用户名: 密码: 验证码:
钳形镧系和过渡金属配合物的合成、表征及催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化过程在现代化学工业中有着无可替代的重要性,而实现催化的关键在于催化剂的开发。理想的催化剂除了稳定性高,选择性强外,还应当具有较高的催化活性以保在较低的催化剂用量时就能获得足够高的转化率。此外,它必须是设计合理的,这样才有可能通过金属中心的调整和配体的选择来调节其催化性能。钳形金属配合物无疑是比较理想的选择,因此开发可用于催化的新型钳形金属配合成为近年来化学领域研究的热点。
     第三章中以钳形双亚胺配体为原料,合成了三个NCN钳形双亚胺铁配合物2,6-(ArN=CH)_2C_6H_3Fe(μ-Cl)_2Li(THF)_2(1a: Ar=2,6-Me_2C6H_3;1b: Ar=2,6-Et_2C_6H_3;1c: Ar=2,6-iPr_2C_6H_3)、一个NCN钳形双亚胺钴配合物{[2,6-(ArN=CH)_2C_6H_3]Co(μ-Cl)}_2Co(μ-Cl)_2(2: Ar=2,6-iPr_2C_6H_3)和三个NCN钳形双亚胺镍配合物2,6-(ArN=CH)_2C_6H_3NiBr(3a: Ar=2,6-Me_2C_6H_3;3b: Ar=2,6-Et_2C_6H-3;3c: Ar=2,6-iPr_2C_6H_3)。对其中的六个钳形配合物的进行了X射线单晶衍射分析。分析结果表明,1a、1b的固态分子结为氯桥连接的杂核双核结构。铁的构型为三角双锥,并通过两个氯桥与锂原子相连,锂原子周围另有两个配位的四氢呋喃使其配位饱和。钴的配合物为两个{[2,6-(ArN=CH)_2C_6H_3]Co(μ-Cl)}(Ar=2,6-iPr_2C_6H_3)单元通过一个CoCl_2桥连的三核结构,中间桥连的钴原子为扭曲的平面四边构型,使得整个分子略微折叠。3a-3c的晶体结构分析表明,镍的配合物固态分子中镍为扭曲的平面四边构型。初步研究了合成的钳形金属配合物对降冰片烯及丁二烯的聚合性能,结果表明在MAO的活化下钳形双亚胺镍配合物能以中等的活性催化降冰片烯进行加成聚合,其活性显著的受配体中与配位氮原子直接相连的芳环邻位的取代基影响。具有相似结构的钳形双亚胺铁配合物在取代基较小时对降冰片烯聚合表现出较低的催化活性,甚至在聚合结束时几乎分离不到聚合物。值得注意的是,具有较大空间阻碍的2,6-二异丙基取代的钳形双亚胺铁配合物表现出中等的催化活性(60分钟内能达到70%的转化率),能得到高分子量的聚合产物。当上述双亚胺钳形金属配合物用于催化丁二烯聚合时镍配合物无论是用MAO还是烷基铝活化均表现出极低的催化活性,几乎分离不到聚合物。相反,在同样的条件下,铁配合物均能以中等活性催化丁二烯进行cis-1,4选择性聚合。初步研究了配体的取代基大小、烷基铝种类、单体和催化剂的比例等因素对聚合效果的影响。
     第四章中首次合成了2-溴-3-溴甲基苯甲醛(4),以其为原料合成了两个含单亚胺的西弗碱3-(BrCH_2)-2-Br-(Ar~1N=CH)C_6H_3(Ar~1=2,6-Me_2C_6H_3(5a); Ar~1=2,6-~iPr_2C_6H_3(5b)),并在此基础上合成了四个NCO钳形亚胺醚配体3-(Ar_2OCH_2)-2-Br-(Ar~1N=CH)C_6H_3[~(Ar1)NCO~(Ar2)]Br (Ar~1=Ar~2=2,6-Me_2C_6H_3(6a);Ar1=2,6-Me_2C_6H_3, Ar~2=2,6-~iPr_2C_6H_3(6b); Ar~1=2,6-~iPr_2C_6H_3, Ar_2=2,6-Me_2C_6H_3(6c); Ar~1=Ar~2=2,6-~iPr_2C_6H_3(6d))对上述化合物均进行了元素分析和核磁表征。用上述非对称的NCO钳形配体先经卤素-锂交换,再经转移金属化合成相应的钇、镥、钆配合物([~(Ar1)NCO~(Ar2)]YCl_2(THF)_2Ar~1=Ar~2=2,6-Me_2C_6H_3(7a), Ar~1=2,6-Me_2C_6H_3Ar~2=2,6-~iPr_2C_6H_3(7b), Ar~1=2,6-~iPr_2C_6H_3Ar~2=2,6-Me_2C_6H_3(7c), Ar~1=Ar~2=2,6-~iPr_2C_6H_3(7d);[~(Ar1)NCO~(Ar2)]LuCl_2(THF)_2, Ar~1=A~r2=2,6-Me_2C_6H_3(8a), Ar~1=Ar~2=2,6-~iPr_2C_6H_3(8d);[~(Ar1)NCO~(Ar2)]GdCl_2(THF)_2Ar~1=Ar~2=2,6-Me_2C_6H_3(9a), Ar~1=2,6-Me_2C_6H_3Ar~2=2,6-~iPr_2C_6H_3(9b), Ar~1=2,6-~iPr_2C_6H_3Ar~2=2,6-Me_2C_6H_3(9c), Ar~1=Ar~2=2,6-~iPr_2C_6H_3(9d))。并对其中三个配合物7a、8a、9a进行了X射线单晶衍射分析。分析结果表明,在这些NCO钳形金属配合物的分子中金属为五角双锥构型,同时有两个配位的四氢呋喃分子补充在金属原子周围使其配位饱和。钳形配体以平面三齿的方式与稀土金属原子配位,取代基的芳香环与NCO平面相垂直。两个氯原子处于NCO平面的两侧Cl-M-Cl几乎在一条直线上。金属与NCO平面基本共面。对上述非对称钳形金属配合物的性质进行了初步研究,研究发现当用烷基铝和有机硼([(Ph3C)(C6F5)4])活化时,这些钳形稀土化合物对异戊二烯的cis-1,4选择性聚合表现出不同的催化效果。配合物9a在催化活性和cis-1,4选择性方面明显的高于其他配合物;在–20oC时所得聚合物的13C NMR谱图中检测不到cis-1,4以外其他组分的信号,同时活性仍然保持较高(480分钟时转化率可达59.6%)。
     第五章首次合成了两个亚胺硫醚类钳形配体3-(2,6-Me_2C_6H_3SCH_2)-2-Br-(Ar~1N=CH)C_6H_3[~(Ar1)NCS~(Me)]Br ((Ar~1=2,6-Me_2C_6H_3(10a);Ar~1=2,6-~iPr_2C_6H_3(10b)),对上述配体均进行了元素分析和核磁表征。以上述两个亚胺硫醚类钳形配体(10a、10b)为原料,先经卤素-锂交换,再经转移金属化合成了四个NCS配位的钳形金属配合物({[~(Ar1)NCS~(Me)]Y(μ-Cl)}_2((μ-Cl)Li(THF)_2(μ-Cl))_2(Ar~1=2,6-Me_2C_6H_3(11a), Ar~1=2,6-~iPr_2C_6H_3(11b));{[~(Ar1)NCS~(Me)]Gd(μ-Cl)}_2((μ-Cl)Li(THF)_2(μ-Cl))_2(Ar~1=2,6-Me_2C_6H_3(12a), Ar~1=2,6-~iPr_2C_6H_3(12b)))。对上述四个钳形配合物均进行了元素分析,并对配合物11a、11b用核磁进行了表征。对配合物12a进行了X射线单晶衍射分析,分析结果表明所得12a的分子为以两个氯和两个Cl–Li–Cl桥连的两个({[~(Ar1)NCS~(Me)]GdCl_2}Ar~1=2,6-Me_2C_6H_3)结构单元组成的二聚结构。在每个({[~(Ar1)NCS~(Me)]GdCl_2}Ar~1=2,6-Me_2C_6H_3)结构单元中,钆为扭曲的五角双锥构型。当用烷基铝和有机硼盐([Ph_3C][(C_6F_5)_4B])活化时,这些配合物对丁二烯(95.1%~98.9%)和异戊二烯(97.5%~98.9%)都显示出很高cis-1,4选择性。在Al(iBu)3和([Ph_3C][(C_6F_5)_4B])活化下,钆配合物12a、12b在室温下表现出中等的催化活性,所得的聚异戊二烯cis-1,4选择性为97.5%~98.9%,聚丁二烯cis-1,4选择性为95.3%~98.9%。同为结构相似的NCS配位的钳形金属配合物,钇的配合物11a、11b与相应的钆的配合物相比,催化活性和选择性都略低。
     综上所述,本论文通过配体的修饰优化、金属中心的调整研究了钳形镧系和过渡金属配合物的合成、表征及催化性质,得到了一些性能优良的催化剂,为钳形金属配合物的开发和应用积累了基础。
The catalytic process has irreplaceable importance in modern chemical industry,and the essential is the development of catalysts. An ideal catalyst has to be stable andhighly selective, but also highly active to ensure high turnover numbers and permit lowcatalyst loadings. Moreover, it needs to be amenable to rational design, giving thepossibility for fine-tuning the catalytic properties of the metal center. It is an idealchoice to use pincer complexes, thus the development of new metal complexessupported by pincer Ligands has become a hot field of chemistry research in recentyears.
     In chapter III, Bis(imino)aryl NCN pincer Fe(II) complexes2,6-(ArN=CH)_2C_6H_3Fe(μ-Cl)_2Li(THF)_2(1a: Ar=2,6-Me_2C6H_3;1b: Ar=2,6-Et_2C_6H_3;1c: Ar=2,6-iPr_2C_6H_3) were synthesized by lithium salt metathesis reactions of theligand lithium salts with FeCl2. X-ray structure analyses of1a and1b revealed that theFe(II) complexes are hetero-dinuclear with the iron atoms in trigonal bipyramidalenvironments. The NCN pincer Co(II) complex{[2,6-(ArN=CH)_2C_6H_3]Co(μ-Cl)}_2Co(μ-Cl)_2(2: Ar=2,6-iPr_2C_6H_3)were synthesized bylithium salt metathesis reactions of the ligand lithium salts with CoCl2. X-ray structureanalyses of2revealed that the Co(II) complexe is trinuclear with the distal Co(II) atomsin2adopt a trigonal bipyramidal geometry with the Cipsoatom of the ligand and twochloride atoms in the equator and the two imine nitrogen atoms in the apical positions.The NCN pincer Ni(II) complexes{[2,6-(ArN=CH)_2C_6H_3]Co(μ-Cl)}(Ar=2,6-iPr_2C_6H_3)Ar=2,6-Et2C_6H_3;3c: Ar=2,6-iPr_2C_6H_3) were prepared via oxidative-addition ofNi(0)(Ph3P)4with bis(N-aryl)-2-bromoisophthalaldimine. These nickel complexes werewell characterized by NMR and elemental analyses. Their solid molecular structureswere established by X-ray diffraction analyses. The nickel metal centers adopt distorted square planar geometries with the bromine atoms as one coordinate ligand. Whenactivated with MAO, the nickel complexes are active for norbornene vinylpolymerization but are inert for butadiene polymerization. The Fe(II) complexes showmoderate activities in butadiene polymerization when activated with alkylaluminumaffording the cis-1,4enriched polymer.
     In chapter IV, a series of NCO pincer precursors3-(Ar~2OCH_2)-2-Br-(Ar~1N=CH)C_6H_3[~(Ar1)NCO~(Ar2)]Br (Ar~1=Ar~2=2,6-Me_2C_6H_3(6a); Ar~1=2,6-Me_2C_6H_3, Ar~2=2,6-~iPr_2C_6H_3(6b); Ar~1=2,6-~iPr_2C_6H_3, Ar~2=2,6-Me_2C_6H_3(6c);Ar~1=Ar~2=2,6-~iPr_2C_6H_3(6d)) were synthesized and characterized. Reactions of[~(Ar1)NCO~(Ar2)]Br with~nBuLi and subsequent additions of the rare-earth-metal chloridesafford the corresponding rare earth metal pincer complexes ([~(Ar1)NCO~(Ar2)]YCl_2(THF)_2(Ar~1=Ar~2=2,6-Me_2C_6H_3(7a), Ar~1=2,6-Me_2C_6H_3Ar~2=2,6-~iPr_2C_6H_3(7b), Ar~1=2,6-~iPr_2C_6H_3Ar~2=2,6-Me_2C_6H_3(7c), Ar~1=Ar~2=2,6-~iPr_2C_6H_3(7d));[~(Ar1)NCO~(Ar2)]LuCl_2(THF)_2(Ar~1=Ar~2=2,6-Me_2C_6H_3(8a), Ar~1=Ar~2=2,6-~iPr_2C_6H_3(8d));[~(Ar1)NCO~(Ar2)]GdCl_2(THF)_2(Ar~1=Ar~2=2,6-Me_2C_6H_3(9a), Ar~1=2,6-Me_2C_6H_3Ar~2=2,6-~iPr_2C_6H_3(9b), Ar~1=2,6-iPr_2C_6H_3Ar~2=2,6-Me_2C_6H_3(9c), Ar~1=Ar~2=2,6-~iPr_2C_6H_3(9d))). All the diamagnetic complexes were characterized by~1H and~(13)CNMR spectroscopy and the molecular structure of7a,8a and9a were well establishedby the X-ray diffraction analysis. In7a,8a and9a the metal centers all adopt distortedpentagonal bipyramidal geometries with the NCO donors and two Os of THF in theequator and the two chloride atoms in the apical positions. Activated withalkylaluminium and borate, the gadolinium and yttrium complexes show variedactivities in isoprene polymerization affording high cis-1,4polyisoprene, and the NCOlutetium complexes are inert under the same condition..
     In chapter V, a series of NCS pincer precursors3-(2,6-Me_2C_6H_3SCH_2)-2-Br-(Ar~1N=CH)C_6H_3[~(Ar1)NCS~(Me)]Br (Ar~1=2,6-Me_2C_6H_3(10a);Ar~1=2,6-~iPr_2C_6H_3(10b)) were synthesized and characterized. Reactions of[Ar1NCSMe]Br withnBuLi and subsequent additions of the rare-earth-metal chloridesafford the corresponding rare earth metal pincer complexes({[~(Ar1)NCS~(Me)]Y(μ-Cl)}_2((μ-Cl)Li(THF)_2(μ-Cl))_2(Ar~1=2,6-Me_2C_6H_3(11a), Ar~1=2,6-~iPr_2C_6H_3(11b));{[~(Ar1)NCS~(Me)]Gd(μ-Cl)}_2((μ-Cl)Li(THF)_2(μ-Cl))_2(Ar~1=2,6-Me_2C_6H_3(12a), Ar~1=2,6-~iPr_2C_6H_3(12b))). All the diamagnetic complexes were characterized by1H and13CNMR spectroscopy and the molecular structure of12a was well established by theX-ray diffraction analysis. Complex12a is a dinuclear with the two equal moietieslinked by two chlorine atoms and two Cl–Li–Cl bridges. In each part, the gadoliniumatom is in the distorted pentagonal bipyramidal geometry. Activated withalkylaluminium and borate, the gadolinium and yttrium complexes show variedactivities in isoprene or butadiene polymerization affording high cis-1,4polymer.
     In summary, we have systematic study on synthesis, characterization, catalyticProperties of lanthanide and transition Metal Complexes Supported by pincer Ligands.
引文
[1] A. Mittasch, Geschichte der Ammoniaksynthese(VerlagChemie, Weinheim,Germany,1951);(b) R. Schl gl, in Handbook of Heterogeneous Catalysis, G.Ertl,H.Kn zinger, F.Schüth, J.Weitkamp, Eds.(Wiley-VCH, Weinheim, Germany,ed.2,2008), vol.5, pp.2501–2575;(c) A. Hellman etal., J. Phys. Chem. B110,17719(2006).
    [2]周治峰.烯烃聚合催化剂的研究.辽宁化工,2009,38(19):825~827..
    [3](a) Crocker, C.; Errington, R. J.; McDonald, W. S.; Odell, K. J.; Shaw, B. L.;Goodfellow, R. J. J. Chem. Soc. Chem. Commun.1979,498;(b) Crocker, C.;Errington, R. J.; Markham, R.; Moulton, C. J.; Odell, K. J.; Shaw, B. L. J. Am.Chem. Soc.1980,102,4373(;c)Crocker, C.; Empsall, H. D.; Errington, R. J.; Hyde,E. M.; McDonald, W. S.; Markham, R.; Norton, M. C.; Shaw, B. L.; Weeks, B. J.Chem. Soc., Dalton Trans.1982,1217;(d)Empsall, H. D.; Hyde, E. M.; Jones, C.E.; Shaw, B. L. J. Chem.Soc., Dalton Trans.1974,480;(e)Empsall, H. D.; Hyde,E. M.; Markham, R.; McDonald, W. S.; Norton, M. C.; Shaw, B. L.; Weeks, B. J.Chem. Soc., Chem. Commun.1977,589;(f)Errington, R. J.; Shaw, B. L. J.Organomet. Chem.1982,238,319;(g)Errington, R. J.; McDonald, F. E.; Shaw, B.L. J. Chem Soc., Dalton Trans.1982,1829;(h)Jones, C. E.; Shaw, B. L.; Turtle, B.L. J. Chem. Soc., Dalton Trans.1974,992;(i)Moulton, C. J.; Shaw, B. L. J. Chem.Soc., Dalton Trans.1976,1020;(j)Shaw, B. L.; Uttley, M. F. J. Chem. Soc., Chem.Commun.1974,918;(k) Shaw, B. L.; Moulton, C. J. J. Chem. Soc., Dalton Trans.1976,1020;(l)Briggs, J. R.; Constable, A. G.; McDonald, W. S.; Shaw, B. L. J.Chem. Soc., Dalton Trans.1982,1225;(m)Crocker, C.; Errington, R. J.; Markham,R.; Moulton, C. J.; Shaw, B. L. J. Chem Soc., Dalton Trans.1982,387;(n)Al-Salem, N. A.; McDonald, W. S.; Markham, R.; Norton, M. C.; Shaw, B. L. J.Chem Soc., Dalton Trans.1980,59;(o) Al-Salem, N. A.; Empsall, H. D.;Markham, R.; Shaw, B. L.; Weeks, B. J. Chem Soc., Dalton Trans.1979,1979.
    [4](a)Albrecht, M.; vanKoten, G. Angew. Chem., Int. Ed.2001,40,3750.(b)Singleton,J. T. Tetrahedron2003,59,1837.
    [5](a) van der Ploeg, A. F.M.J.; van Koten, G.; Brevard, C. Inorg. Chem.1982,21,2878.(b) Albrecht, M.; Gossage, R. A.; Lutz, M.; Spek, A. L.; van Koten, G. Chem.Eur. J.2000,6,1431.(c) Albrecht, M.; Schlupp, M.; Bargon, J.; van Koten, G.Chem. Commun.2001,1874.
    [6] Mazzeo, M.; Lamberti, M.; Massa, A.; Scettri, A.; Pellechia, C.; Peters, J. C.Organometallics2008,27,5741.
    [7] Takaya, J.; Iwasawa, N. J. Am. Chem. Soc.2008,130,15254.
    [8] Takaya, J.; Iwasawa, N. Organometallics2009,28,6636.
    [9] Begum, R. A.; Powell, D.; Bowman-James, K. Inorg.Chem.2006,45,964.
    [10]Liu, J.; Wang, H.; Zhang, H.;Wu, X.; Zhang, H.; Deng, Y.; Yang, Z.; Lei, A.Chem.Eur. J.2009,15,4437.
    [11]Wang, H.; Liu, J.; Deng, Y.; Min, T.; Yu, G.; Wu, X.; Yang, Z.; Lei, A. Chem. Eur. J.2009,15,1499.
    [12]Ines, B.; SanMartin, R.; Moure, M. J.; Domínguez, E. Adv. Synth. Catal.2009,351,2124.
    [13]Moreno, I.; SanMartin, R.; Ines,B.; Herrero, M. T.; Domínguez, E. Curr. Org. Chem.2009,13,878.
    [14]Hogerheide, M.; Grove, D.; Boersma, J.; Jastrzebski, J.; Kooijman, H.; Spek, A.;Koten, G. Chem. Eur. J.1995,343.
    [15]Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z., Angew. Chem. Int. Ed.2007,46,1909.
    [16]T. R. Helgert, T. K. Hollis, E. J. Valente, Organometallics2012,31,3002.
    [17]Z. Z. Liu, W. Gao, X. M. Liu, X. Y. Luo, D. M. Cui, Y. Mu, Organometallics2011,30,749.
    [18]A. V. Chuchuryukin, R. Huang, M. Lutz, J. C. Chadwick, A. L. Spek, G. van Koten,Organometallics2011,30,2819.
    [19]J.-W. Hsu, Y.-C. Lin, C.-S. Hsiao, A. Datta, C.-H. Lin, J.-H. Huang, J.-C. Tsai, W.-C.Hsu, Dalton Trans.2012,41,7700.
    [20]E. Kinoshita, K. Arashiba, S. Kuriyama, Y. Miyake, R. Shimazaki, H. Nakanishi, Y.Nishibayashi, Organometallics2012,31,8437.
    [21] S. Sarkar, K. P. McGowan, S. Kuppuswamy, I. Ghiviriga, K. A. Abboud, A. S.Veige, J. Am. Chem. Soc2012,134,4509-4512.
    [22]P. Giannoccaro, G. Vasapollo, A. Sacco, J. Chem. Soc., Chem. Commun.1980,1136.
    [23]A. De Koster, J. A. Kanters, A. L. Spek, A. A. H. Van Der Zeijden, G. Van Koten, K.Vrieze, Acta Cryst C1985,41,893.
    [24]A. A. H. Van der Zeijden, G. Van Koten, Inorg.Chem.1986,25,4723.
    [25]M. Poyatos, J. A. Mata, E. Falomir, R. H. Crabtree, E. Peris, Organometallics2003,22,1110.
    [26]Takenaka K., Minakawa M., Uozumi Y. J. Am. Chem. Soc2005,127,12273.
    [27]L. Ma, R. A. Woloszynek, W. Chen, T. Ren, J. D. Protasiewicz, Organometallics2006,25,3301.
    [28]L. Wang, Z.-X. Wang, Org Lett2007,9,4335.
    [29]S. Kundu, Y. Choliy, G. Zhuo, R. Ahuja, T. J. Emge, R. Warmuth, M. Brookhart, K.Krogh-Jespersen, A. S. Goldman, Organometallics2009,28,5432.
    [30]S. Agrawal, M. Lenormand, B. Martín-Matute, Org Lett2012,14,1456.
    [31]J. Breitenfeld, R. Scopelliti, X. Hu, Organometallics2012,31,2128.
    [32]X. Yang, ACS Catalysis2011,1,849.
    [33]X. Yang, Inorganic Chemistry2011,50,12836.
    [34]P. Bhattacharya, J. A. Krause, H. Guan, Organometallics2011,30,4720.
    [35]L.-Y. Wu, X.-Q. Hao, Y.-X. Xu, M.-Q. Jia, Y.-N. Wang, J.-F. Gong, M.-P. Song,Organometallics2009,28,3369.
    [36]S. Chakraborty, J. Zhang, Y. J. Patel, J. A. Krause, H. Guan, Inorg.Chem2012,52,37.
    [37]W. Gao, D. Cui, J. Am. Chem. Soc.2008,130,4984.
    [38]K. Lv, D. Cui, Organometallics2008,27,5438.
    [39]K. Lv, D. Cui, Organometallics2010,29,2987.
    [40]A. H. Cowley, R. A. Jones, M. A. Mardones, J. Ruiz, J. L. Atwood, S. G. Bott,Angew. Chem. Int. Ed.1990,29,1150.
    [41]David A. Atwood, Alan H. Cowley. Jaime Ruiz. Inorg Chim Acta,198-200(1992)271.
    [42]M. D. Fryzuk, G. R. Giesbrecht, S. J. Rettig, Organometallics1997,16,725.
    [43]W. Weng, L. Yang, B. M. Foxman, O. V. Ozerov, Organometallics2004,23,4700.
    [44]A. P. Soran, C. Silvestru, H. J. Breunig, G. Balázs, J. C. Green, Organometallics2007,26,1196.
    [45]J. r. Koller, R. G. Bergman, Organometallics2010,29,3350.
    [46]Z. Liu, W. Gao, J. Zhang, D. Cui, Q. Wu, Y. Mu, Organometallics2010,29,5783.
    [47]J. Henning, H. Schubert, K. Eichele, F. Winter, R. P ttgen, H. A. Mayer, L.Wesemann, Inorg.Chem2012,51,5787.
    [48]M. A. Dam, T. Nijbacker, B. C. de Pater, F. J. J. de Kanter, O. S. Akkerman, F.Bickelhaupt, W. J. J. Smeets, A. L. Spek, Organometallics1997,16,511.
    [1] a)D. F. Shriver, The Manipulation of Air-Sensitive Compounds; McGraw-Hill: NewYork,1969. b)张彦雨.手性四氮螯合金属配合物的合成、表征及催化性质研究
    [D].吉林大学,2012.
    [2]王葆仁有机合成反应科学出版社1982年。
    [3]张磊.新型茂金属配合物的合成、表征及催化烯烃聚合反应研究[D].吉林大学,2011.
    [4]高聚物分子量及其分布,郑昌仁主编,化学工业出版社出版1986。
    [5] Sheldrick, G.M., SHELXL-97. Program for the Refinement of Crystal Structuresfrom Diffraction Data. University of Goettingen, Germany1997.
    [6] Taylor, M.D.; Carter, C.P., Preparation of anhydrous lanthanide halides, especiallyiodides. J. Inorg. Nucl. Chem.,1962,24(4),387-391.
    [7] F. A. Cotton [美],申泮文译无机合成[M].第六卷, P142科技出版社出版。
    [8]申泮文,曾爱冬,无机化学丛书[M]第九卷, P298,科学出版社。
    [9] Sehun, P. A. Tetrakis(triphenylphosphine)nickel(0), Inorg. Synth.1972,13,124-128.
    [10]吴江,陈雪蓉,韦少义,高阳光,何连成.结晶水分合成甲基铝氧烷[J].石化技术与应用.2007,27(6),526-528。
    [1] S. D Ittel, J. K. Johnson, M. Brookhart, Chem. Rev.,2000,100,1169.
    [2] L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc.,1995,117,6414.
    [3](a) S. Mecking, L. K. Johnson, L.Wang and M. Brookhart, J. Am. Chem. Soc.,1998,120,888.(b) G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int.Ed.,1999,38,428.
    [4](a) B. Su, J. Zhao, Q. Zhang, W. Qin, Polym. Int.,2009,58,1051.(b) B. Sun, G.Feng, Polym. Int.,2010,59,1058.(c) M. Seitz, C. G rl, W. Milius, H. G. Alt,Jordan. J. Chem,2008,3,109.
    [5] J. D. Nobbs, A. K. Tomov, R. Cariou, V. C. Gibson, A. J. P. White, G. J. Britovsek,Dalton Trans.,2012,41,5949.
    [6] Y. Huang, J. Chen, L. Chi, C. Wei, Z. Zhang, Z. Li, A.Li, L. Zhang, J. Appl. Polym.Sci.,2009,112,1486.
    [7](a) G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J. McTavish,G. A. Solan, A. J. P. White, D. J. Williams, Chem. Commun.,1998,849.(b) V. C.Gibson and S. K. Spitzmesser, Chem. Rev.,2003,103,283.(c) G. J. P. Britovsek, M.Bruce. V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. Mastroianni, S. J. McTavish,C. Redshaw, G. A. Solan, S. Str mberg, A. J. P. White, D. Williams, J. Am. Chem.Soc.,1999,121,8728.
    [8](a) J. P. Kennedy, H. S. Makowski, J. Macromol. Sci. Chem. A1,1967,345.(b) N.G. Gaylord, A. B. Deshpande, J. Polym. Sci. Polym. Lett. Ed.1976,14,613.(c) H.Maezawa, J. Matsumoto, H. Aiura, S. Asahi, EP Patent445,7551991.
    [9](a) Q. Wu, Y.-Y. Lu, J. Polym. Sci. A: Chem.,2002,42,1421.(b) W. L. Truett, D. R.Johnson, I. M. Robinson, B. A. Montague, J. Am. Chem. Soc.,1960,82,2337.(c) H.H. Brintzinger, D. Fischer, R. M¨ulhaupt, R. M. Waymouth, Angew. Chem. Int. Ed.Engl.,1995,34,1143.(d) J. Huang, G. L. Rempel, Prog. Polym. Sci.,1995,20,459.(d) S. Rush, A. Reinmuth, W. Risse, Macromolecules,1997,307375.
    [10](a) G. Parshall, Acc.Chem.Res.1970,3.139.(b) Omae, I. Chem. Rev.1979,79,287.
    [11](a) Shilov, A.; Shul’pin, G. Chem. Rev.1997,97,2897.(b) Albrecht, M.; Koten, G.Angew. Chem. Int. Ed.2001,40,3750.
    [12]Beley, M.; Collin, J.; Sauvage, J. Inorg. Chem.1993,32,4539.
    [13](a) W. Gao, D. Cui, J. Am. Chem. Soc.2008,130,4984.(b) Z. Liu, W. Gao, X. Liu,X. Luo, D. Cui, Y. Mu, Organometallics,2010,30,752.
    [14]Z. Liu, W. Gao, J. Zhang, D. Cui, Q. Wu, Y. Mu, Organometallics,2010,29,5783.
    [15](a) M. Stol, D. J. Snelders, M. D. Godbole, R. W. Havenith, D. Haddleton, G.Clarkson, M. Lutz, A. L. Spek, G. P. van Klink, G. van Koten, Organometallics2007,26,3985.(b) D. H. Lee, S. J. Hong, S. Park, Bull. Korean Chem. Soc.2008,29,187.
    [16]Hoogervorst,W.J.;Koster,A.L.;Lutz,M.;Spek,A.L.;Elsevier, C. J. Organometallics2004,23,1161.
    [17]Morizur,J.P. Bull.Soc.Chim.Fr.1964,1331.
    [18]M. W. Wallasch, D. Weismann, C. Riehn, S. Ambrus, G. Wolmersh user, A.Lagutschenkov, G. Niedner-Schatteburg, H. Sitzmann, Organometallics,2010,29,806.
    [19]Y. Shi, M. Li, Q. Hu, X. Li, H. Sun, Organometallics,2009,28,2206.
    [20]Sutton, A. D.; Ngyuen, T.; Fettinger, J. C.; Olmstead, M. M.; Long, G. J.; Power, P.P. Inorg Chem,2007,46,4809.
    [21]C. Ni, T. A. Stich, G. J. Long, P. P. Power, Chem Commun2010,46,4466.
    [22](a) D. Gong, X. Jia, B. Wang, F. Wang, C. Zhang, X. Zhang, L. Jiang, W. Dong,Inorg Chim Acta,2011,373,47.(b) D. Gong, X. Jia, B. Wang, X. Zhang, L. Jiang,J. Organomet. Chem.2012,702,10.(c) D. Gong, B. Wang, C. Bai, J. Bi, F. Wang,W. Dong, X. Zhang, L. Jiang, Polymer,2009,50,6259.(d) G. Ricci, D. Morganti, A.Sommazzi, R. Santi, F. Masi, J. Mol. Catal. A: Chem.,2003,204-205,287.
    [23](a) C. Longiave, R. Castelli, G. F. Croce, Chim. Ind.(Milan),1961,43,625.(b) R.Sakata, J. Hosono, A. Onishi, K. Ueda, Makromol. Chem.,1970,139,73.(c) D. H.Beebe, C. E. Gordon, R. N. Thudium, M. C. Throckmorton, T. L Hanlon, J. Polym.Chem. Ed.,1978,16,2285.
    [24]胡杰,朱博超,义建军,王建明.金属有机烯烃聚合催化及其烯烃聚合物,北京,化学工业出版社,2010,P206.
    [25]X. Mi, Z. MA, N. Cui, L. Wang, Y. Ke, Y. Hu, J. Appl. Polym. Sci.2003,88,3273.
    [1](a) Albrecht M.; van Koten, G. Angew. Chem. Int. Ed.2001,40,3750.(b) van derBoom, M. E.; Milstein, D. Chem. Rev.2003,103,1759. c)徐国强铁、钴、镍的钳式配合物的制备及其在碳碳偶联催化反应中的应用.[D].山东大学,博士论文,2010.
    [2](a) Moulton, C. J.; Shaw, B. L. J. Chem. Soc. Dalton Trans.1976,1020.(b) vanKoten, G.; Timmer, K.; Noltes, J. G. Spek, A. L. J. Chem. Soc. Chem. Commun.1978,250.(c) van Koten, G. Jastrzebski, J. T.; Noltes, J. G. J. Organomet. Chem.1978,148,233.
    [3](a) Hoogervorst, W. J.; Elsevier, C. J.; Lutz, M.; Spek, A. Organometallics2001,20,4437.(b) Takenaka, K.; Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc.,2005,127,12273.(c) Yutaka, T.; Obara, S.; Ogawa, S.; Nozaki, K.; Ikeda, N.; Ohno, T.; Ishii,Y.; Sakai, K.; Haga, M. Inorg. Chem.2005,44,4737.(d) Ito, J.-I.; Shiomi, T.;Nishiyama, H. AdV. Synth. Catal.2005,348,1235.(e) Dostál, L.; Císa ová, I.;Jambor, R.; R i ka, A.; Jirásko, R.; Hole ek, J. Organometallics2006,25,4366.(f)Koller, J.; Bergman, G. Organometallics2010,29,3350.
    [4](a) Parshall, G. Acc. Chem. Res.1970,3,139.(b) Dehand, J.; Preffer, M. Coord.Chem. Rev.1976,18,327.(c) Bruce, M. Angew. Chem. Int. Ed.1977,89,75.(d)Omae, I. Chem. Rev.1979,79,287.(e) Omae, I. Coord. Chem. Rev.1986,86,451.(f) Shilov, A.; Shul’pin, G. Chem. Rev.1997,97,2897.(g) Albrecht, M.; Koten, G.Angew. Chem. Int. Ed.2001,40,3750.
    [5] Beley, M.; Collin, J.; Sauvage, J. Inorg. Chem.1993,32,4539.
    [6](a) Cámpora, J.; Palma, P.; del Río, D.; Conejo, M. M.; Alvarez, E. Organometallics2004,23,5653.(b) Zhang, J.; Gao, W.; Lang, X.; Wu, Q.; Zhang, L.; Mu, Y. DaltonTrans.,2012,41,9639.
    [7](a) Takenaka, K.; Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc.2005,127,12273.(b) Hossain, M.; Lucarini, S.; Powell, D.; Bowman-James, K. Inorg. Chem.2004,43,7275.(c) Kjellgren, J.; Sundén, H.; Szabó, K. J. Am. Chem. Soc.2005,127,1787.
    [8](a) Hoogervorst, W.; Koster, A.; Lutz, M. Organometallics2004,23,1161.(b)Hoogervorst, W.; Elsevier, C.; Lutz, M.; Spek, A. Organometallics2001,20,4437.
    [9](a) Hoogervorst, W.; Koster, A.; Lutz, M.; Spek, A.; Elsevier, C. Organometallics2004,23,4550.(b) Oakley, S.; Coogan, M.; Arthur, R. Organometallics2007,26,2285.
    [10]Liu, Z.; Gao, W.; Zhang, J.; Cui, D.; Wu, Q.; Mu, Y. Organometallics2010,29,5783.
    [11]Liu, Z.; Gao, W.; Liu, X.; Luo, X.; Cui, D.; Mu, Y. Organometallics2011,30,752.
    [12](a) Hogerheide, M.; Grove, D.; Boersma, J.; Jastrzebski, J.; Kooijman, H.; Spek, A.;Koten, G. Chem.-Eur. J.1995,343.(b) Gao, W.; Cui, D. J. Am. Chem. Soc.2008,130,4984.(c) Lv, K.; Cui, D. Organometallics,2008,27,5438.(d) Lv, K.; Cui, D.Organometallics,2010,29,2987.
    [13](a) Yang, M.-J.; Liu, Y.-J.; Gong, J.-F.; Song, M.-P. Organometallics,2011,30,3793.(b) Hao, X.-Q.; Wang, Y.-N.; Liu, J.-R.; Wang, K.-L.; Gong, J.-F.; Song, M.-P.J. Organomet. Chem.,2010,695,82.(c) Niu, J.-L.; Hao, X.-Q.; Gong, J.-F.; Song,M.-P. Dalton Trans.,2011,40,5135.
    [14](a) Poverenov, E.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Ben-David, Y.;Milstein, D. Organometallics.2005,24,1082.(b) Poverenov, E.; Gandelman, M.;Shimon, L. J. W.; Rozenberg, H.; Ben-David, Y.; Milstein, D. Chem.Eur. J.2004,14,4673.(c) Gandelman, M.; Vigalok, A.; Shimon, L. J. W.; Milstein, D.Organometallics.1997,16,3981.(d) Gandelman, M.; Konstantinovski, L.;Rozenberg, H.; Milstein. D. Chem. Eur. J.2003,9,2595.
    [15](a) Wilson, D. Makromol. Chem. Symp.1993,66,273.(b) Lauretti, E.; Miani, B.;Misttrali, F. Rubber World1994,210,34.
    [16]Zhao, J.; Ghebremeskel, G. N. Rubber Chem. Technol.2001,74,409.
    [17](a) Dolgoplosk, B. Polym. Sci. USSR1971,13,367.(b) Maréchal, J.; Dawans, F.;Teyssié, P. J. Polym. Sci, A-1,1970,1993.(c) Dawans, F.; Duran, J., Teyssié, P. J.Polym. Sci. Part: B1972,10,493.
    [18](a) Shen, Z.; Ouyang, J.; Wang, F.; Hu, Z.; Yu, F.; Qian, B. J. Polym. Sci., PolymChem. Ed.1980,18,3345.(b) Mazzei, A.; Makromol, Chem., Suppl.1981,4,61.(c) Wilson, D.; Jenkins, D. Polym. Bull.1992,27,407.
    [19](a) Dong, W.; Masuda, T. J. Polym. Sci. Part A: Polym Chem.2002,40,1838.(b)Dong, W.; Endo, K.; Masuda, T. Macromol. Chem. Phys.2003,204,104.(c) Dong,W.; Masuda, T. Polymer2003,44,1561.(d) Gromada, J.; Mortreux, A.;Nowogrocki, G.; Leising, F.; Mathivet, T.; Carpentier, J. Eur. J. Inorg. Chem.2004,3247.(e) Friebe, L.; Nuyken, O.; Windisch, H.; Obrecht, W. Macromol Chem Phy.2002,203,1055.(f) Kobayashi, E.; Hayashi, N.; Aoshima, S.; Furukawa, J. J.Polym. Sci. Polym. Chem.1998,36,1707.
    [20]Selected review, see:(a) Shen, Z. Inorg Chim Acta1987,140,7.(b) Shen, Z.;Ouyang, J. Handbook on the physics and Chemistry of Rare Earth (Eds.;Gschneidner, K.; Fleming, Jr. L.), Elsevier, Dordrecht,1987, Chap.61.(c)Principle of Coordination Polymerisation, Ed. Kuran, W. John Wiley&Sons Ltd.2001.(d) Friebe, L.; Nuyken, O.; Obrecht, W. Adv. Polym. Sci.2006,204,1.(b)Fischbach, A.; Anwander, R. Adv. Polym. Sci.2006,204,155. and referencestherein.
    [21](a) Evans, W.; Ulibarri, T.; Ziller, W. J. Am. Chem. Soc.1990,112,2314.(b)Fischbach, A.; Perdih, F.; Sirsch, P.; Scherer, W.; Anwander, R. Organometallics2002,21,4569.(c) Dietrich, H.; Zapilko, C.; Herdtweck, E.; Anwander, R.Organometallics2005,24,5767.(d) Evans, W.; Champagne, T.; Ziller, J. Chem.Commun.2005,5925.(e) Evans, W.; Champagne, T.; Ziller, J. Organometallics2005,24,4882.(f) Evans, W.; Champagne, T.; Giarikos, D. Ziller, J.Organometallics2005,24,570.
    [22]Kaita, S.; Hou, Z.; Wakatsuki, Y. Macromolecules1999,32,9078.
    [23](a) Barbotin, F.; Monteil, V.; Llauro, M.; Boisson, C.; Spitz, R. Macromolecules2000,33,8521.(b) Boisson, C.; Monteil, V.; Ribour, D.; Spitz, R.; Barbotin, F.Macromol. Chem. Phys.2003,204,1747.(c) Kaita, S.; Hou, Z.; Nishiura, M.;Doi, Y.; Kurazumi, J.; Horiuchi, A. C.;Wakatsuki, Y. Macromol. Rapid Commun.2003,24,179.(d) Kaita, S.; Doi, Y.; Kaneko, K.; Horiuchi, A. C.; Wakatsuki, Y.Macromolecules2004,37,5860.(e) Kaita, S.; Yamanaka, M.; Horiuchi, A. C.;Wakatsuki, Y. Macromolecules2006,39,1359.(f) Kaita, S.; Hou, Z.; Wakatsuki, Y.Macromolecules2001,34,1539.
    [24](a) Fischbach, A.; Meermann, C.; Eickerling, G.; Scherer, W.; Anwander, R.Macromolecules2006,39,6811.(b) Meermann, C.; T rnroos, K.; Nerdal, W.;
    Anwander, R. Angew. Chem. Int. Ed.2007,46,6508.(c) Fischbach, A.; Perdih, F.;
    Herdtweck, E.; Anwander, R. Organometallics2006,25,1626.(d) Fischbach, A.;
    Klimpel, M.; Widenmeyer, M.; Herdtweck, E.; Scherer, W.; Anwander, R. Angew.
    Chem. Int. Ed.2004,43,2234.
    [1] Moreno, I.; SanMartin, R.; Ines,B.; Herrero, M. T.; Domínguez, E. Curr. Org. Chem.2009,13,878.
    [2] Y.-L. Lien, Y.-C. Chang, N.-T. Chuang, A. Datta, S.-J. Chen, C.-H. Hu, W.-Y.Huang, C.-H. Lin, J.-H. Huang, Inorg Chem2009,49,136.
    [3] M. Gagliardo, N. Selander, N. C. Mehendale, G. van Koten, R. J. M. Klein Gebbink,K. J. Szabó, Chem Eur J2008,14,4800.
    [4] A. Zografidis, K. Polborn, W. Beck, B. A. Markiesand G.van Koten, Z. Naturforsch.,B: Chem. Sci.,1994,49,1494.
    [5] N. C. Mehendale, J. R. A. Sietsma, K. P. deJong, C. A. van Walree, R. J. M. KleinGebbinkand G.van Koten, Adv. Synth. Catal.,2007,349,2619.
    [6] Rosa, G. R.; Ebeling, G; Du Pont, J.: Monteiro, A. L. synthesis,2003,2894.
    [7] Jun-Fang Gong, Yan-Hui Zhang, Mao-ping Song, Chen Xu. Organometallics,2007,25,6487.
    [8] Ebeling, G; Meneghetti, M. R.: Rominger, F., Organometallics,2002,21,3221.
    [9] Ben-shang Zhang, Chao Wang, Jun-Fang Gong., J. Organomet.Chem.,2009,694,2555.
    [10]曹义春.非对称NCN钳形钯化合物的合成及其催化的Sonogashira偶联反应.
    [硕士论文].郑州:郑州大学,2011.
    [11]Shaojin Gu, Wanzhi Chen. Organometallies.,2009,28,909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700