [34] Liu N C, Xie H Q, Baker W E. Comparison of the effectiveness of different basicfunctional groups for the reactive compatibilization of polymer blends[J]. Polymer,1993,34(22):4680-4687
    [35] Wei Q, Chionna D, Pracella M. Reactive Compatibilization of PA6/LDPE Blends withGlycidyl Methacrylate Functionalized Polyolefins[J]. Macromolecular Chemistry andPhysics,2005,206(7):777-786
    [36] Minkova L, Yordanov H, Filippi S. Characterization of blends of LDPE and PA6withfunctionalized polyethylenes[J]. Polymer,2002,43(23):6195-6204
    [37] Chen B, Tang T, Xu S Q, et al. Compatibilization of polyamide-6/syndiotacticpolystyrene blends using styrene/glycidyl methacrylate copolymers[J]. Polymer Journal,2003,35(2):141-147
    [38] Michel F C, Michel A H, Claudine R, et al. Reactive compatibilization ofpolypropylene/polyethylene terephthalate blends[J]. Polymer Engineering and Science,1999,39(6):976-984
    [39] Van D M, Van G M, Leemans L, et al. Interfacial chemistry and morphology of in-situcompatibilised PA-6and PBT based blends[J]. Macromolecular Symposia,2003,198(1):135-146
    [40] Liu N C, Baker W E. Basic functionalization of polypropylene and the role ofinterfacial chemical bonding in its toughening[J]. Polymer,1994,35(5):988-994
    [41] Jeziorska R. Effect of oxazoline grafted polyethylene on the structure and properties ofpoly (butylene terephthalate)/polyamide6blends[J]. Polimery,2004,49(5):350-355
    [42] Pionteck J, Potschke P, Schulze U, et al. Influence of reactive compatibilization on themorphology of polypropylene/polystyrene blends[J]. Macromolecular Symposia,2004,214(1):279-288
    [43]陈玉君,何国山,陈仕国等.双噁唑啉化合物增容PET/PA66共混体系的研究[J].塑料工业,2002,30(5):13-15
    [44] Beck T N C, Tai S K, Briberet R M. Morphology control and interfacial reinforcementin reactive polystyrene/amorphous polyamide blends[J]. Polymer,1996,37(16):3509-3519
    [45] Lu Q W, Macosko C W, Horrion J. Melt amination of polypropylenes[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2005,43(18):4217-4232
    [46] Lu Q W, Macosko C W, Horrion J. Compatibilized blends of thermoplasticpolyurethane (TPU) and polypropylene[J]. Macromolecular Symposia,2003,198(1):221-232
    [47] Lu Q W, Macosko C W. Comparing the compatibility of various functionalizedpolypropylenes with thermoplastic polyurethane (TPU)[J]. Polymer,2004,45(6):1981-1991
    [48]王薇莉,杨其,孙雅杰等.填料对聚合物共混物相分离行为的影响[J].高分子通报,2007,10:8-14
    [49] Mat ě jec V, Rose K, Hayer M, et al. Development of organically modifiedpolysiloxanes for coating optical fibers and their sensitivity to gases and solvents[J].Sensors and Actuators B: Chemical,1997,39(1-3):438-442
    [50] Chaudhry A N, Billingham N C. Characterisation and oxidative degradation of aroom-temperature vulcanised poly(dimethylsiloxane) rubber[J]. Polymer Degradation andStability,2001,73(3):505-510
    [51] Nagase Y, Fukatsu T, Ikeda K, et al. Thermal and mechanical properties oftetramethyl-p-siphenylenesiloxane/dimethylsiloxane block copolymer[J]. Polymer,1983,24(4):463-468
    [52] Chan W L, Yana H, Szeto Y S. Synthesis of mesoionic side-chain liquid crystalpoly(siloxane)s[J]. Materials Letters,2004,58(6):882-884
    [53] Ganicz T, Pakula T, Fortuniak W, et al. Linear and hyperbranched liquid crystallinepolysiloxanes[J]. Polymer,2005,46:11380-11388
    [54] Li H, Yu D, Zhang J. A novel and facile method for direct synthesis of cross-linkedpolysiloxanes by anionic ring-opening copolymerization with Ph12-POSS/D4/Ph8D4[J].Polymer,2005,46(14):5317-5323
    [55] Zhang B, Liu B, Deng X, et al. A novel approach for the preparation oforganic-siloxane oligomers and the creation of hydrophobic surface[J]. Applied SurfaceScience,2007,254(2):452-458
    [56] Hao X, Jeffery J L, Wilkie J S, et al. Functionalised polysiloxanes as injectable, in situcurable accommodating intraocular lenses[J]. Biomaterials,2010,31(32):8153-8163
    [57] Richard J, Mignaud C. Stability and compatibility in blends of silicone and vinylacrylicpolymer emulsions[J]. Polymer International,1993,31(4):357-365
    [58] He W D, Cao C T, Pan C Y. Formation mechanism of silicone rubber particles withcore-shell structure by seeded emulsion polymerization[J]. Journal of Applied PolymerScience,1996,61(2):383-388
    [59] He W D, Cao C T, Pan C Y. Study of the preparation of silicone rubber particles withcore-shell structure by seeded emulsion polymerization[J]. Polymer International,1996,39:31-36
    [60] Kan C Y, Liu D S, Kong X Z, et al. Study on the preparation and properties ofstyrene–butyl acrylate–silicone copolymer latices[J]. Journal of Applied Polymer Science,2001,82:3194-3200
    [61] Kan C Y, Yuan Q, Wang M C, et al. Synthesis of silicone-acrylate copolymer latexesand their film properties[J]. Polymers for Advanced Technologies,1996,7:95-97
    [62] Kan C Y, Zhu X L, Yuan Q, et al. Graft emulsion copolymerization of acrylates andsiloxane[J]. Polymers for Advanced Technologies,1997,8:631-633
    [63] Kong X Z, Kan C Y, Yuan Q. Preparation of polyacrylate-polysiloxane core-shell latexparticles[J]. Polymers for Advanced Technologies,1996,7:888-890
    [64] Kan C Y, Kong X Z, Yuan Q, et al. Morphological prediction and its application to thesynthesis of polyacrylate/polysiloxane core/shell latex particles[J]. Journal of AppliedPolymer Science,2001,80:2251-2258
    [65] Zou M X, Zhang Z C. Preparation and characterization of core–shellpolystyrene–polydimethylsiloxane particles by seeded polymerization[J]. PolymerInternational,2004,53:1033-1039
    [66]赵维,齐暑华,黄莉莉.核壳型有机硅-丙烯酸酯微乳液的合成和性能[J].宇航材料工艺,2009,3:58-60
    [67] He W D, Pan C Y. Influence of reaction between second monomer and vinyl group ofseed polysiloxane on seeded emulsion polymerization[J]. Journal of Applied PolymerScience,2001,80:2752-2758
    [68] He W D, Tong J, Wang M, et al. One-stage method of preparing core–shell particles[J].Journal of Applied Polymer Science,1995,55(5):667-674
    [69]范青华,黄英,刘香鸾等.核/壳型聚硅氧烷丙烯酸酯复合乳液的制备[J].应用化学,1995,12(3):52-56
    [70] Niessner N, Seitz F. Thermoplastic moulding compositions[P]. EP534244,1993-03-31
    [71] Niessner N, Fischer W. Three-stage silicone rubber based graft copolymers[P]. US5585436,1996-12-17
    [72] Yamamoto N, Yanagase A, Iwasaki T, et al. Impact-resistant thermalplastic resincomposition[P]. JP05339462,1993-12-21
    [73] Sumiyama H, Yoshitomi T, Akaboshi S. Impact-resistant resin composition[P]. JP06116470A2,1994-04-26
    [74] Yanagase A, Nakada A, Koshirai A. Polyamide resin composition and graftcopolymer[P]. JP07207148A2,1995-08-08
    [75] Sekida M, Iwasaki T, Kitai K, et al. Graft copolymer and resin composition[P]. JP07206951,1995-08-08
    [76] Chen M J, Osterholtz F D, Pohi E R, et al. Epoxy silanes in reactive polymeremulsions[J]. Journal of Coatings Technology,1997,69(875):49-55
    [77] Ito K, Fukushima M, Oba T, et al. Production of siloxane-modified acrylic polymer[P].JP01115912A2,1989-05-09
    [78] Ito K. Siloxane-Modified acrylic rubber foam composition[P]. JP03109442A2,1991-05-09
    [79] Koehler K H, Piejko K E, Lindner C. Elastomer modified poly(arylenesulfide) moldingcompositions[P]. EP389905,1990-10-03
    [80] Huang S Q, Xu Z S, Peng H, et al. Properties of PHMS-g-p[butylacrylate(BA)-N-hydroxyl-methyl acrylamide (NMA)] graft copolymer emulsions[J]. Journal ofApplied Polymer Science,1999,71(13):2209-2217.
    [81] Kan C Y, Yuan Q, Wang M C, et al. Synthesis of silicone–acrylate copolymer latexesand their film properties[J]. Polymers for Advanced Technologies,1996,7(2):95-97
    [82]阳范文,赵耀明.聚碳酸酯的研究现状及发展趋势[J].中国塑料,2001,15(3):7-31
    [83]孙清,吉良英. PC/ABS合金及其阻燃性能[J].塑料工业,2000,28(6):45-46
    [84]曹文鑫. PC/ABS合金的开发和应用现状[J].化工新型材料,2001,29(8):37-39
    [85] Inberg J P F, Gaymans R J. Co-continuous polycarbonate/ABS blends[J]. Polymer,2002,43(8):242-243
    [86]张伟. PC/ABS合金相容性与阻燃性的研究[D].南京工业大学,2004
    [87] Inberg J P F, Gaymans R J. Polycarbonate and co-continuous polycarbonate/ABSblends: influence of specimen thickness[J]. Polymer,2002,43(13):3767-3777
    [88] Inberg J P F, Gaymans R J. Polycarbonate and co-continuous polycarbonate/ABSblends: influence of notch radius[J]. Polymer,2002,43(15):4197-4205
    [89] Elmaghor F, Zhang LY, Fan R, et al. Recycling of polycarbonate by blending withmaleic anhydride grafted ABS[J]. Polymer,2004,45(19):6719-6724
    [90] Keitz J D, Barlow J W, and Paul D R. Polycarbonate Blends with Styrene/AcrylonitrileCopolymers[J]. Journal of Applied Polymer Science,1984,29:3131
    [91] Cheng T W, Keskkula H, Paul D R. Property and Morphology Relationship for TernaryBlends of Polycarbonate, Brittle Polymers and an Impact Modifier[J]. Polymer,1992,33:1606
    [92] Quintens D, Groeninckx G, Guest M, et al. Phase Morphology Characterization andUltimate Mechanical Properties of60/40PC/SAN Blends: Influence of the AcrylonitrileContent of SAN[J]. Polymer Engineering and Science,1991,31:1215
    [93] Callaghan T A, Takakuwa K, Paul D R. Polycarbonate-SAN Copolymer Interaction[J].Polymer,1993,34:3796-3808
    [94] Li H., Yang Y, Fujitsuka R, et al. Studies on Miscibility in Polycarbonate/Poly(styrene-co-acrylonitrile) Blends by Ellipsometry[J]. Polymer,1999,40:927-933
    [95]叶锦镛,骆惠雄.苯乙烯-马来酸酐共聚物与聚碳酸酯共混体系的研究[J].应用科学学报,1991,9(2):109-116
    [96]贾娟花,苑会林.反应型相容剂对PC/AB合金改性研究[J].塑料工业,2005,33(12):50-52
    [97] Tjong S C, Meng Y Z. Effect of reactive compatibilizers on the mechanical propertiesof polycarbonate/poly(acrylonitrile-butadiene-styrene) blends[J]. European Polymer Journal,2000,36(1):123-129
    [98]殷年伟,张隐西,张祥福等. PC/SAN/高胶ABS合金的制备与性能研究[J].塑料工业,2007,35(3):33-35
    [99]徐斌,项钟. PC/ABS多相体系的制备及性能研究[J].塑料工业,2006(6):23-25
    [100] Fang Q Z, Wang T J, Li H M. Large tensile deformation behavior of PC/ABS alloy[J].Polymer,2006,47(14):5174-5181
    [101] Katayama M, Hamano H. Polycarbonate resin composition: U.S. Patent6417257[P].2002-7-9
    [102] Bodiger M, Eckel T, Wittmann D, et al. Extremely finely divided inorganic powdersas flame retardants in thermoplastic moulding compositions: U.S. Patent5849827[P].1998-12-15
    [103] Wroczynski R J. Flame resistant compositions of polycarbonate and monovinylidenearomatic compounds: European Patent EP0909790[P].2004-1-7
    [104] Pawlowski K H, Schartel B. Flame retardancy mechanisms of triphenyl phosphate,resorcinol bis (diphenyl phosphate) and bisphenol a bis (diphenylphosphate) inpolycarbonate/acrylonitrilebutadiene-styrene blends[J]. Polymer International.2007,56:1404-1414
    [105] Levchik S V, Bright D A, Alessio G A, et al. New halogen-free fire retardant forengineering plastic applications[J]. Journal of Vinyl and Additive Technology.2001,7:98-103
    [106] Levchik S V, Bright D A, Dashevsky S, et al. Application and mode of fire retardantaction of aromatic phosphates. In: AlMalaika S, Golovoy A, Wilkie CA, editors. Specialtypolymer additives, principles and applications[M]. Oxford: Blackwell Science,2001,259-269
    [107]昝兴涛.磷硅阻燃剂的合成及其在聚碳酸酯和聚碳酸酯合金中的应用[D].华南理工大学,2013
    [108]欧育湘,陈宇,韩廷解等.用于阻燃PC/ABS的无卤芳香族磷酸酯的研究进展[J].合成树脂及塑料,2008,25(2):70
    [109] Wawrzyn E, Schartel B, Ciesielski M, et al. Are novel aryl phosphates competitors forbisphenol A bis(diphenyl phosphate) in halogen-free flame-retardedpolycarbonate/acrylonitrile–butadiene–styrene blends?[J]. European Polymer Journal,2012,48:1561-1574
    [110] Chiang W Y, Tzeng G L. Effect of the compatibilizers on flame-retardantpolycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) Alloy[J]. Journal of appliedpolymer science,1997,65(4):795-805
    [111] He X W, Widmaier J M, Herz J E, et al. Polydimethylsiloxanepoly(methylmethacrylate) interpenetrating polymer networks1. Efficiency of stannousoctoate as catalyst in the formation of polydimethylsiloxane networks in methylmethacrylate[J]. Polymer,1989,30:364-368
    [112] O’Lenick A J, Jr. Silicones-Basic chemistry and selected applications[J]. Journal ofSurfactants and Detergents,2000,3(2):229-236
    [113] Zhou W J, Yang H, Guo X Z, et al. Thermal degradation behaviors of some branchedand linear polysiloxanes[J]. Polymer Degradation and Stability,2006,91:1471-1475
    [114] Seethapathy S, Górecki T. Applications of polydimethylsiloxane in analyticalchemistry: A review[J]. Analytica Chimica Acta,2012,750:48-62
    [115] Zheng P W, McCarthy T J. Rediscovering Silicones: Molecularly Smooth, LowSurface Energy, Unfilled, UV/Vis-Transparent, Extremely Cross-Linked, Thermally Stable,Hard, Elastic PDMS[J]. Langmuir,2010,26(24):18585-18590
    [116] Zhou J W, Ellis A V, Voelcker N H. Recent developments in PDMS surfacemodification for microfluidic devices[J]. Electrophoresis,2010,31:2-16
    [117] Schunk T C, Long T E. Compositional distribution characterization of poly(methylmethacrylate)-graft-polydimethylsiloxane copolymers[J]. Journal of Chromatography A,1995,692:221-232
    [118] Shinoda H, Matyjaszewski K. Structural Control of Poly(methylmethacrylate)-g-poly(dimethylsiloxane) Copolymers Using Controlled RadicalPolymerization: Effect of the Molecular Structure on Morphology and MechanicalProperties[J]. Macromolecules,2003,36:4772-4778
    [119] Smith S D, DeSimone J M, Huang H. Synthesis and characterization of poly(methylmethacrylate)-g-poly(dimethylsiloxane) copolymers. I. Bulk and surface characterization[J].Macromolecules,1992,25:2575-2581
    [120] He X W, Widmaier J M, Herz J E, et al. Polydimethylsiloxane/poly(methylmethacrylate) interpenetrating polymer networks:2. Synthesis and properties[J]. Polymer,1992,33:866-871
    [121] Lin M T, Chu F X, Alain G, et al. Silicone–polyacrylate composite latex particles:Particles formation and film properties[J]. Polymer,2005,46:1331-1337
    [122] Smith S D. Thermogravimetric Analysis of poly(alkyl Methacrylates) andpoly(methylmethacrylate-g-dimethyl Siloxane) graft copolymers[J]. Journal of PolymerScience Part A-Polymer Chemistry,1994,32:1747-1753
    [123] Chang T C, Liao C L, Wu K H, et al. Degradation of somepoly(methylphenylsiloxane)-poly(methyl methacrylate) interpenetrating polymernetworks[J]. Polymer Degradation and Stability,1999,66:127-132
    [124] Chang T C, Wu K H. The effect of silicon and phosphorus on the thermo-oxidativedegradation of poly(methyl methacrylate)[J]. Polymer Degradation and Stability,1997,57:325-330
    [125] Flynn J H, Wall L A. A quick direct method for the determination of activationenergy from thermogravimetric data[J]. Polymer Letters,1966,4:323-328
    [126] Day M, Cooney J D, MacKinnon M. Degradation of contaminated plastics: a kineticstudy[J]. Polymer Degradation and Stability,1995,48(3):341-349
    [127] Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC kinetics committeerecommendations for performing kinetic computations on thermal analysis data[J].Thermochimica Acta,2011,520:1-19
    [128] Kashiwagi T, Inaba A, Brown J E. Effects of weak linkages on the thermal andoxidative degradation of poly(methyl methacrylates)[J]. Macromolecules,1986,19:2160-2168
    [129] Holland B J, Hay J N. The kinetics and mechanisms of the thermal degradation ofpoly (methyl methacrylate) studied by thermal analysis-Fourier transform infraredspectroscopy[J]. Polymer,2001,42:4825-4835
    [130] Jovanovic J D, Govedarica M N, Dvor P R, et al. The thermogravimetric analysis ofsome polysiloxanes[J]. Polymer Degradation and Stability,1998,61:87-93
    [131] Kong X Z, Ruckenstein E. Core-shell latex particles consisting ofpolysiloxane-poly(styrene-methyl methacrylate-acrylic acid):Preparation and poregeneration[J]. Journal of Applied Polymer Science,1999,73:2235-2245
    [132] He W D, Pan C Y. Influence of reaction between second monomer and vinyl group ofseed polysiloxane on seeded emulsion polymerization[J]. Journal of Applied PolymerScience,2001,80:2752-2758
    [133]宋湘怡,吴水珠,赵建青等.阻燃PC/ABS共混体系的动态力学分析[J].合成材料老化与应用,2009,4:12-15
    [134]宋湘怡.阻燃高光聚碳酸酯合金的制备及性能研究[D].华南理工大学,2010
    [135] Zhang W, Li X, Yang R. Flame retardancy mechanisms of phosphorus-containingpolyhedral oligomeric silsesquioxane (DOPO-POSS) inpolycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymers for AdvancedTechnologies,2012,23:588-595
    [136] Chen J, Liu S, Zhao J. Synthesis, application and flame retardancy mechanism of anovel flame retardant containing silicon and caged bicyclic phosphate for polyamide6[J].Polymer Degradation and Stability,2011,96:1508-1515
    [137] Perret B, Pawlowski K H, Schartel B. Fire retardancy mechanisms of aryl-phosphatesin polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene. The key role ofdecomposition temperature[J]. Journal of Thermal Analysis and Calorimetry,2009,97:949-958
    [138] Bright D A, Dashevsky S, Moy P, et al. Resorcinol bis(diphenylphosphate), anon-halogen flame-retardant additive[J]. Journal of Vinyl and Additive Technology,1997,3:170-174
    [139] Perret B, Schartel B. The effect of different impact modifiers in halogen-free flameretarded polycarbonate blends–I. Pyrolysis[J]. Polymer Degradation and Stability,2009,94:2194-2203
    [140] Zhao X, Wei P, Qian Y, et al. Effect of talc on thermal stability and flame retardancyof polycarbonate/PSBPBP composite. Journal of Applied Polymer Science[J],2012,125:3167-3174
    [141] Tuinstra, F, Koenig J. Raman spectrum of graphite[J]. The Journal of ChemicalPhysics,1970.53:1126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700