用户名: 密码: 验证码:
叶酸受体靶向无功能垂体腺瘤的诊治及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂体腺瘤(pituitary adenoma)是发生在腺垂体的良性肿瘤,约占颅内肿瘤的20%,且近年来有逐渐增加的趋势。系统放射学检查和尸检结果显示,垂体腺瘤占普通人群的17-25%左右。无功能垂体腺瘤(nonfunctional pituitary adenoma, NFPA)是垂体腺瘤中最常见的类型,约占垂体腺瘤总数的30%。目前针对NFPA首选的治疗方式是手术切除,但约有40%的NFPA表现为恶性肿瘤的侵袭生长习性:向蝶鞍上、前生长,侵犯下丘脑、第三脑室及/或视神经;向两侧生长,侵犯双侧海绵窦、包绕颈内动脉等重要结构;向下、后生长,破坏鞍底甚至斜坡骨质。此时,无论经口鼻蝶窦手术,抑或经额下、翼点入路手术,均难以做到全切肿瘤,且手术后约有20%的病例发生肿瘤复发。而常用的药物(例如多巴胺受体激动剂及生长抑素类似物)均对NFPA疗效甚微。放疗只能控制部分垂体肿瘤的生长,而且鞍区放疗容易导致正常垂体、下丘脑及视神经等重要结构的损伤,引发垂体、下丘脑功能低下和视力受损等并发症,严重时,患者因严重放疗并发症而死亡。因此,临床上亟待寻找针对NFPA,特别是侵袭性NFPA的特异性的分子标志物和临床靶向诊疗的靶点。
     新近,针对叶酸受体(Folate Receptor,FR或folate-binding proteins, FBP)的研究给NFPA的靶向诊断及药物治疗带来了新希望。FR是一种能与叶酸特异性结合的N端糖基化蛋白,包括四种异构体:α、β、γ/γ’和δ。其中,FR α在正常组织中不表达或极低表达,而在卵巢癌、肾细胞癌和非小细胞肺癌等上皮来源的恶性肿瘤中特异性高表达,并通过介导细胞对叶酸的摄取而促进肿瘤细胞生长及分裂增殖。鉴于FR α这种表达模式,越来越多的基于FR α的分子靶向诊断和治疗药物被开发出来,已有大量实验研究据此展开,针对卵巢癌、非小细胞肺癌等恶性肿瘤的FR α靶向诊断制剂及药物不断被开发,EC145等FR α靶向药物已被用于卵巢癌和非小细胞肺癌的II期临床试验。
     在垂体腺瘤方面,Oyesiku等首次发现FR α在NFPA中特异性高表达,而在其它亚型垂体腺瘤和正常腺垂体中不表达或极低表达。但是,FR α与NFPA肿瘤临床特征之间的关系、FR α在NFPA发生和侵袭性发展的过程中扮演的作用、FRα能否作为NFPA靶向诊治的分子靶点等间题尚无报道。本实验研究首先在76例人垂体腺瘤组织标本和7例正常腺垂体组织中,利用免疫组织化学、免疫荧光和qRT-PCR证实了:FR α仅在NFPA中特异性高表达,而在其他类型肿瘤和正常腺垂体中不表达;并在国际上首次发现FR α的表达水平与NFPA的肿瘤大小、侵袭性及Ki-67存在正相关关系。进一步,我们以人垂体腺瘤原代细胞为平台,探讨了叶酸靶向阿霉素脂质体(F-L-DOX)对垂体腺瘤的疗效及相关分子生物学机制,首次证实了FR α的这种表达特异性为NFPA靶向诊断和治疗提供了良好的分子靶点。最后,因为目前尚无荷人NFPA肿瘤裸鼠模型,我们利用荷人宫颈癌的裸鼠为动物模型,初步评价了叶酸靶向阿霉素脂质体(F-L-DOX)对人宫颈癌的疗效及相关分子生物学机制,在动物体内水平,证实了F-L-DOX可以特异性地通过肿瘤细胞表面的FR α对肿瘤做到“增效减负”的治疗效果。因此,FR α在NFPA中的表达模式不仅可以作为NFPA诊断及判断侵袭性的分子标志物之一,而且可以作为肿瘤的临床靶向诊疗靶点之一。
     第一部分叶酸受体在垂体腺瘤中的表达及其与肿瘤临床特征之间的关系
     目的:检测叶酸受体α(FR α)在各型垂体腺瘤和正常腺垂体中的表达情况;探讨叶酸受体表达水平与无功能垂体腺瘤(NFPA)各临床特征之间的相关性,寻找对NFPA诊断及其侵袭性判断具有重要意义的分子标志物。
     方法:收集散发性垂体腺瘤手术标本76例和正常腺垂体组织7例,利用免疫组织化学、免疫荧光共聚焦、实时定量逆转录PCR(quantitative RT-PCR)等方法检测FR α在各组织标本中的表达情况。探讨FR α表达水平与NFPA各临床特征(病人性别、年龄、肿瘤大小、肿瘤侵袭性和KI-67等)之间的相关性。
     结果:FR α仅在NFPA中特异性高表达,在其他类型的垂体腺瘤和正常腺垂体中不表达,具有显著性差异(P=0.001<0.05);FR α的表达水平与NFPA侵袭性、Ki-67、肿瘤大小存在显著相关性(P<0.05),与年龄、性别等因素没有显著相关性(P>0.05)。
     结论: FR α可能在NFPA的发生和侵袭性发展中起到重要的作用;同时,FR α可作为NFPA特异性的诊断和判断侵袭性的指标,并为肿瘤的靶向诊治提供了理论基础。
     第二部分叶酸受体靶向阿霉素脂质体对人原代垂体腺瘤细胞的效用及机制
     目的:常规手术、化疗及放疗多难以治愈侵袭性无功能垂体腺瘤,新的替代疗法亟待研发。基于FR α的特异性表达模式,临床已尝试将FR α靶向的显影剂和治疗药物用于非小细胞肺癌、肾细胞癌和卵巢癌等FR α过表达的肿瘤,在药物的临床前研究和临床试验研究中均取得良好效果。本实验首次研究了一种新型的脂溶性阿霉素脂质体叶酸衍生物(F-L-DOX)对人原代无功能垂体腺瘤细胞的疗效及可能机制。
     方法:临床选取25例垂体腺瘤进行原代细胞培养,与叶酸靶向显影剂F-L-calcein、非叶酸靶向显影剂L-calcein、游离calcein及F-L-calcein加1mM游离叶酸共孵育,观察各类型肿瘤细胞摄取各型calcein的能力。利用梯度浓度的F-L-DOX. L-DOX. free DOX及F-L-DOX加1mM游离叶酸孵育细胞72h后,CCK-8法检测细胞活力,并依据细胞生长抑制曲线获得IC50值。收集IC50浓度各型阿霉素制剂处理的细胞样本行凋亡检测、TUNEL染色等,对细胞凋亡程度进行统计学分析。使用Caspase-Gl(?)试剂盒检测肿瘤细胞caspase-3/7,-8及-9的活性改变。Western blotting法检测凋亡相关蛋白Bax、Bcl-2及PARP的表达情况,并利用CytoSelect96-well invasion kit检测各型药物对肿瘤侵袭力的影响,Human MMP-2and MMP-9ELISA kits检测药物影响细胞侵袭力的可能机制。
     结果:在高表达FR α的NFPA中,较L-calcein、游离calcein相比,叶酸靶向显影剂F-L-calcein可以通过FR α更好地被NFPA细胞内吞,而且这种靶向内吞作用能被1mM游离叶酸阻断。在高表达FR α的NFPA中,F-L-DOX、L-DOX、free DOX和F-L-DOX+1mM FA的IC50分别为5.3μM,40.2μM,0.8μM和20.3μM。相比非靶向的L-DOX, F-L-DOX通过激活caspase-8的和caspase-9和caspase-3/7,更有效地抑制NFPA肿瘤的生长和促进细胞的凋亡。此外,F-L-DOX通过抑制MMP-2和MMP-9分泌,更有效地拮抗肿瘤的侵袭能力。相反,当添加1mM游离叶酸,F-L-DOX的对NFPA细胞的促凋亡和抗侵袭作用均显著减弱。
     结论:叶酸靶向阿霉素脂质体(F-L-DOX)能更好抑制人原代NFPA细胞活力,并通过调控死亡受体及线粒体凋亡信号通路促进肿瘤细胞凋亡,同时可以通过抑制MMP-2和MMP-9的分泌拮抗肿瘤的侵袭能力。我们的研究结果表明,FR α在此过程中发挥了关键作用,这可能是治疗NFPAs的一个良好的替代治疗策略。
     第三部分叶酸靶向阿霉素脂质体对裸鼠移植性人宫颈癌疗效研究
     目的:目前尚不能建立裸鼠移植性人无功能垂体腺瘤模型,我们在裸鼠移植性人宫颈癌的动物平台上,探讨叶酸靶向阿霉素脂质体(F-L-DOX)和阿霉素脂质体(L-DOX)对FR α过表达肿瘤---人宫颈癌的治疗作用。
     方法:建立荷人宫颈癌的裸鼠为动物模型,随机分为对照组(NS组)、游离DOX组、L-DOX组和F-L-DOX组,进行瘤旁注射给药,观察各组药物对肿瘤的生长抑制情况和动物本身一般状况。
     结果:叶酸靶向阿霉素脂质体组(F-L-DOX)对人宫颈癌的移植瘤有显著抑制作用,瘤重抑瘤率为72.33%,显著高于非靶向阿霉素脂质体组(53.40%)(P<0.05)、游离阿霉素组(42.72%)(P<0.001),叶酸靶向阿霉素脂质体组凋亡率(71.80%)均显著高于非靶向阿霉素脂质体组(51.40%)(P<0.05)、游离阿霉素组(42.30%)和空白组(P<0.001)o实验期间,DOX组和非靶向阿霉素脂质体组小鼠体重一直未见增加,而靶向叶酸阿霉素脂质体组小鼠体重平稳增加,且饮食、活动未见明显变化。结论:叶酸靶向阿霉素脂质体在治疗人宫颈癌的移植瘤过程中初步做到了“增效减负”,作为一种新型抗FR过表达肿瘤的靶向药物显示了良好的应用前景。
Pituitary adenomas (PAs) are the second most common intracranial neoplasms, accounting for approximately20%of primary brain tumors, with an increaing morbidity. Autopsy studies demonstrate a higher incidence of PAs at25%in population. PAs are associated with significant morbidity and mortality due to hormone hypersecretion and mass effects. Nonfunctional pituitary adenomas (NFPAs) account for approximately30%of PAs and are the most common type. Because of their hormonal inactivity, NFPAs are often difficult to diagnose until they are large enough to cause tumor mass effects, such as hypopituitarism, visual field defects, or headaches. The first-line treatment is surgery, but more than40%of NFPAs are locally invasive, and infiltrate the dura, bones, and sinuses. Consequently, total resection may not be possible which leads to a high recurrence rate with a poor clinical outcome. Although postoperative radiotherapy may be effective in preventing tumor regrowth, it is associated with severe complications and has been frequently withheld by some clinicians in the past decade. Furthermore, present chemotherapy for treating NFPAs is mainly based on dopamine agonists (DA) and somatostatin (SRIF) analogs. Unfortunately, these strategies all harbor clinical limitations. As a result, there is an urgent need to determine new diagnositic and therapeutic biomarkers and construct novel antitumor agents to combat these refractory NFPAs.
     Recent research into folate receptors (FRs) has opened up new perspectives on the targeted imaging, diagnosis and therapy of NFPAs. Membrane FRs, including FRa and FRβ,are glycosylphosphatidylinositol (GPI)-anchored glycoproteins that recognize and internalize folate via endocytosis. FRa expression is amplified in over90%of ovarian carcinomas and at varying frequencies in other epithelial cancers. Meanwhile, FRβ is expressed in a non-functional form in neutrophils, and in a functional form in activated macrophages and myeloid leukemias. In contrast, most normal tissues do not express either FR isoform. Folic acid (folate) is a high affinity ligand for the FRs and retains high FR affinity after derivatization via one of its carboxyl groups. Because of its small size and bioavailability, folate has become one of the most investigated targeting ligands for tumor-specific drug delivery. Since targeted delivery via selective cellular markers can potentially increase the efficacy and reduce the toxicity of therapeutic agents, a variety of molecules and drug carriers, including chemotherapeutic agents, imaging agents, oligonucleotides, proteins, haptens, gene transfer vectors, nanoparticles and liposomes, have been conjugated to folate and evaluated for FRα-targeted diagnosis and therapy. These FRα-targeted agents have shown promising efficacy in preclinical models and have significant potential for future clinical application in a wide range of cancers, such as ovarian carcinomas and non-small cell lung cancer.
     Previous studies have demonstrated that FRα was uniquely overexpressed in NFPAs but not in functional pituitary adenomas (FPAs) or normal pituitary glands. However, whether the expression of FRα in NFPAs was positively correlated with tumor invasiveness and proliferation, whether FRα plays a important role in the tumorigenesis and progression of NFPA and whether FRα could be used as the molecular target for targeted diagnosis and therapy are unclear. In this study, we evaluated differential expression of folate receptor alpha in pituitary adenomas and its relationship to tumor behavior of NFPA. Then we assessed the targeting ability and cytotoxic efficacy of a novel lipophilic folate derivative containing liposomes loaded with doxorubicin (F-L-DOX); We further evaluated the mechanisms involved in the anti-tumor effect of F-L-DOX on the treatment of NFPAs. At last, we studied the effect and involved mechanisms of F-L-DOX on human cervical cancer xenografts in nude mice.
     Section One Differential Expression of Folate Receptor Alpha in Pituitary Adenomas and Its Relationship to Tumor Behavior
     Objective:To identify a possible biomarker for the diagnosis of nonfunctional pituitary adenomas (NFPAs) that could also be used to assess tumor behavior.
     Methods:Sporadic pituitary tumor specimens (n=76) and normal pituitary glands (n=7) were examined. FRa protein and mRNA expression were quantified by immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction, respectively. We verified the differential expression of FRa in pituitary adenomas and evaluated the associations of FRa expression with Ki-67labeling index (LI) and clinicopathologic characteristics of NFPAs. Statistical significance was determined by using the Student t test or one-way analysis of variance.
     Results:FRa mRNA and protein was uniquely overexpressed in NFPAs but not in functional adenomas (adrenocorticotropic hormone, growth hormone, and prolactin) or normal adenohypophysial tissues (P<.001). The expression of FRa was positively correlated with tumor invasiveness, size and Ki-67LI in NFPAs.
     Conclusion:FRa may play an important role in the development and progression of NFPAs. Therefore, FRa may be useful as a molecular biomarker for the diagnosis of NFPAs and assessment of tumor invasiveness.
     Section two Effects of a novel lipophilic folate derivative containing liposomes loaded with doxorubicin on cell viability in nonfunctional pituitary adenomas
     Objective:To determine whether the novel lipophilic folate derivative containing liposomes loaded with doxorubicin (F-L-DOX) could be a useful therapy for nonfunctional pituitary adenomas(NFPAs).
     Methods:the targeting ability, cytotoxic effect and the anti-invasive ability of F-L-DOX which targeted the overexpressed FRa on the cell membrane of primary human NFPA cells were evaluated in25cases of pituitary adenomas.
     Results:FRa-targeted liposomes could effectively target the NFPA cells through the FRa and the endocytosis was blocked by1mM free folic acid. F-L-DOX more effectively inhibited tumor growth and promoted the apoptosis of NFPA cells through activating caspase-8, caspase-9and caspase-3/7, compared to non-targeted liposomal doxorubicin (L-DOX). Furthermore, F-L-DOX also exerted greater anti-invasive ability by suppressing the secretion of MMP-2and MMP-9from NFPA cells compared to L-DOX. In contrast, when1mM free folic acid was added, the pleotropic effects of F-L-DOX on NFPA cells were significantly blunted.
     Conclusion:Our findings suggest that FRa may play a critical role in mediating the antitumor effect of F-L-DOX which could be an excellent alternative therapeutic strategy to treat NFPAs.
     Section Three Effect of F-L-DOX on human cervical cancer xenografts in nude mice
     Objective:To study the effect of F-L-DOX on human cervical cancer xenografts in nude mice.
     Methods:Human cervical cancer cell line Hela was implanted into36nude mice. Different kinds of Doxorubicin formulations were injected around the tumor bearing nude mice divided into4groups. The tumor growth, morphological changes of tumor tissues, apoptosis rate of tumor cells were determined and compared.
     Results:The growth speed of tumor in the group of F-L-DOX significantaly slowed down than other groups. The rate of tumor restrain in tumor weight and tumor apoptosis of F-L-DOX group were72.33%and71.80%, which were remarkably higher than those of the DOX (53.40%,51.40%) and L-DOX group(42.72%,42.30%)(all P<0.05). The body weight of nude mouse in DOX group failed to increase, while that in F-L-DOX group increased steadly.
     Conclusion:F-L-DOX as a new FRa targeted anti-tumor drug may have a favorable clinical prospect.
引文
1. Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002;2:836-49.
    2. Ezzat S, Asa SL. Mechanisms of disease:the pathogenesis of pituitary tumors. Nat. Clin. Pract. Endocrinol. Metab.2006;2:220-30.
    3. Asa SL, Kovacs K. Clinically non-functioning human pituitary adenomas. Can J Neurol Sci.1992;19:228-35.
    4. Selman WR, Laws ER Jr, Scheithauer BW, Carpenter SM. The occurrence of dural invasion in pituitary adenomas. J Neurosurg 1986;64:402-07.
    5. Colao A, Di Somma C, Pivonello R, Faggiano A, Lombardi G, Savastano S. Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer 2008;15:905-15.
    6. Greenman Y. Dopaminergic treatment of nonfunctioning pituitary adenomas. Nat Clin Pract Endocrinol Metab 2007;3:554-5.
    7. Hansen LK, Molitch ME. Postoperative radiotherapy for clinically nonfunctioning pituitary adenomas. Endocrinologist.1998;8:71-8.
    8. Gittoes NJ. Radiotherapy for non-functioning pituitary tumours—when and under what circumstances? Pituitary 2003;6:103-8.
    9. Choi SW, Mason JB. Folate and carcinogenesis:an integrated scheme. J Nutr 2000;130:129-32.
    10. Elwood PC. Molecular cloning and characterization of the human folate-binding protein cDNA from placenta and malignant tissue culture (KB) cells. J Biol Chem 1989;264,:14893-901.
    10. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396-401.
    11. Ratnam M, Marquardt H, Duhring JL, Freisheim JH. Homologous membrane folate binding proteins in human placenta:cloning and sequence of a cDNA. Biochemistry 1989;28:8249-54.
    12. Kim SH, Jeong JH, Mok H, Lee SH, Kim SW, Park TG. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol Prog 2007;23:232-7.
    13. Leamon CP, Reddy JA, Vlahov IR, Vetzel M, Parker N, Nicoson JS. et al. Synthesis and biological evaluation of EC72:a new folate-targeted chemotherapeutic. Bioconjug Chem 2005;16:803-11.
    14. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995; 1233:134-44.
    15. Xiaobin Z, Hong L, Robert JL. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5(3):309-19.
    16. Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS, et al. Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab.2001;86(7):3097-107.
    17. Evans CO, Reddy P, Brat DJ, O'neill EB, Craige B, Stevens VL, et al. Differential expression of folate receptor in pituitary adenomas. Cancer Res.2003;63:4218-24.
    18. Melmed S. Pathogenesis of pituitary tumors.Nat Rev Endocrinol.2011 May;7(5):257-66.
    1 Freese A, During MJ, Davidson BL, et al. Transfection of human lactotroph adenoma cells with an adenovirus vector expressing tyrosine hydroxylase decreases prolactin release. J Clin Endocrinol Metab 1996; 81(6):2401-2404.
    2 Asa, SL, and Kovacs, K. Clinically non-functioning human pituitary adenomas. Can. J. Neurol. Sci.1992; 19:228-235
    3 Oyesiku NM,Evans CO,et al. Differential expression of folate receptor in pituitary adenomas. Cancer Res.2003;63:4218-4224.
    4 Hansen LK, Molitch ME. Postoperative radiotherapy for clinically nonfunctioning pituitary adenomas. Endocrinologist.1998;8(2):71-78.
    5 Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms:implications in targeted therapy. Adv Drug Deliv Rev 2004; 56:1067-84
    6 Wang H, Ross JF, Ratnam M. Structure and regulation of a polymorphic gene encoding folate receptor type gamma/gamma. Nucleic Acids Res 1998; 26:2132-42
    7 Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992; 52:3396-401
    8 Kane MA, Portillo RM, Elwood PC, et al. The influence of extracellular folate concentration on methotrexate uptake by human KB cells. Partial characterization of a membrane-associated methotrexate binding protein. J Biol Chem.1986 261:44-49.
    9 Oyesiku NM,Evans CO,et al. Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. The Journal of Clinical Endocrinology & Metabolism.2001;86(7):3097-3107.
    10 Yao C, Evans CO, Stevens VL,et al..Folate receptor alpha regulates cell proliferation in mouse gonadotroph alphaT3-l cells. Exp Cell Res.2009,315(18):3125-32.
    11 Vlahov IR, Santhapuram HK, Kleindl PJ, et al.Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1:EC145, a folic acid conjugate of desacetylvinblastine monohydrazide. Bioorg Med Chem Lett.2006,16(19):5093-6.
    12 Leamon CP, Reddy JA, Vlahov IR, et al.Comparative preclinical activity of the folate-targeted Vinca alkaloid conjugates EC140 and EC145. Int J Cancer.2007,121 (7):1585-92.
    13 Leamon CP, Reddy JA.Folate-targeted chemotherapy. Adv Drug Deliv Rev.2004, 56(8):1127-41.26.
    14 Choi H, Choi SR, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 2004; 11: 996-1004
    15 Mathias CJ, Lewis MR, Reichert DE, et al. Preparation of 66 Ga-and 68 Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 2003;30:725-31
    16 Mathias CJ, Wang S, Lee RJ, et al. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 1996; 37:1003-8
    17 Mathias CJ, Wang S, Waters DJ, et al. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 1998; 39:1579-85
    18 Trump DP, Mathias CJ, Yang Z, et al. Synthesis and evaluation of 99mTc(CO)(3)-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 2002; 29:569-73
    19 Reddy J A, Xu LC, Parker N, et al. Preclinical evaluation of 99m Tc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 2004; 45:857-66
    20 Ke CY, Mathias CJ, Yang ZF, et al.Synthesis and evaluation of folate-bis (thiosemicarbazone) and folate-CYCLAM conjugates for possible use as folate-receptor-targeted copper radiopharmaceuticals. J Labelled Compd Radiopharm 1999; 42:S821-3
    21 Konda SD, Wang S, Brechbiel M, et al. Biodistribution of a 153 Gd-folate dendrimer, generation=4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol 2002; 37:199-204
    22 Choi H, Choi SR, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 2004; 11: 996-1004
    23 Hartmann LC, Keeney GL, Lingle WL, et al. Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer.2007,121(5):938-42.
    24. Iwakiri S, Sonobe M, Nagai S, et al. Expression status of folate receptor alpha is significantly correlated with prognosis in non-small-cell lung cancers.Ann Surg Oncol. 2008,15(3):889-99.
    25 Allard JE, Risinger JI, Morrison C, et al. Overexpression of folate binding protein is associated with shortened progression-free survival in uterine adenocarcinomas. Gynecol Oncol.2007,107(1):52-7.
    26 Toffoli G, Cernigoi C, Russo A, et al. Overexpression of folate binding protein in ovarian cancers. Int J Cancer 1997; 74:193-8
    27 Linda E. Kelemen.The role of folate receptor a in cancer development, progression and treatment:Cause, consequence or innocent bystander? Int. J. Cancer 2006; 119:243-250.
    28 Miotti S, Canevari S, Menard S, et al. Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specifi city. Int J Cancer 1987; 39:297-303
    29 Kalofonos HP, Karamouzis MV,Epenetos AA. Radioimmunoscintigraphy in patients with ovarian cancer. Acta Oncol 2001; 40:549-57
    30 Elgqvist J, Andersson H, Back T, et al. Therapeutic efficacy and tumor dose estimations in radioimmunotherapy of intraperitoneally growing OVCAR-3cells in nude mice with 211 At-labeled monoclonal antibody MX35.J Nucl Med 2005; 46:1907-15
    31 Aronov O, Horowitz AT, Gabizon A,et al. Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies. Bioconjug Chem 2003; 14:563-74
    32 Liu J, Kolar C, Lawson TA, et al. Targeted drug delivery to chemoresistant cells:folic acid derivatization of FdUMP[10] enhances cytotoxicity toward 5-FU-resistant human colorectal tumor cells. J Org Chem 2001; 66:5655-63
    33 Majoros IJ, Myc A, Thomas T, et al. PAMAM dendrimer-based multifunctional conjugate for cancer therapy:synthesis, characterization, and functionality. Biomacromolecules 2006,7:572-9
    34 Ladino CA, Chari RV, Bourret LA, et al. Folate-maytansinoids:target-selective drugs of low molecular weight. Int J Cancer 1997; 73:859-64
    35 Reddy JA, Dorton R, Westrick E, et al. Preclinical evaluation of EC 145, a folate-vinca alkaloid conjugate. Cancer Res 2007; 67:4434-42
    36 Suzuki T, Hisakawa S, Itoh Y, et al. Design,synthesis, and biological activity of folalte receptor-targeted prodrug of thiolate histone deacetylase inhibitors. Bioorg Med Chem Lett 2007; 17:4208-12
    37 Lu Y, Low PS. Folate targeting of haptens to cancer cell surfaces mediated immunotherapy of syngenic murine tumors. Cancer Immunol Immunother 2002,51:153-162.
    38 Lu Y, Sega E, Low PS. Folate receptor-targeted immunotherapy:induction of humoral and cellular immunity against hapten-decorated cancer cells. Int J Cancer 2005,116:710-719.
    1. Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002;2:836-49.
    2. Ezzat S, Asa SL. Mechanisms of disease:the pathogenesis of pituitary tumors. Nat. Clin. Pract. Endocrinol. Metab.2006;2:220-30.
    3. Asa SL, Kovacs K. Clinically non-functioning human pituitary adenomas. Can J Neurol Sci.1992;19:228-35.
    4. Selman WR, Laws ER Jr, Scheithauer BW, Carpenter SM. The occurrence of dural invasion in pituitary adenomas. J Neurosurg 1986;64:402-07.
    5. Hansen LK, Molitch ME. Postoperative radiotherapy for clinically nonfunctioning pituitary adenomas. Endocrinologist.1998;8:71-8.
    6. Gittoes NJ. Radiotherapy for non-functioning pituitary tumours—when and under what circumstances? Pituitary 2003;6:103-8.
    7. Colao A, Di Somma C, Pivonello R, Faggiano A, Lombardi G, Savastano S. Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer 2008;15:905-15.
    8. Greenman Y. Dopaminergic treatment of nonfunctioning pituitary adenomas. Nat Clin Pract Endocrinol Metab 2007;3:554-5.
    9. Choi SW, Mason JB. Folate and carcinogenesis:an integrated scheme. J Nutr 2000;130:129-32.
    10. Elwood PC. Molecular cloning and characterization of the human folate-binding protein cDNA from placenta and malignant tissue culture (KB) cells. J Biol Chem 1989;264,:14893-901.
    10. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396-401.
    11. Ratnam M, Marquardt H, Duhring JL, Freisheim JH. Homologous membrane folate binding proteins in human placenta:cloning and sequence of a cDNA. Biochemistry 1989;28:8249-54.
    12. Kim SH, Jeong JH, Mok H, Lee SH, Kim SW, Park TG. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol Prog 2007;23:232-7.
    13. Leamon CP, Reddy JA, Vlahov IR, Vetzel M, Parker N, Nicoson JS. et al. Synthesis and biological evaluation of EC72:a new folate-targeted chemotherapeutic. Bioconjug Chem 2005;16:803-11.
    14. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995; 1233:134-44.
    15. Xiaobin Z, Hong L, Robert JL. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5(3):309-19.
    16. Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS, et al. Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab.2001;86(7):3097-107.
    17. Evans CO, Reddy P, Brat DJ, O'neill EB, Craige B, Stevens VL, et al. Differential expression of folate receptor in pituitary adenomas. Cancer Res.2003;63:4218-24.
    18 Liu X, Ma S, Yao Y, Li G, Feng M, Deng K, et al. Differential Expression of Folate Receptor Alpha in Pituitary Adenomas and its Relationship to Tumor Behavior Neurosurgery.2011 Nov 16. [Epub ahead of print Doi 10.1227/NEU.0b013e3182417e76]
    19. Xiang G, Wu J, Lu Y, Liu Z, Lee RJ. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. International Journal of Pharmaceutics 2008;356:29-36.
    20. Ma S, Liu X, Yao Y, Cai F, Dai C, Bo X, et al. Effect of temozolomide on cell viability in gonadotroph adenoma cell lines. Oncology Reports 2011;26:543-50.
    21. Balijepalli MK, Tandra S, Pichika MR. Antiproliferative activity and induction of apoptosis in estrogen receptor-positive and negative human breast carcinoma cell lines by Gmelina asiatica roots. Pharmacognosy Res.2010;2(2):113-9.
    22. Yi T, Marian TN, Prabakaran K, Francis M, Hillary M, Patricia R, et al. Extracellular Matrix Metalloproteinase Inducer Stimulates Tumor Angiogenesis by Elevating Vascular Endothelial Cell Growth Factor and Matrix Metalloproteinases. Cancer Res 2005;65:3193-99.
    23. Sun SY, Hail N Jr, Lotan R. Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst.2004;96(9):662-72.
    24. Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, et al. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood.2007;109(7):3069-75.
    25. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell.1993;74(4):609-19.
    26. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A. 2006;103(48):18314-9.
    27. Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, et al. Selective Delivery of CB300638, a Cyclopenta[g]quinazoline-based Thymidylate Synthase Inhibitor into Human Tumor Cell Lines Overexpressing the a-Isoform of the Folate Receptor.Caner Res 2003;63:3612-8.
    28. David DG, Davinder ST, Nadya W, Matthew G, Florence R, Florence R, et al. BGC 945, a Novel Tumor-Selective Thymidylate Synthase Inhibitor Targeted to a-Folate Receptor-Overexpressing Tumors. Cancer Res 2005;65:11721-8.
    29. Pillai RG, Forster M, Perumal M, Mitchell F, Leyton J, Aibgirhio FI, et al. Imaging Pharmacodynamics of the A-Folate Receptor-Targeted Thymidylate Synthase Inhibitor BGC 945. Caner Res 2008;68:3827-34.
    30. Yin XM, Oltvai ZN, Veis-Novack D, Linette GP, Korsmeyer SJ. Cold Spring Harb. Symp. Quant Biol 1994;59:387-93.
    31. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL and Korsmeyer SJ. Cell 1993;75:241-51.
    32. Ochs K, Kaina B. Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res 2000;60:5815-24.
    33. Alessandro R, Kohn EC. Signal transduction targets in invasion. Clin Exp Metastasis 2002;19:265-73.
    34. Adams LS, Phung S, Yee N, Seeram NP, Li L, Chen S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res.2010;70(9):3594-605.
    1. Xiaobin Z, Hong L, Robert JL. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5(3):309-19.
    2. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995; 1233:134-44.
    3. Kim SH, Jeong JH, Mok H, Lee SH, Kim SW, Park TG. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol Prog 2007;23:232-7.
    4. Leamon CP, Reddy JA, Vlahov IR, Vetzel M, Parker N, Nicoson JS. et al. Synthesis and biological evaluation of EC72:a new folate-targeted chemotherapeutic. Bioconjug Chem 2005;16:803-11.
    5. Banerjee, R. Liposomes:applications in medicine. J. Biomater.2001Appl.16,3-21.
    6. Mamot, C., Drummond, D.C., Hong, K., Kirpotin, D.B., Park, J.W., Liposome-based approaches to overcome anticancer drug resistance. Drug Resist.2003,6,271-279.
    7. Papahadjopoulos, D., Allen, T.M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S.K., Lee, K., Woodle, M.C., Lasic, D.D., Redemann, C., Martin, F.J. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A., 1991,88,11460-11464.
    8. Lee RJ,Low PS.Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem,1994,269(5):3198-3204.
    9. Lee RJ,Low PS.Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta,1995,1233(2):134-144.
    10. Goren D,Horowiz AT,Tzemach D,et al.Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump[J].Clin Cancer Res,2000,6(5):1949-1957.
    11. Ni S,Stephenson SM,Lee RJ.Folate receptor targeteddelivery of liposomal daunorubicin into tumor cells. Anticancer Res,2002,22(4):2131-2135.
    12. Allen, T.M., Hansen, C., Martin, F., Redemam, C., Yau-Young, A.,1991. Liposomes containing synthetic lipid derivatives of poly(ethylene) glycols show nprolonged circulation half-lives in vivo. Biochim. Biophys. Acta 1066,29-36.
    13. Gabizon, A., Horowitz, A.T., Goren, D., Tzemach, D., Shmeeda, H., Zalipsky, S.,2003. In vivo fate of folate-targeted polyethene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res.9, 6551-6559.
    14. Gabizon, A., Shmeeda, H., Zalipsky, S.,2006. Pros and cons of the liposome platform in cancer drug targeting. J. Liposome Res.16,175-183.
    15. Sun SY, Hail N Jr, Lotan R. Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer lnst.2004;96(9):662-72.
    16. Wu, J., Liu, Q., Lee, R.J.,2006. A folate receptor-targeted liposomal formulation for paclitaxel. Inter. J.Pharm.316,148-153.
    17. Xiang G, Wu J, Lu Y, Liu Z, Lee RJ. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. International Journal of Pharmaceutics 2008;356:29-36.
    [1]Ezzat S, Asa S L, Couldwell W T, et al. The prevalence of pituitary adenomas: a systematic review[J]. Cancer,2004,101(3):613-619.
    [2]Jaffe C A. Clinically non-functioning pituitary adenoma[J]. Pituitary,2006,9(4):317-321.
    [3]Alameda H C, Lahera V M, Varela D C C. [Treatment of clinically nonfunctioning pituitary adenomas] [J]. Endocrinol Nutr,2010,57(2):71-81.
    [4]Pawlikowski M, Pisarek H, Kunert-Radek J, et al. Immunohistochemical detection of somatostatin receptor subtypes in "clinically nonfunctioning" pituitary adenomas[J].EndocrPathol,2003,14(3):231-238.
    [5]Taboada G F, Luque R M, Bastos W, et al. Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas[J]. Eur J Endocrinol,2007,156(1):65-74.
    [6]Broson-Chazot F, Houzard C, Ajzenberg C, et al. Somatostatin receptor imaging in somatotroph and non-functioning pituitary adenomas:correlation with hormonal and visual responses to octreotide[J]. Clin Endocrinol (Oxf),1997,47(5):589-598.
    [7]Colao A, Di Somma C, Pivonello R, et al. Medical therapy for clinically non-functioning pituitary adenomas[J]. Endocr Relat Cancer,2008,15(4):905-915.
    [8]Florio T, Thellung S, Arena S, et al. Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro[J]. European journal of endocrinology,1999,141(4):396.
    [9]Ono K, Suzuki T, Miki Y, et al. Somatostatin receptor subtypes in human non-functioning neuroendocrine tumors and effects of somatostatin analogue SOM230 on cell proliferation in cell line NCI-H727[J]. Anticancer Res,2007,27(4B):2231-2239.
    [10]Zatelli M C, Piccin D, Vignali C, et al. Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion[J]. Endocr Relat Cancer,2007,14(l):91-102.
    [11]Pivonello R, Matrone C, Filippella M, et al. Dopamine receptor expression and function in clinically nonfunctioning pituitary tumors:comparison with the effectiveness of cabergoline treatment[J]. Journal of Clinical Endocrinology \& Metabolism,2004,89(4):1674.
    [12]Neto L V, Machado E O, Luque R M, et al. Expression analysis of dopamine receptor subtypes in normal human pituitaries, nonfunctioning pituitary adenomas and somatotropinomas, and the association between dopamine and somatostatin receptors with clinical response to octreotide-LAR in acromegaly[J]. J Clin Endocrinol Metab,2009,94(6):1931-1937.
    [13]Greenman Y, Tordjman K, Osher E, et al. Postoperative treatment of clinically nonfunctioning pituitary adenomas with dopamine agonists decreases tumour remnant growth[J]. Clin Endocrinol (Oxf),2005,63(1):39-44.
    [14]Lohmann T, Trantakis C, Biesold M, et al. Minor tumour shrinkage in nonfunctioning pituitary adenomas by long-term treatment with the dopamine agonist cabergoline[J].Pituitary,2001,4(3):173-178.
    [15]Colao A, Ferone D, Lastoria S, et al. Hormone levels and tumour size response to quinagolide and cabergoline in patients with prolactin-secreting and clinically non-functioning pituitary adenomas:predictive value of pituitary scintigraphy with 123I-methoxybenzamide[J]. Clin Endocrinol (Oxf),2000,52(4):437-445.
    [16]Nobels F R, de Herder W W, van den Brink W M, et al. Long-term treatment with the dopamine agonist quinagolide of patients with clinically non-functioning pituitary adenoma[J]. Eur J Endocrinol,2000,143(5):615-621.
    [17]de Herder W W, Reijs A E, Feelders R A, et al. Dopamine agonist therapy of clinically non-functioning pituitary macroadenomas. Is there a role for 123I-epidepride dopamine D2 receptor imaging?[J]. Eur J Endocrinol,2006,155(5):717-723.
    [18]Jaquet P, Gunz G, Saveanu A, et al. BIM-23A760, a chimeric molecule directed towards somatostatin and dopamine receptors, vs universal somatostatin receptors ligands in GH-secreting pituitary adenomas partial responders to octreotide[J]. J Endocrinol Invest,2005,28(11 Suppl International):21-27.
    [19]Saveanu A, Jaquet P. Somatostatin-dopamine ligands in the treatment of pituitary adenomas[J]. Rev Endocr Metab Disord,2009,10(2):83-90.
    [20]Florio T, Barbieri F, Spaziante R, et al. Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas:a multi-center study[J]. Endocr Relat Cancer,2008,15(2):583-596.
    [21]Losa M, Mazza E, Terreni M R, et al. Salvage therapy with temozolomide in patients with aggressive or metastatic pituitary adenomas:experience in six cases[J]. Eur J Endocrinol,2010,163(6):843-851.
    [22]Widhalm G, Wolfsberger S, Preusser M, et al. O(6)-methylguanine DNA methyltransferase immunoexpression in nonfunctioning pituitary adenomas:are progressive tumors potential candidates for temozolomide treatment? [J]. Cancer,2009,115(5):1070-1080.
    [23]Hagen C, Schroeder H D, Hansen S, et al. Temozolomide treatment of a pituitary carcinoma and two pituitary macroadenomas resistant to conventional therapy[J]. Eur J Endocrinol,2009,161(4):631-637.
    [24]Buchfelder M. Management of aggressive pituitary adenomas:current treatment strategies[J]. Pituitary,2009,12(3):256-260.
    [25]Marucci G. Treatment of pituitary neoplasms with temozolomide:A review[J]. Cancer,2011.
    [26]Gorshtein A, Rubinfeld H, Kendler E, et al. Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro [J]. Endocr Relat Cancer,2009,16(3):1017-1027.
    [27]Zatelli M C, Minoia M, Filieri C, et al. Effect of everolimus on cell viability in nonfunctioning pituitary adenomas[J]. J Clin Endocrinol Metab,2010,95(2):968-976.
    [28]Hofland L J, de Herder W W, Waaijers M, et al. Interferon-alpha-2a is a potent inhibitor of hormone secretion by cultured human pituitary adenomas[J]. J Clin Endocrinol Metab,1999,84(9):3336-3343.
    [29]Vitale G, Caraglia M, van Koetsveld P M, et al. Potential role of type Ⅰ interferons in the treatment of pituitary adenomas[J]. Rev Endocr Metab Disord,2009,10(2):125-133.
    [30]Andersen M, Bjerre P, Schroder H D, et al. In vivo secretory potential and the effect of combination therapy with octreotide and cabergoline in patients with clinically non-functioning pituitary adenomas[J]. Clin Endocrinol (Oxf),2001,54(1):23-30.
    [31]Neff L M, Weil M, Cole A, et al. Temozolomide in the treatment of an invasive prolactinoma resistant to dopamine agonists[J]. Pituitary,2007,10(1):81-86.
    1 Freese A, During MJ, Davidson BL, et al. Transfection of human lactotroph adenoma cells with an adenovirus vector expressing tyrosine hydroxylase decreases prolactin release. J Clin Endocrinol Metab 1996; 81(6):2401-2404.
    2 Bates PR, Carson MN, Trainer PJ, et al. Wide variation in surgical outcomes for acromegaly in the UK. Clin Endocrinol (Oxf),2008,68:136-142.
    3 Alexander JM, Biller BMK, Bikkal H,et al.Clinically nonfunctioning pituitary adenomas are monoclonal in origin. J Clin Invest 1990; 86:336-340.
    4 Burrow GN, Wortzman G, Rewcastle NB, et al. Microadenomas of the pituitary and abnormal sella tomograms in an unselected autopsy series. N Engl J Med 1981; 304:156-158.
    5 Elster AD:Modern imaging of the pituitary.Radiology,1993,187:1-14.
    6 Heaney AP, Melmed S:Molecular targets in pituitary tumors. Nat Rev Cancer 2004; 4: 285-294.
    7 Heaney AP:Pituitary tumor pathogenesis. Br Med Bull 2006; 75:81-97.
    8 Freda PU, Wardlaw SL:Diagnosis and treatment of pituitary tumors. Clinical Review 110. J Clin Endocrinol Metab 1999; 84:3859-3866.
    9 Colao A, Di Sarno A, Cappabianca P, Di Somma C, Pivonello R, Lombardi G:Withdrawal of long-term cabergoline therapy for tumoral and nontumoral hyperprolactinemia. N Engl J Med 2003; 349:2023-2033.
    10 Pei L, Melmed S:Isolation and characterization of a pituitary tumor transforming gene (PTTG). Mol Endocrinol 1997; 11:433-441.
    11 Zou H, McGarry TJ, Bernal T, Kirschner MW:Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science,1999;285: 418-422
    12 Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S:Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet,2000; 355:716-719.
    13 McCabe CJ, Khaira JS, Boelaert K, Heaney AP, Tannahill LA, Hussain S, Mitchell R,01-liff J, Sheppard MC, Franklyn JA, Gittoes NJ:Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth fac-tor-2 (FGF 2) in human pituitary adenomas:relationships to clinical tumour behaviour. Clin Endocrinol (Oxf) 2003; 58:141-150.
    14 Filipella M, Galland F, Kujas M, Young J, Faggiano A, Lombardi G, Colao A, Meduri G, Chanson P:Pituitary tumor transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas:a clinical and immunohistochemical study. Clin Endocrinol (Oxf) 2006; 65:536-543.
    15 Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S:Pituitary hypoplasia in Pttg-/-mice is protective for Rb+/-pituitary tumor-igenesis. Mol Endocrinol 2005;19:2371-2379.
    16 Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S:Pituitary hypoplasia in Pttg-/-mice is protective for Rb+'-pituitary tumor-igenesis. Mol Endocrinol 2005; 19:2371-2379..
    17 Horwitz GA, Miklovsky I, Heaney AP, Ren S-G, Melmed S:Human pituitary tumor transforming gene (PTTG1) motif represses prolactin expression. Mol Endocrinol 2003; 17:600-609.
    18 Molitch ME:Management of prolactinomas during pregnancy. J Reprod Medl999;44: 1121-1126.
    19 Kovacs K, Stefeaneau L, Ezzat S, Smyth HS:Prolactin-producing pituitary adenoma in a male-to-female transsexual patient with protracted estrogen administration. A morphologic study. Arch Pathol Lab Med 1994; 118:562-565.
    20 Heaney AP, Fernando M, Melmed S:Functional role of estrogen in pituitary tumori-genesis. J Clin Invest 2002;109:277-283.
    21 Kuri JM:The biologic basis for the use of ret-inoids in cancer prevention and treatment. Curr Opin Oncol 1999; 11:497-502.
    22 Castillo V, Giacomini D, Paez-Pereda M, Stalla J, Labeur M, Theodoropoulou M, Holsboer F, Grossman AB, Stalla GK, Arzt E:Retinoic acid as a novel medical therapy for Cushing's disease in dogs. Endocrinology 2006; 147:4438-4444.
    23 Heaney AP, Fernando M, Yong W, Melmed S:Functional PPAR y receptor represents a novel therapeutic target in Cushing's disease. Nat Med 2002; 11:1281-1287.
    24 Bogazzi F, Ultimeri F, Raggi F, Russo D, Vanacore R, Guida C, Viacava P, Cecchetti D, Acerbi G, Brogioni S, Cosci C, Gasperi M,Bartalena L, Martino E:PPARgamma inhibits GH synthesis and secretion and increases apoptosis of pituitary GH-secreting adenomas. Eur J Endocrinol 2004;150:863-875.
    25 Ambrosi B, Dall'Asta C, Cannavo S, Libe R, Vigo T, Epaminonda P, Chiodini I, Ferrero S, Trimarchi F, Arosio M, Beck-Pecoz P:Effects of chronic administration of PPAR y receptor ligand rosiglitazone in Cushing's disease. Eur J Endocrinol 2004; 151:1-7.
    26 Kyprianou N, Benning C:Suppression of human prostate cancer cell growth by α 1-adre-noceptor antagonist doxazosin and terazosin via induction of apoptosis. Cancer Res 2000; 60:4550-4555.
    27 Fernando M, Heaney AP:Alpha adrenergic antagonists:novel therapy for pituitary adenomas. Mol Endocrinol 2005; 19:3085-3096.
    28 Hui H, Fernando MA, Heaney AP:The 1-adrenergic receptor antagonist doxazosin inhibits EGFR and NF-κB signaling to induce breast cancer cell apoptosis. Eur J Cancer 2007; 150:863-875.
    29 Oyesiku NM,Evans CO,et al. Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. The Journal of Clinical Endocrinology & Metabolism.2001;86(7):3097-3107.
    30 Oyesiku NM,Evans CO,et al. Differential expression of folate receptor in pituitary adenomas. Cancer Res.2003;63:4218-4224.
    31 Yao C, Evans CO, Stevens VL,et al.Folate receptor alpha regulates cell proliferation in mouse gonadotroph alphaT3-1 cells. Exp Cell Res.2009,315(18):3125-32.
    32 Siegel BA, Dehdashti F, Mutch DG, Podoloff DA, Wendt R, Sutton GP, Burt RW, Ellis PR, Mathais CJ, Green MA et al.:Evaluation of 111 In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer:initial clinical results.J Nucl Med 2003,44:700-707.
    33 Leamon CP, Parker MA, Vlahov IR, Xu LC, Reddy JA, Vetzel M,Douglas N:Synthesis and biological evaluation of EC20:a new folate-derived 99mTc-based radiopharmaceutical. Bioconjugate Chem 2002,13:1200-1210.
    34 Lu Y, Low PS:Folate targeting of haptens to cancer cell surfaces mediated immunotherapy of syngenic murine tumors. Cancer Immunol Immunother 2002,51:153-162.
    35 Lu Y, Sega E, Low PS:Folate receptor-targeted immunotherapy:induction of humoral and cellular immunity against hapten-decorated cancer cells. Int J Cancer 2005,116:710-719.
    36 Reddy JA, Dorton R, Westrick E, Dawson A, Smith T, Xu LC, Vetzel M, Kleindl P, Vlahov IR, Leamon CP:Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res 2007,67:4434-4442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700