用户名: 密码: 验证码:
基于表面等离子体共振效应的新型MEMS红外辐射源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外气体传感器针对气体的特征吸收光谱进行种类探测和浓度测量,具有优良的选择性,灵敏度和稳定性。为了研制微型化的MEMS红外气体传感器,对系统中的关键部件,即红外辐射源的研究引起了人们的关注。1998年人们发现二维金属亚波长圆孔(孔直径不超过入射光波长的一半)阵列(Two-Dimensional Metallic Subwavelength Hole Arrays)对特定波长光的增强与窄带透射[Extraordinary Optical Transmission (EOT)]特性的现象,为研制具有辐射增强和波长选择作用的基于表面等离子体共振效应MEMS红外辐射光源提供了一个极佳的途径。
     本文研究了一种新型的基于表面等离子体共振效应的MEMS红外辐射源,主要的研究内容和成果如下:
     1.系统研究了KOH/IPA(异丙醇)混合溶液的饱和度和温度对<100>体腐蚀特性的影响。研究结果发现,在IPA100%饱和度的情况下,削角比达到了1.1,腐蚀角在23度左右,腐蚀晶面是<411>。随着IPA浓度的降低,削角比逐渐增大,6.25%时的削角比在2.8左右,腐蚀角在25度左右,基本与无IPA的KOH溶液<100>体腐蚀相同。同时,在温度的影响方面,,实验发现,80摄氏度时,削角比达到了2.78,腐蚀晶面是<411>,与无IPA时的腐蚀结果一致。随着温度的逐渐降低,削角比也逐渐减小,到30摄氏度时,削角比为1.05。该工艺有利于提高MEMS红外辐射源成品结构和设计要求的一致性和芯片的合格率.远远优于通常的无IPA的腐蚀情况。
     2.设计制作了一种新型的基于表面等离子体共振效应的MEMS红外辐射源。设计并制作的光源结构为Si衬底-SiO2(650nm)-Si3N4(200nm)-Pt(100nm),并在表面刻蚀大约6-8μm深的有四种不同排列周期的圆孔,其中Si02和Si3N4为隔离层,防止光源热量的散失,Pt为发热材料。采用傅里叶变换红外光谱仪器测量了不加电压时辐射源的透射谱,研究发现该结构在中红外波段产生窄带增强透射,与实验设计结果相符。采用热像仪和光谱辐射计对MEMS红外辐射源的通电辐射特性进行了表征,结果未能达到预期的增强与窄带辐射特性,分析原因可能是器件区域支撑薄膜未释放到设计值,即10微米左右,使得热量散布到器件外的衬底区域,掩盖了表面等离子体共振效应的MEMS红外辐射源的窄带增强特性。
     3.探讨了不同厚度SU-8膜对金属/电介质/金属(M/D/M)二维金属亚波长孔阵列结构在中远红外(2~14微米)波段透射特性的影响。采用傅里叶变换红外光谱仪器测试了该二维金属亚波长孔阵列结构的透射特性。同时应用FDTD软件R-soft,对M/D/M结构的中远红外波段透射特性进行了模拟,被模拟的结构中的电介质包括SiO2、Si3N4、SiOxNy、SU-8等。实验结果表明,SU-8厚度在小于1微米时,透射强度远大于厚度1微米以上的结构,且有透射强度最大值出现(SU-8厚度为360纳米),同时,随着SU-8厚度的增加,透射谱峰值呈现规律性红移,与已经有的单层金属以及三层结构的研究结果相比,本结构的透射峰更窄,透射峰强度更大。研究结果同时表明采用FDTD数值模拟软件R-soft的结果与实验相符。
MEMS infrared gas sensor has excellent selectivity, sensitivity and stability owing to using spectral characteristics of gas as measurement. Thereinto, the research on MEMS infrared light source, which is the key components of it has been concerned in recent years. With the development of nanometer plasmonic crystals technology, it was noted that using the characteristics of two-dimensional metallic subwavelength (hole diameter less than half of the wavelength of incident light) round hole arrays to select a specific wavelength of light and enhance extraordinary optical transmission (EOT), it is possible to provide an effective means of fabricating MEMS infrared radiation light source having a very good selection and enhancement in a specific range of infrared light.
     The work of the thesis included five facts shown below:
     1. The relationship of the<100> Si bulk etching characteristic with the temperature and concentration of KOH/IPA mixed solution. It is found that, with higher concentration of IPA and lower temperature, the cutting ratio will be smaller. With IPA 100% concentration, at 30℃, the best cutting ration 1.05 is found.
     2. A novel SPR-MEMS infrared light source have been designed and fabricated based on the research on infrared radiation characteristics of the SPR device. Four different light source structure have been designed, the infrared light sources are structured by Si—SiO2(650nm)—Si3N4(200nm)—Pt(200nm) then patterned with a periodic array of perforations (hole depth=8μm, the hole shape is circular). The SiO2 and Si3N4-are insulation layers, the Pt is filament material. It is found that the peak wavelength was proportional to the lattice constant. For emitters with same lattice constant, the larger the ratio, the stronger the reflection. For emitters with same ratio, the smaller the diameter, the stronger the reflection. The emitters with hexagonal array among three different symmetries of hole array, has the best reflection spectrum. The characteristic testing of the source is completed with thermograph and spectrograph. All sources fabricated produce a wide rang of IR emitting over the 2-14um wavelength region, where many gases have their infrared absorption. The temperature of the membrane could reach more than 850℃, when the electronic current is about 28mA. Radiation peak is found on the spectrum, but not at the calculated wavelength, because of the thick rudimental Si substrate.
     3. The relationship between the transmission spectrum of the emitter and the thickness of SU-8 layer of metal/dielectric/metal(M/D/M) structure in mid-infrared waveband(2-14 micron) has been studied. The emitter is structured by Au/SU-8/Au, which the thickness of Au layer is 20nm, and the SU-8 layer is between 0.2 to 1.2 micron. The transmission spectrum has been tested out with Varian 4100 FT-IR. The experimental data has been compared and analyzed with simulation results from finite-difference time-domain(FDTD) calculation. It is found out that the structure with SU-8 layer thinner than 1 micron has much larger transmission peak strength than the ones with thicker SU-8 layer, with the largest transmission peak strength found when the thickness of SU-8 layer is 360nm., and the red-shift of the wavelength of the transmission peak is also observed.
引文
[1]. J. Frank, H. Meixner, Sensor system for indoor air monitoring using semiconducting metal oxides and IR-absorption. Sensor and Actuators B.2001,78:298~302.
    [2].栾桂东,张金铎,金欢阳.传感器及其应用,西安电子科技大学出版社.2002
    [3]. J. Melendez, A. J de Castro, F. Lopez, J. Meneses. Spectrally selective gas cell for electrooptical infrared compact multigas sensor. Sensor and Actuators A.1995,47:417~421.
    [4]. Dirk Rossberg, Optical properties of the integrated infrared sensor. Sensor and Actuators A. 1996,54:793~797.
    [5].R.G.J.米勒,B.C.斯特斯,红外光谱学的实验方法[M].北京:机械工业出版社.1985,1-129.
    [6].张永怀,白鹏,刘君华.红外气体分析器[J].分析仪器.2003,3:36-40
    [7]. H.Edner, J. Sandsten, Y. Saito, J,Smith, et al. Novel Remote Gas Nonitoring and Imaging in the IR Spectral Region[J]. ClEO,Pacific Rim.1999,577-578.
    [8]. Sh.D. Kitaj, A.P.Naumov, N.N.Oxbarina, A.V. Troitskij. Remote sensing of the minor gas constituents of the lower and middle atmosphere[P]. MSMW 98 symposium Proceeding. Kharkov, Ukraine, September.15-17,1998.506-508.
    [9]. E.K. Tirtel, R.Claps, M. Erdelyi, D. Leleux, et al. Environnental and chemical sensing applications of diode and quantum cascade laser based gas sensors[R]. CLEO.2001.522-523.
    [10].H.Alause, J.P.Malzac, F.Grasdepor, et al. Micromachined optical tunable filter for long term stability gas sensors[J]. IEE Pro-Optoelectron,1997,144(5):350-354.
    [11].Seong-Ho Kong, Jose Higino Correia, Ger de Graaf, Marian Bartek, et al. Integrated Silicon Microspectrometers[J]. IEEE Instrumentation & Measurement Magazine.2001,9:34-38.
    [12].Paul M. Pellegrino and Ronald G. Polcawich. Advancement of a MEMS Photoacoustic Chemical Sensor[J]. Proc. Of SPIE.2003,5085:52-63.
    [13].P.W. Nebiker, R.E. Pleisch. Photoacoustic gas detection for fire warning[J]. Fire Safety Jouranl.2001,36:173-180.
    [14]. A.M. Ferber and P. Ohlckers. A miniature silicon photoacoustic detector for gas monitoring applications [A]. In):the Inetc 2001 International Conference on Sensors & Transducers. Birmingham. UK.2001.
    [15]. Samara L. Friebaugh, Klavs F. Jensen and Martin A. Schmidt. Miniaturization and Integration of Photoacoustic detection with a Microfabricated ChemicalReactor Sysem[J]. Journal of Microelectro mechanical systems.2001,10(2):232-237.
    [16].Hennann J, Alause H, Mdzac J. et al.Micro Machine Optical Tunable Filter for Domestic Gas Sensor[J]. Sensors and Actuators.1997,B43:18-23.
    [17].Hara H, Kishi N, Iwaoka,et al. Silicon Bolometer and Micro Variable Infrared Filter for CO2 measurement[J]. Optical MEMS.2000 IEEE/LEOS international Conference on 2000. 139-140.
    [18]. Yamashita k, Murata A, Okuyama M. Miniaturezed INfrared Sensor using Silicon Diaphragm Based on Golay Cell. Sensor and Actuators A.1998,66:29-32.
    [19].Nicholas Moelders, Mark P. Mcneal, Mattin U. Pralle, et al. Development of optical MEMS carbon dioxide sensors[R]. USA; Ion Optics Inc.2000.
    [20].Fairley P. D, Butt HN. A Novel Gas Concentration Monitor Usiing a Solid state Modulator[J]. Sensors and Actuators B.2001,75:192-196.
    [21].Drik Rossberg. Optical prosperities of the integration infrared sensor[J]. Sensors and Actuators A.1996,54:793-797.
    [22].D. Rossberg. Silicon micromachined infrared sensor with tunable wavelength selectivity for application in infrared spectroscopy[J]. Sensors and Actuators A.1995,46-47:413-416.
    [23]. J. Schieferdecker, R. Quad, E. Holzenkampfer, et al. Infrared thermopile sensors with high sensitivity and very low temperature coefficient[J]. Sensors and Actuators A.1995, 46-47:422-427.
    [24]. willing B, Kohli M, Muralt P.Thin Film Pymelectric Array as a Dtedctor for an Infrared Gas Spectrometer[J]. Infrared Pysics & Technology.1998,39:443-448. H. A. Bethe, Theory of Diffraction by Small Holes [J]. Phys. Rev.1944,66,163-182.
    [25]. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature.1998,391:667-669.
    [26].Daniel E. Grupp, Henri J. Lezec, Tineke Thio, Thomas W. Ebbesen. Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture. [J]. Adv. Mater.1999,11 (10):860-862.
    [27]. Yong-Hong Ye, Jia-Yu Zhang. Enhanced light transmission through cascaded metal films perforated with periodic hole arrays [J]. Opt Lett.2005,30 (12):1521-1523.
    [28]. W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics [J]. Nature 2003,424: 824-830.
    [29]. Gongli Xiao, Xiang Yao, Xinming Ji, Jia Zhou, Zongming Bao,Yiping Huang. Transmission enhancement properties of double-layered metallic hole arrays[J], Chinese Optics Letters,2008, Vol 6 No10, PP.791-793
    [30]. Gongli Xiao, Xiang Yao, Xinming Ji, Jia Zhou, Zongming Bao,Yiping Huang. Effect of the ratio of hole radius to lattice spacing on transmission characteristics for metal/dielectric photonic crystal [C]. Beijing 2008 9th international conference on Solid-State and Integrated Circuit Technology, IEEE press Vol.Ⅲ.PP. 1025-1028.
    [31]. Z. H. Tang, R. W. Peng, Mu Wang et al. Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays [J]. Phys. Rev. B.2007,76:195405-8.
    [32]. Ming-Wei Tsai, Chia-Yi Chen, Yu-Wei Jiang, and Si-Chen Lee et al. Coupling between surface plasmons via thermal emission of a dielectric layer sandwiched between two metal periodic layers [J]. Appl. Phys. Lett. 2007,91,213104.
    [33]. Yi-Han Ye, and Si-Chen Lee et al. Coupling of surface plasmons between two silver films in a Ag/SiO2/Ag plasmonic thermal emitter with grating structure [J]. Appl. Phys. Lett.2008,93,263106.
    [34]. Chia-Yi Chen, Ming-Wei Tsai, and Si-Chen Lee et al.Coupling of surface plasmons between two silver films in a plasmonic thermal emitter [J]. Appl. Phys. Lett.2007,91,243111.
    [35]. Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Remotely coupled surface plasmons in a metal/insulator/Si structure perforated with periodic square hole arrays [J]. Appl. Phys. Lett.2006,89, 033120.
    [36].Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter[J]. Appl. Phys. Lett 2006,89,173128.
    [37]. D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, and T. Thio. Crucial role of metal surface in enhanced transmission through subwavelength apertures [J]. Appl. Phys. Lett.2000,77(11):1569-1571. St'ephane Collin, Fabrice Pardo and Jean-Luc Pelouard etc. Waveguiding in nanoscale metallic apertures [J].Opt. Express.2007,15, (7):4310-4320
    [38]纪新明,吴飞蝶,王建业,周嘉,谢海芬,黄宜平.一种可直接脉冲调制的MEMS红外激发源[J].光学精密工程.2005,13(2)144-150。
    [39]Xinming Ji, Feidie Wu, Haifen Xie,Zhou Jia, Zongming Bao, Yiping Huang. A MEMS Mid-infrared Thermal source for NDIR gas analyzers[P].2004 7th international conference on Solid-State and Integrated Circuit Technology,IEE press (Best student paper award) Vol.Ⅲ.PP.1719-1722
    [40]Gongli Xiao, Xiang Yao, Xinming Ji, Jia Zhou, Zongming Bao,Yiping Huang. Transmission enhancement properties of double-layered metallic hole arrays[J], Chinese Optics Letters,2008, Vol 6 No10, PP.791-793.
    [41]Gongli Xiao, Xiang Yao, Xinming Ji, Jia Zhou, Zongming Bao,Yiping Huang. Effect of the ratio of hole radius to lattice spacing on transmission characteristics for metal/dielectric photonic crystal [C]. Beijing 2008 9th international conference on Solid-State and Integrated Circuit Technology, IEEE press Vol.Ⅲ.PP. 1025-1028.
    [42]肖功利,姚翔,纪新明,周嘉,包宗明,黄宜平.二维金属亚波长孔阵列的强透射特性研究进展[J].半导体光电.2009,30(2)PP.161-167.
    [43]Gongli Xiao, Yiping Huang, Zongming Bao. Effect of refractive index of dielectric on transmission properties for metal/dielectric/metal photonic crystal. [C]. Changsha 2009 the IEEE 8th International Conference on ASIC (IEEE ASICON 2009), IEEE press Vol.Ⅱ. PP.1043-1046.
    [44]施敏 著,赵鹤鸣 钱敏 黄秋萍 译,《半导体器件物理与工艺》
    [45]万珊珊《器件湿法各向异性腐蚀加工技术研究》

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700