用户名: 密码: 验证码:
极化SAR图像人造目标特征提取与检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化合成孔径雷达(PolSAR)可以利用不同极化通道的SAR复图像区分物体的细致结构、目标指向、几何形状以及物质组成等参数,在遥感领域具有广阔的应用前景。利用极化信息提取技术对SAR图像中的典型目标进行特征提取和检测是PolSAR图像解译和应用的热点课题,具有重要的理论意义和实用价值。论文立足于SAR极化信息的提取,以建筑物目标检测为目的,重点围绕极化目标分解、PolSAR图像分类和PolSAR目标检测以及PolInSAR目标检测等内容进行系统深入的研究。
     首先,本文对目标的极化特性和目标分解方法进行深入研究,包括相干目标分解、基于特征值的非相干目标分解和基于散射模型的非相干目标分解方法。在深入研究已有极化目标分解方法和其应用范围的基础上,针对建筑物的特殊结构和特有散射特性,提出基于多成分散射模型(MCSM)的极化目标分解方法,综合考虑了奇次散射、偶次散射、体散射、螺旋散射和线散射五种基本散射机理。利用E-SAR和EMISAR的PolSAR数据进行实验,验证了基于MCSM目标分解方法的有效性,分解得到的各散射成分将作为主要特征用于后续的PolSAR图像分类和PolSAR目标检测。
     其次,在PolSAR图像分类研究中,利用支持向量机(SVM)在小样本情况下良好的学习能力和结构风险最小化的特性,在MCSM目标分解的基础上,本文提出联合MCSM和SVM的PolSAR图像分类方法。将MCSM提取的目标散射特征与纹理特征相结合,考虑目标的自身散射特性及其空间纹理,运用SVM分类器进行PolSAR图像分类。基于该方法对EMISAR数据进行了分类实验和性能评估,并且与基于Freeman分解和SVM的分类实验比较,结果表明联合MCSM和SVM的分类方法能够获得良好的分类效果和较高分类精度。
     针对PolSAR图像目标检测,本文提出基于商空间粒度计算的PolSAR图像目标检测算法,将基于MCSM的目标分解结果、极化相似性参数和极化白化滤波结果作为粗粒度空间分别进行目标检测,再利用商空间粒度合成将三个检测结果进行加权融合得到细粒度空间,获得最优的检测结果。该方法可综合三种方法的优点,充分考虑目标的散射特性、与典型目标的相似性以及对比度,并将其优化组合实现目标的高精度检测。利用EMISAR数据分别进行了MCSM目标分解、极化相似性参数、极化白化滤波以及基于商空间粒度合成的目标检测实验。对比各种方法的检测结果表明,基于商空间粒度合成的目标检测方法能够获得较好的检测效果。将基于商空间粒度合成的检测结果和人工标定的建筑物进行匹配,结果表明基于商空间粒度合成的检测方法可有效用于PolSAR的目标检测。
     最后,由于建筑物在SAR图像中大多为分布式目标,本文将极化相似性参数的定义范围进行拓展,提出基于Stokes矩阵的极化相似性参数。又由于建筑物在PolInSAR图像中具有较高的相干性,提出极化干涉的广义特征值相似性参数,并与极化干涉相干矩阵特征值联合用于PolInSAR的目标检测。利用E-SAR的PolInSAR图像进行检测实验,检测结果证明了该方法的有效性。
Polarimetric Synthetic Aperture Radar (PolSAR) identifies the fine configuration, orientation, geometric shape and composition of target using the SAR complex images in different polarimetric channels, and PolSAR represents wide applications in remote sensing. Feature extraction and target detection in SAR images using polarimetric information extraction technology are hot issues of PolSAR image interpretation and application with much theoretical and applicable significance. Based on the extraction of polarimetric information in SAR images, in order to improve the capability of image analysis and building target detection in PolSAR images, the polarimetric target decomposition, PolSAR image classification, target detection using PolSAR and PolInSAR images are studied systematically and detailedly in this dissertation.
     Firstly, the polarimetric characteristics of target and polarimetric target decomposition are deeply studied, including the coherence target decomposition, the incoherence decomposition based on eigenvalues and the incoherence target decomposition based on scattering model. Based on the theories and applications of existing decomposition methods, an extended Multiple-Component Scattering Model (MCSM) is proposed for PolSAR image decomposition, which considers single-bounce, double-bounce, volume, helix and wire scattering as elementary scattering mechanisms in the analysis of PolSAR images. The proposed MCSM is demonstrated with L-band full polarized images of DLR E-SAR of Oberpfaffenhofen test site in Germany and Danish EMISAR of Foulum test site in Denmark. The results validate that MCSM is effective for analysis of buildings in urban areas. Furthermore, the decomposition results can be used for further PolSAR classification and target detection.
     Secondly, PolSAR image classification is researched. Support Vector Machines (SVM) have good learning ability in case of small samples and structure risk minimization. The classification of polarimetric SAR image based on MCSM and SVM is presented in this paper. In order to take the scattering characteristics of itself and the spatial distribution into consideration, the decomposition results of MCSM and the texture features are combined in the SVM classifier. The validation experiment and performance evaluation are implemented using EMISAR PolSAR images. Compared with the classification result using Freeman and SVM, it can be found that the proposed classification method based on MCSM and SVM can obtain a good classification result and high precision.
     Subsequently, target detection based on granularity computing of quotient space theory using PolSAR images is proposed in this dissertation. The detection results of MCSM decomposition, polarimetric white filter, and polarimetric similarity parameter are considered as coarse granularity spaces. Then these three coarse granularity spaces are combined to construct the fine granularity space by using granularity synthesis algorithm based on quotient space theory. The fine granularity space is namely the optimal detection result. This method comprehensively utilizes the scattering characteristics, contrast and the similarity with typical target, and optimally combines the advantages of these three methods to realize high-precision detection. The target detection experiments based on MCSM, polarimetric similarity parameter, polarimetric white filter and their combination are also implemented using EMISAR data. The detection results demonstrate that the detection method based on granularity computing is better than a single detection algorithm. Compared the results based on granularity computing with the manual marks of buildings, it is found that the proposed detection method based on granularity computing is an effective target detection method in PolSAR images.
     Generally, buildings are distributed target in SAR image, and thus polarimetric similarity parameter based on Stokes matrix is presented, which is an extension of polarimetric similarity parameter based on Scattering matrix. Because targets present high coherence in PolInSAR image, polarimetric interferometric generalized eigenvalue similarity parameter is proposed. The target detection based on eigenvalues of PolInSAR coherence matrix and generalized eigenvalue similarity parameter is applied to E-SAR L band PolInSAR data and the results verify its effectiveness.
引文
1庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.国防工业出版社. 1999年1月:29~253
    2 J. R. Huynen. Phenomenological Theory of Radar Targets. P. L. E. Uslenghi, Ed., Academic Press, New York, 1978. 653~712
    3 J. Van Zyl. Unsupervised Classification of Scattering Behavior using Radar Polarimetry Data. IEEE Trans. on GRS. 1989, 27(1): 36~45
    4 Y. Dong, B. Forster, and C. Ticehurst. Polarimetric Image Classification using Optimal Decomposition of Radar Polarization Signatures. Proc. of IGRASS’96, Lincoln, Nebraska, USA. May 1996: 1556~1558
    5 Y. Dong, B. C. Forster, C. Ticehurst. A New Decomposition of Radar Polarization Signatures. IEEE Trans. on GRS. 1998, 36(3):933~939
    6王之禹,朱敏惠,白有天.基于散射模型的极化SAR数据分解.电子信息学报. 2001, 23(10): 954~961
    7 S. R. Cloude, E. Pottier. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Trans. on GRS. 1997, 35(1):68~78
    8 S. R. Cloude. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. on GRS. 1996, 34(2):498~518
    9 W. A. Holm and R. M. Barnes. On Radar Polarization Mixed Target State Decomposition Techniques. Proc. of IEEE National Radar Conference, Michigan, USA, 20-21 April, 1988: 249~254
    10 T. L. Ainsworth, S. R. Cloude, J. S. Lee. Eigenvector Analysis of Polarimetric SAR Data. Proc. of IGARSS’02, Toronto, Canada, 2002, 1:626~628
    11 C. Lopez-Martinez, E. Pottier. Statistical Assessment of Eigenvector-Based Target Decomposition Theorems in Radar Polarimetry. Proc. of IGARSS’04, Alaska, USA, Sep. 2004, 1:192~195
    12 E. Krogager. New Decomposition of the Radar Target Scattering Matrix. Electron. Lett., 1990, 26(18):1525~1527
    13 E. Krogager, Z. H. Czyz. Properties of the Sphere, Diplane, Helix Decomposition. Proc. of JIPR’95, Nantes, France, 21-23, March 1995, 106~114
    14 W. L. Cameron, N. N. Youssef, L. K. Leung. Simulated Polarimetric Signatures of Primitive Geometrical Shapes. IEEE Trans. on GRS. 1996, 34(3):793~803
    15 R. Touzi. Characterization of Target Symmetric Scattering using Polarimetric SARs. IEEE Trans. on GRS. 2002, 40(11):2507~2516
    16 R. Touzi. Target Scattering Decomposition of One-look and Multi-look SAR Data using a New Coherent Scattering Model: The TSVM. Proc. of IGARSS’04, Alaska, USA, 2004, 2491~2494
    17 R. Touzi. A Unified Model for Decomposition of Coherent and Partially Coherent Target Scattering using Polarimetric SARs. Proc. of IGARSS’05, Seoul, Korea, 25-29 July 2005, 7:4844~4847
    18 A. Freeman, S. Durden. A Three-component Scattering Model for Polarimetric SAR Data. IEEE Trans. on GRS. 1998, 36(3):963~973
    19 T. Moriyama, S. Uratsuka, T. Umehara, et al. Polarimetric SAR Image Analysis Using Model Fit For Urban Structures. IEICE Trans. on Commun., 2005, E88-B(3):1234~1242
    20 Y. Yamaguchi, T. Moriyama, M. Ishido, et al. Four-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Trans. on GRS. 2005, 43(8):1699~1705
    21 Y. Yamaguchi. A Four-Component Decomposition of POLSAR Images Based on the Coherency Matrix. IEEE GRSL. 2006:1~5
    22 Y. Q. Jin, S. R. Cloude. Numerical Eigen Analysis of the Coherency Matrix for a Layer of Random Nonspherical Scatters. IEEE Trans. on GRS. 1994, 32,(6): 1179~1185
    23 M. Qong. Scattering Mechanism Identification based on the Rotation and Eccentric Angles of Polarimetric SAR Data. Proc. of IGARSS’04, Anchorage, AK, USA. 2004: 3054~3057
    24金亚秋,陈扉. SAR图像中极化指数和信息熵及其地表识别应用.自然科学进展, 2003, 13(2):174~178
    25 Y. Q. Jin, F. Xu. A New Set of the Parameters for the Terrain Surface Classification in Polarimetric SAR image based on Deorientation of Polarimetric Scattering Vector. Proc. of IGARSS’06, Denver, CO, USA, 2006:1403~1406
    26 J. Yang, Y. N. Peng, and S. M. Lin. Similarity between Two Scattering Matrices. Electron. Lett., 2001, 37(3):193~194
    27 W. An, W. Zhang, J. Yang, and W. Hong. Similarity between Two Targets and Its Application to Polarimetric Target Detection for Sea Area. Progress in Electromagnetics Research Symposium, Cambridge, USA, July 2-6, 2008: 515~520
    28高明星,杨健,彭应宁.极化雷达遥感中目标特征提取.电波科学学报. 2004, 19(4): 418~421
    29董贵威,杨健,彭应宁,王超,张红.极化SAR遥感中森林特征探测.清华大学学报(自然科学版). 2003, 43(7): 953~956
    30徐俊毅,杨健,彭应宁.双波段极化雷达遥感图像分类的新方法.中国科学E辑,信息科学. 2005, 35(10):1083~1095
    31吴永辉,计科峰,李禹,郁文贤.利用SVM的极化SAR图像特征选择与分类.电子与信息学报. 2008, 30(10):2347~2351
    32 M. Hellmann, G. Jager, E. Kratzschmar, et al. Classification of Full Polarimetric SAR-Data using Artificial Neural Networks and Fuzzy Algorithms. Proc. of IGARSS’99. Hamburg, Germany. 1999, 4:1995~1997
    33 T. Yamada, T. Hoshi. Expansion of the Unsupervised Classification of Polarimetric SAR Image Based on the Scattering Types using the Shape Feature of Polarization Signature Diagrams. Proc. of Asian Conf. Remote Sensing, Singapore, Nov 2001, 2:1055~1060
    34 S. Allain, C. Lopez-Martinez, L. Ferro-Famil, et al. New Eigenvalue-based Parameters for Natural Media Characterization. Proc. of IGARSS’05, Seoul, Korea. 2005, 1:40~43
    35 J. S Lee, M. R. Grunes, R. Kwok. Classification of Multi-Look Polarimetric SAR Imagery Based On Complex Wishart Distribution. Int. J. Remote Sens., 1994, 15(11): 2299~2311
    36 J. S. Lee, M. R. Grunes, T. L. Ainsworth, et al. Unsupervised Classification Using Polarimetric Decomposition and Complex Wishart Classifier. Proc. of IGARSS’98, Seattle, USA. 1998, 4: 2178~2180
    37 J. S. Lee, M. R. Grunes, T. L. Ainsworth, et al. Unsupervised Classification using Polarimetric Decomposition and The Complex Wishart Classifier. IEEE Trans. on GRS. 1999, 37(5): 2249~2258
    38 L. Ferro-Famil, E. Pottier, J. S. Lee. Unsupervised Classification of Multifrequency and Fully Polarimetric SAR Images Based on the H/A/Alpha-Wishart Classifier. IEEE Trans on GRS. 2001, 39(11): 2332~2342
    39 J. S. Lee, M. R. Grunes, E. Pottier, et al. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics. IEEE Trans. on GRS. 2004, 42(4): 722~731
    40 Y. Kouskoulas, F. T. Ulaby, L. E. Pierce. The Bayesian Hierarchical Classifier (BHC) and its Application to Short Vegetation using Multifrequency Polarimetric SAR. IEEE Trans. on GRS. 2004, 42 (2):469~477
    41 T. L. Ainsworth, J. S. Lee. Polarimetric SAR Image Classification Employing Subaperture Polarimetric Analysis. Proc. of IGARSS’05, Seoul, Korea. 2005:48~50
    42刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法.电子学报, 2004, 32(12):1982~1986
    43吴永辉,计科峰,郁文贤.基于H-α和改进C-均值的全极化SAR图像非监督分类.电子信息学报. 2007, 29(1): 30~34
    44曹芳,洪文,吴一戎.基于Cloude-Pottier目标分解和聚合的层次聚类算法的全极化SAR数据的非监督分类算法研究.电子学报. 2008, 36(3): 543~546
    45王文光,王俊,毛士艺.一种基于差异度的极化SAR图像迭代分类方法.电子与信息学报. 2006, 28(11): 2007~2010
    46 Y. Wang. J. Lu, C. Zhang. A New Algorithm of Target Classification Based on Maximum and Minimum Polarizations. Proc. of ICR2006. CIE’06, Shanghai, China. Oct. 2006: 1~4
    47邹同元,杨文,代登信,孙洪.一种新的极化SAR图像非监督分类算法研究.武汉大学学报信息科学版. 2009, 34(8): 910~914
    48 A. Danklmayer. Application of Principal Component Analysis in Radar Polarimetry. Proc. of IGARSS’05, Seoul, Korea. 25-29 July 2005, 3:1999~2002
    49 W. M. Boerner, E. L?uneburg, and A. Danklmayer. Principal Component Analysis (PCA) in the Context of Radar Polarimetry. PIERS 2007, 3(5):633~636
    50 V. Alberga, D. Staykova, E. Krogager, et al. Comparison of Methods forExtracting and Utilizing Radar Target Characteristic Parameters. Proc. of IGARSS’05, Seoul, Korea, 2005, 3: 2019~2021
    51 K. U. Khan, J. Yang. Novel Features for Polarimetric SAR Images Classification by Neural Network. Proc. of IGARSS’05, Seoul, Korea, 2005: 165~170
    52 S. Fukuda, H. Hirosawa. Polarimetric SAR Image Classification Using Support Vector Machines. IEICE Trans. on Electronics. 2001, E84-C(12), 1939~1945
    53 L. M. Novak, M. B. Sechtin and M. J. Cardullo. Studies of Target Detection Algorithms That Use Polarmetric Data. IEEE Trans. on AES. 1989, 25(2):150~165
    54 L. M. Novak and M. C. Burl. Optimal Speckle Reduction in Polarimetric SAR Imagery. IEEE Trans. on AES. 1990, 26(2):293~305
    55 L. M. Novak and M. C. Burl, W. W. Irving. Optimal Polarimetric Processing for Enhanced Target Detection. IEEE Trans. on AES. 1993, 29(1):234~244
    56 R. D. Chaney, M. C. Bud and L. M. Novak. On the Performance of Polarimetric Target Detection Algorithms. IEEE AES Magazine. 1990:10~15
    57韩昭颖,种劲松等.极化合成孔径雷达图像船舶目标检测算法.测试技术学报. 2006, 20(1):65~70
    58 A. J. Poelman. Virtual Polarisation Adaptation——A Method of Increasing the Detection Capability of a Radar System Through Polarization-Vector Processing. IEE Proceedings, Part F: Communications, Radar and Signal Processing, 1981, 128(5):261~270
    59李莹,任勇,山秀明.基于目标极化适配的极化检测算法.系统工程与电子技术. 2001, 23(10): 1~4
    60 W. L. Cameron and L. K. Leung. Feature Motivated Polarisation Scattering Matrix Decomposition. Proc. of IEEE International Radar Conference 1990. Arlington USA, 7-10 May 1990
    61 R. Ringrose and N. Harris. Ship Detection Using Polarimetric SAR Data. Proc. of The CEOS SAR workshop. Toulouse France, 26-29 Oct. 1999, ESA SP-450:687~691
    62 R. Touzi, F. Charbonneau, R. K. Hawkins, K. Murnaghan, and X. Kavoun. Ship-Sea Contrast Optimization when Using Polarimetric SARs. Proc. ofIGARSS’01, Sydney Australia, 9-13 July 2001, 1:426~428
    63 R. Touzi and F. Charbonneau. The SSCM for Ship Characterization Using Polarimetric SAR. Proc. of IGARSS’03. Toulouse, France, July 21-25, 2003: 1~3
    64 J. S. Lee, E. Krogager, T. L. Ainsworth W. M. Borner. Polarimetric Analysis of Radar Signature of a Manmade Structure. IEEE GRSL. 2007, 3(4): 555~559
    65 M. Fujita, Y. Miho. Analysis of a Microwave Backscattering Mechanisms from a Small Urban Area Imaged with SIR-C. IEEE Trans. on GRS. 2006, 3(1):10~14
    66 M. Sciotti, D. Pastina, and P. Lomardo. Polarimetric Detectors of Extended Targets for Ship Detection in SAR images. Proc. of IGARSS’01. Sydney, NSW, Australia, 9-13 July, 2001, 7: 3132~3134
    67 M. Sciotti, D. Pastina, and P. Lomardo. Exploiting the Polarimetric Information for the Detection of Ship Targets in Non-homogeneous SAR Images. Proc. of IGARSS’02. Toronto, Canada, 24-28 June, 2002, 3: 1911~1913
    68 C. Liu, P. W. Vachon and G. W. Geling. Improved Ship Detecting With Airborne Polarimetric SAR Data. Can. J. Remote Sensing. 2005, 31(1): 122~131
    69 P. Leducq, L. Ferro-Famil, E. Pottier. Analysis of PolSAR Data of Urban Areas using Time-Frequency Diversity. Proc. of EUSAR’06, Dresden, Germany, 16-18 May, 2006
    70 A. Reigber, M. Jager, W. He, L. Ferro-Famil and O. Hellwich. Detection and Classification of Urban Structures Based on High-resolution SAR Imagery. Proc. of URBAN 2007, Paris, France, 11-13 April 2007: 1~6
    71 L. M. Fonte, S. Gautama, W. Philips, W, Goeman. Evaluating Corner Detectors for the Extraction of Manmade Structures in Urban Areas. Proc. of IGARSS’05, Seoul, Korea, 25-29 July 2005,1:237~240
    72 D. Schuler, J. S. Lee. Characteristics of Polarimetric SAR Scattering in Urban and Natural Areas. Proc. of EUSAR’06, Dresden, Germany, 16-18 May 2006
    73 G. Schiavon and D. Solimini. Modeling Polarimetric SAR Response of Urban Dihedrons. Proc. of PolInSAR’07, Frascati, Italy, 22-26 Jan, 2007: 1~5
    74杨文,孙洪,张海,剑徐新.星载多极化SAR信息提取回顾与研究.空间电子技术. 2007, 2:1~6
    75肖顺平,郭桂蓉,庄钊文,王雪松.基于本征极化的飞机目标识别.国防科技大学学报. 1995, 17(4):43~50
    76肖顺平,郭桂蓉,庄钊文,王雪松.基于含参最小二乘估计曲线拟合的极化雷达目标识别方法.电子学报. 1997, 25(3): 32~36, 54
    77徐振海,王雪松,周颖,汪连栋,肖顺平,庄钊文.基于PWF融合的高分辨极化雷达目标检测算法.电子学报. 2001, 29 (12):1620~1622
    78于大洋,周露,杨健,彭应宁.基于极化合成孔径雷达数据的桥梁检测.清华大学学报(自然科学版). 2005, 45(7):888~891
    79 B. Zou, D. Sun, L. Zhang, W. Wang. Building Extraction using C band PolSAR Data. Proc. of IGARSS’06, Denver, Colorado, USA, 31 July-04 Aug. 2006, 1262~1265
    80 Y. Q. Jin and E. Dai. Reconstruction of the 3D Stereo Buildings from Polarimetric SAR Images in Two Converse Flights. Proc. of URBAN 2007, Paris, France, 11-13 April 2007,11:787~795
    81宦若虹,杨汝良,岳晋.一种合成孔径雷达图像特征提取与目标识别的新方法.电子与信息学报. 2008, 30(3):554~558
    82 S. R. Cloude, K. P. Papathanassiou. Polarimetric SAR Interferometry. IEEE Trans. on GRS. 1998, 36(5):1551~1565
    83 M. Qong. Coherence Optimization using the Polarization Conformation in PolInSAR. IEEE GRSL. 2005, 2(3):301~305
    84 J. L. Gomez-Dans, S. Quegan. Constraining Coherence Optimisation in Polarimetric Interferometry of Layered Targets. Proc. of PolInSAR’05, Frascati, Italy, 17-21 Jan. 2005:1~6
    85 E. Colin, C. Titin-Schnaider, and W. Tabbara. An Interferometric Coherence Optimization Method in Radar Polarimetry for High-Resolution Imagery. IEEE Trans. on GRS. 2006, 44(1): 167~175
    86 L. Bai, Y. Wang W. Hong, H. Peng. An Improved Coherence Optimization Method in Polarimetric SAR Interferometry. Proc. of CIE’06, Xian, China, 2006: 1~4
    87 T. Xiong, J. Yang, Y. Peng. Similarity Parameter in Polarimetric SAR Interferometry. Proc. of 8th International Conference on Signal Processing.2006, 4: 16~20
    88 M. Neumann, L. Ferro-Famil and A. Reigber. Polarimetric Coherence Optimization for Multibaseline SAR Data. Proc. of PolInSAR’07, Frascati, Italy, 22-26 Jan. 2007
    89 E. Colin, W. Tabbara, A. Reigber. Polarimetric Interferometry and time-frequency analysis applied to an urban area at X-band. Proc. of IGARSS’05, Seoul, Korea, 25-29 July 2005, 2:1077~1080
    90杨震,杨汝良.极化合成孔径雷达干涉技术.遥感技术与应用. 2001, 16(3):139~143
    91杨震.合成孔径雷达干涉与极化干涉技术研究.中国科学院电子学研究所博士学位论文. 2003:67~97
    92郭华东,李新武等.极化干涉雷达遥感机制及应用.遥感学报. 2002,6(6): 401~405
    93李新武.极化干涉SAR信息提取方法及其应用研究.中科院遥感应用研究所博士学位论文. 2002:105~116
    94李新武,郭华东,李震,王长林.用SIR-C航天飞机双频极化干涉雷达估计植被高度的方法研究.高技术通讯. 2005, 15(7):79~84
    95陈小英,洪峻.极化SAR干涉测量模拟研究.遥感学报. 2002,6(6): 475~480
    96齐海宁,洪峻.一种结合最优相干运算的极化干涉SAR相干配准方法.遥感技术与应用. 2004, 19(6):512~516
    97 H. Zhang, C. Wang, Z. Liu. Polarimetric SAR Interferometry for Vegetable Vertical Structure Parameters Extraction. Proc. of IGARSS’02, Toronto, Canada, 24-28 June 2002, 5:2611~2613
    98 M. Brandfass, C. Hofmann, J. C. Mura, J. Moreira, K. P. Papathanassiou. Parameter Estimation of Rain Forest Vegetation via Polarimetric Radar Interferometric Data. Proc. of SPIE on SAR Image Analysis, Modeling and Techniques IV, 2002, 4543:169~179
    99 F. Garestier, I. Champion, P. Dubois-Fernandez, et al. Polar and PolInSAR Analysis of Pine Forest at L and P Band on High Resolution Data. Proc. of IGARSS’05, Seoul, Korea, 25-29 July 2005, 2:1093~1096
    100 E. Colin, C. Titin-Schnaider, W. Tabbara. FOPEN with Polarimetric Interferometry Validations with Experimental Data at P-band. Proc. ofPolInSAR’05, Frascati, Italy, 17-21 Jan. 2005:1~6
    101 H. Yamada, Y. Yamaguchi, et al. Polarimetric SAR Interferometry for Forest Analysis Based on the ESPRIT Algorithm. IEICE Trans. Electron, 2001, E84-C(12):1917~1924
    102 H. Yamada, Y. Yamaguchi, W. M. Boerner. Forest Height Feature Extraction in Polarimetric SAR Interferometry by using Rotational Invariance Property. Proc. of IGARSS’03, Toulouse, France, 21-25 July 2003, 3:1426~1428
    103 H. Yamada, H. Okada, Y. Yamaguchi. Accuracy Improvement of ESPRIT based Polarimetric SAR Interferometry for Forest Height Estimation. Proc. of IGARSS’05, Seoul, Korea, 25-29 July 2005, 6:4077~4080
    104 H. Yamada, M. Yamazaki, Y. Yamaguchi. On Scattering Model Decomposition of POLSAR Image and Its Application to the ESPRIT-Based Pol-InSAR. Proc. of EUSAR’06, Dresden, Germany, 16-18 May 2006
    105 S. Guillaso, L. Ferro-Famil A. Reigber, E. Pottier. Polarimetric Interferometric SAR Data Analysis Based on ESPRIT/MUSIC Methods. Proc. of PolInSAR’03, Frascati, Italy, 14-16 Jan. 2003:1~6
    106 S. Guillaso, L. Ferro-Famil A. Reigber, E. Pottier. Urban Area Analysis Based on ESPRIT/MUSIC Mothods using Polarimetric Interferometric SAR. Proc. of 2nd GRSS/ISPRS joint Workshop on“Data Fusion and Remote Sensing over Urban Areas”Technical University of Berlin, 22-23 May 2003:77~81
    107 S. Guillaso, L. Ferro-Famil, A. Reigber, E. Pottier. Analysis of Built-up Areas from Polarimetric Interferometric SAR Images. Proc. of IGARSS’03, Toulouse, France, 21-25 July 2003, 3:1727~1729
    108 S. Guillaso, L. Ferro-Famil, A. Reigber, E. Pottie. Building Characterization Using L-Band Polarimetric Interferometric SAR Data. IEEE GRSL. 2005, 2(3):347~351
    109 S. Guillaso, A. Reigber, L. Ferro-Famil. Evaluation of the ESPRIT Approach in Polarimetric Interferometric SAR. Proc. of IGARSS’05, Seoul, Korea, 25-29 July 2005, 1:1~4
    110 R. Z. Schneider, K. Papathanassiou, I. Hajnsek, and A. Moreira. Polarimetric and Interferometric Characterization of Coherent Scatterers in Urban Areas. IEEE Trans. on GRS. 2006, 44(4):971~983
    111 F. Garestier, P. D. Fernandez, X. Dupuis, et al. PolInSAR Analysis of X-BandData over Vegetated and Urban Areas. IEEE Trans. on GRS. 2006, 44(2): 356~364
    112 S. Sauer, L. Ferro-Famil, A. Reigber, E. Pottier. Characterisation of Buildings using Polarimetric Interferometric Multiple Track L-Band SAR Data. Proc. of EURAD’05, Paris, France, 6-7 Oct. 2005
    113 S. Sauer, L. Ferro-Famil, A. Reigber and E. Pottier. Analysing Urban Areas using Multiple Track POL-InSAR Data at L-Band. Proc. of EUSAR’06, Dresden, Germany, 16-18 May 2006
    114 S. Sauer, L. Ferro-Famil, A. Reigber and E. Pottier. Multibaseline POL-InSAR Analysis of Urban Scenes at L-Band. Proc. of PolInSAR’07, Frascati, Italy, 22-26 Jan. 2007
    115 E. L. Christensen, N. Skou, J. Dall, et al. EMISAR: An Absolutely Calibrated Polarimetric L- and C-band SAR. IEEE Trans. on GRS. 1998, 36(6): 1852~1865
    116 H. Skriver, M. T. Svendsen, and A. G. Thomsen. Multitemporal C-and L-Band Polarimetric Signatures of Crops. IEEE Trans. on GRS. 1999, 37(5): 2413~2429
    117 H. Skriver, J. Dall, T. Le. Toan, et al. Agriculture Classification Using POLSAR Data. Proc. of POLinSAR2005, Frascati. Italy, 17-21 Jan. 2005
    118 R. Horn. The DLR airborne SAR project E-SAR. Proc. of IGARSS’96. Nebraska, USA, 27-31 May 1996:1624~1628
    119吴永辉.极化SAR图像分类技术研究.国防科学技术大学博士学位论文. 2007: 34~40
    120 Jakob J. van Zyl, Howawrd A. Zebker, Charles Elachi. Imaging Radar Polarization Signatures: Theory and Observation. Radio Science. 1987, 22(4): 529~543
    121 J. Nakamura, K. Aoyama, M. Ikarashi, and et al. Coherent Decomposition of Fully Polarimetric FM-CW Radar Data. IEICE Trans. on Communication. 2008, E91-B: 2374~2379
    122 R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural Features for Image Classification. IEEE Trans. on Systems, Man, and Cybernetics. 1973, 3(6):610~621
    123 A. Baraldi, F. Parmiggiani. An Investigation of the Textural CharacteristicsAssociated with Gray Level Cooccurrence Matrix Statistial Parameters. IEEE Trans. on GRS. 1995, 33(2): 293~304
    124 A. David, Clausi, Y. Bing. Comparing Co-occurrence Probabilityes and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery. IEEE Trans. on GRS. 2004, 42(1): 215~228
    125 V. N. Vapnik著,许建华,张学工译.统计学习理论.北京:电子工业出版社. 2004:52~136
    126 V. N. Vapnik. An Overview of Statistical Learning Theory. IEEE Trans. on NN. 1999, 10 (5): 988~999
    127 Y. Wang, J. Lu, X. Wu. New Algorithm of Target Classification in Polarimetric SAR. Journal of Systems Engineering and Electronics. 2008, 19(2): 273~279
    128 C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 1998, 2: 121~167
    129 C. W. Hsu and C. J. Lin. A Comparison of Methods for Mufti-Class Support Vector Machines. IEEE Trans.on NN. 2002, 13(2): 415~425
    130 Albert Guissard. Mueller and Kennaugh Matrices in Radar Polarimetry. IEEE Trans. on GRS. 1994, 32(3): 590~597
    131 F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Volume II Radar Remote Sensing and Surface Scattering and Emisision Theory. 1986, Artech House. 816~982
    132张玲,张钹.问题求解理论及应用-商空间粒度计算理论及应用.第2版.清华大学出版社. 2007:1~131
    133张燕平,张铃,吴涛.不同粒度世界的描述法——商空间法.计算机学报. 2004, 27(3): 328~333
    134刘仁金,黄贤武.图像分割的商空间粒度原理.计算机学报. 2005, 28(10): 1680~1685
    135张向荣,谭山,焦李成.基于商空间粒度计算的SAR图像分类.计算机学报. 2007, 30(3):483~490
    136穆冬,干涉合成孔径雷达成像技术研究.南京航空航天大学博士学位论文, 2001:14~66
    137 H. A. Zebker, J. Villasenor. Decorrelation in Interferometric Radar Echoes. IEEE Trans. on GRS. 1992, 30(1):950~959

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700