用户名: 密码: 验证码:
大功率阀控液力偶合器设计理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阀控充液型液力偶合器是采煤工作面大功率刮板输送机最有效软启动装置之一,作为联系工作机和原动机之间的“纽带”,其采用纯水作为工作介质,适应频繁带载起动并具备过载保护和调速等功能,成为800kW(单驱动)以上大功率刮板输送机软启动设备的主导机型。阀控偶合器是复杂的机、电、液(液压、液力)一体化系统,设计加工难度大,目前国内还没有此类产品,相关研究也很少,已成为制约我国大型刮板输送机进一步发展的瓶颈。
     泵轮和涡轮形成的工作腔是偶合器的技术核心,功率的增大使得偶合器结构强度和散热问题突出,因此工作腔结构及控制阀组是阀控偶合器的技术关键。本文以解决大采高综放工作面后部刮板输送机(2×1000kW)软启动问题为目标,围绕阀控偶合器的关键技术,理论分析和实验相结合,从工作腔流场分析和优化、液相分布规律、工作轮结构力学特性分析以及控制阀组开发等方面对阀控偶合器展开了研究。相关研究工作主要包括以下几个方面:
     根据刮板输送机阻力计算模型和后部刮板输送工作特点,指出后部刮板输送机受落煤量大幅变化等因素影响,具有负载波动大和起动困难等特点;进一步分析了阀控偶合器的基本特性,确定了阀控偶合器与电动机和刮板输送机间参数匹配关系。以“长壁形”特性曲线为目标,在对现有偶合器循环圆特性比较的基础上,选择桃形腔为阀控偶合器的原始腔型,作为进一步研究分析的基础。
     在对计算流体动力学(CFD)基本模型分析比较的基础上,确定了偶合器多流动区域耦合的三维流场计算方法。采用可实现k-ε湍流模型模拟了标准桃形腔满充情况下稳态流场,网格划分采用多边形网格,并将力矩预测结果与相似模型的试验值比较,验证了计算模型的正确性。CFD预测表明标准桃形腔过载系数太大,无法满足刮板输送机需求,进一步分析了叶片厚度、叶片形状和挡圈等因素对桃形腔流场和力矩特性的影响,力矩预测表明“高低相间叶片+挡圈”的结构组合具有相对较高的效率,满足限矩性能要求。
     运用VOF两相流模型,基于“准瞬态”流场分析,对工作腔部分充液时气-液两相流动进行了研究,仿真得到的液相分布与相关文献中GAMMA射线和平面阵列传感器检测结果基本一致,显示出VOF在液相运动界面追踪方面较强适用性。对不同转差和充液量下的液相分布及流动规律进行了仿真,并进一步比较了不同充液量下的力矩特性,为变充液量调速提供了理论依据。
     引入单向流体-结构耦合(FSI)方法,将CFD流场仿真结果和有限元分析(FEA)相结合,对双腔结构中载荷最恶劣部件输入端泵轮不同工况下受力情况进行分析,并基于分析结果对结构进行了改进。FSI分析提高了计算准确度,得到了常规有限元计算中未有的规律:偶合器叶片所受载荷为交变载荷,易致疲劳破坏。对泵轮模态进行了分析,研究结构的静频和不同载荷作用下的动频,较全面掌握了泵轮的动态特性。
     按照半开式回路设计了电磁控制阀组,指出低压大流量是阀控偶合器控制阀组的基本特性,且要求具有一定耐阻塞能力。建立了先导式电磁阀串联液阻理论模型,基于该模型得到主阀芯开启必须满足的压力和结构条件。液阻是先导式电磁阀的敏感参数,为此搭建了纯水液压试验台模拟节流孔和先导阀间压力分配关系,对不同直径和长度节流孔压力-流量特性的试验研究表明:对于水介质而言,小孔对长度和工作液粘度不敏感,因此可选择粗短孔、并尽可能选择大通径先导阀以提高抗阻塞能力。主阀口采用平面和锥阀两级节流,通过AMESim仿真软件对弹簧、节流孔等参数对阀的动、静态特性的影响进行了分析,确定了电磁阀组的优化参数组合。
     研制出电磁阀组和阀控偶合器样机并进行了相关试验。搭建了简易试验平台,对电磁阀组的开启压力、稳定工作压降、响应性以及循环口的压力波动等进行测试,试验表明所研制的电磁阀组满足低压大流量特性,且具有较快的响应速度;对阀控偶合器进行了台架试验,获得了满充下力矩特性,与仿真值较为一致,所研制阀控偶合器的原始特性曲线基本符合“长壁形”曲线特征。试验结果与和仿真值间的高度吻合,为阀控偶合器的现代设计方法提供了重要理论支撑。
     本为最后总结了阀控偶合器的分析设计过程,以腔型、结构力学特性、控制阀组等关键技术为主线,CFD,FSI,AMESim系统仿真等现代分析工具为辅助手段,开发出了阀控偶合器产品,可实现大功率刮板输送机的软启动功能并保障其可靠运行;初步建立了阀控偶合器的现代设计理论,为提升阀控偶合器品质、缩短其开发周期和降低研制成本提供了有效参考。
     该论文有图122幅,表16个,参考文献160篇。
As the link between working machine and driving machine, valve-control hydrodynamic coupling, which using pure water as working medium, is one of the most effective soft-start equipments for large power AFC (Armoured Face Conveyor) in the mining face. Valve-control coupling is suitable for the frequency start with heavy load and has the function of overload protection and speed control, so it has been the leading soft-start equipment for AFC installed more than 800kW capacity motor for single drive. As it is a complicated system which integrates mechanism, electronic, hydraulic and hydrodynamic, so there is no valve-control coupling product in domestic now,and the related studies are also rare. It has been a bottle-neck of the development of large AFC.
     The working chamber formed by pump wheel and turbine wheel is the core technique of a coupling, and a serial of problems such as structure strength and heat exchange become outstanding with the increasing of power. Aiming at the soft starting of AFC behind supports(2×1000kW) and focusing on the key technologies,research work such as flow field analysis of working chamber, laws of liquid distribution, structural mechanics of working pump and develop of control valve block were done. The main research work of this dissertation includes:
     According to the resistance calculation formula and the working mode of AFC behind supports, it was pointed out that the wildly load varying even overload were the main features influenced by the coal drop. Then the parameters matching relationships among coupling, electric motor and AFC were established. In order to get the perfect“long wall characteristic curve”, the peach shaped chamber were chosen as the original chamber to be further analyzed after comparing the existing loop circles.
     The 3-D flow field calculation method was established by analyzing the basic CFD models. The full-filled steady flow field of standard peach shaped chamber was simulated using realizable k-εturbulence model and polyhedron meshes. The difference between predicated torque coefficient and the one from literature was very small,so the validity of calculation model was verified according to similarity theory. The simulation result shows that the overload coefficient is too large to satisfy the demand of AFC, then the working chamber was adjusted from thickness and blade shapes, retainer height, and the new chambers were analyzed by CFD again. Predicated torques show that the structure“height low internal blades+retainer”has high efficient and can satisfy the torque limiting demand.
     The quasi-transient flow of air-water two phase flow in the optimized charmer was studied utilizing VOF model. The liquid distribution comparisons between simulation and test results from GAMMA tomography method and array sensor method proved that the VOF model was suitable for tracking the moving interface between air and water. The distribution and flow laws were further studied and the torques of different filled rates were predicated, which can be taken as the theoretical reference for speed regulation.
     One-way FSI method was introduced and the structure mechanics was analyzed using CFD and FEA softwares. The pump wheel at the driving end of a dual-chamber bears the harshest loading condition, so the strength of which was analyzed using CFD result, and the weak places were strengthened. While improving calculation accuracy of strength,new phenomenon which cannot appear in common FEA was found by FSI analyzing that the blades bear alternating load, so fatigue failure is easier to happen. The static frequency and dynamic frequency at different loads were got by modal analysis based on FSI, and more overall dynamic characteristics of the pump wheel were mastered.
     The pilot operated solenoid valve block was designed following the half-opened circuit, and the performance demand of which was low pressure, large flow and owing anti-blocking ability. The serial hydraulic resistances model of the pilot operated valve was built, according to which the pressure and structure conditions were obtained. In order to simulate the relationship between nozzle and piloted valve, the water pressure test platform was built and the characteristics of different nozzles were tested on it. The influences of spring and nozzle on the static and dynamic characteristics were investigated by AMESim software and the optimized parameters of valve block were established.
     The opening pressure, pressure at steady flow, response time and pressure varying at the cycle inlet of solenoid valve block were tested on an simple test system. Then the combined experiment of valve block and the coupling were carried on the 2000kW test stand. The torque coefficients of full-filled were obtained which meet well with CFD simulate one and conform to the“long wall characteristic curve”. The good consistency between simulation and testing results provides a very important tool for the modern design of valve-control coupling.
     At last, The valve-control coupling was developed taking key technologies such as chamber type, wheel structure and control valve block main line, using CFD,FSI and AMESim ect. aided approach and it can ensure the soft-start of a large power AFC. The modern design theory and method of valve-control coupling is preliminary established which can improve the quality it and reduce the R & D period and cost.
     There are 122 figures, 16 tables and 160 references in the dissertation.
引文
[1]樊运策.综合机械化放顶煤开采技术[M].北京:煤炭工业出版社,2003.
    [2]李志军,宋选民,付玉平等.神东矿区特厚煤层合理开采方法的优化选择[J].矿业研究与开发,2010,30(3):10-11,74.
    [3]尚海涛,吴健.论综放开采技术在我国发展的必然性[J].中国煤炭,1997,23(4):2-7.
    [4]师文林,罗善明.超长综放工作面国产设备的选型配套研究[J].煤炭学报,2000,23(2):141-144.
    [5]赵经彻.我国综采放顶煤开采技术及其展望[J].中国工程科学,2001,3(4) :9-16.
    [6]于学谦.矿山运输机械[M].徐州:中国矿业大学出版社,2003.
    [7] DBT. Ultra-long face conveying[J]. International Mining, 2007,9:36-37.
    [8] S.D. FLOOK, J.J. LEEMING. Recent developments in longwall mining entry development,and room and pillar systems[EB/OL]. [2010-08-10]. http://www.min-pan.krakow.pl/Wydawnictwa /GSM2443/flook-leeming.pdf.
    [9]罗志鸿.工作面刮板输送机的发展新趋势(续)[J].煤炭科学技术,1994,22(11):58-61.
    [10]孟建新.浅谈我国刮板输送机驱动装置研制现状及发展趋势[J].煤炭技术,1998,4:13-17.
    [11] K.F. Jakob. Modern mining technology and its application within RAG coal international AG[C]. 17th International Mining Congress and Exhibition of Turkey, 2001:39-43.
    [12] Janusz ROSIKOWSKI. Scientific research of AFC drive system with silicon controlled rectifier[C]. International Carpathian Control Conference ICCC’2002,MALENOVICE:535-540.
    [13]陆文程,赵继云,张德生等.大功率刮板输送机软启动技术分析[J].煤炭科学技术,2009,37(10):68-69,73.
    [14]乔金虎,和海燕.刮板输送机的调压调频软启动[J].机械管理开发,2009,24(2):26-27.
    [15] BUCYRUS. Intelligent CST Drive System. LW_CST_V1_0608.
    [16]石昇.水介质调速型液力偶合器的研究[J].煤矿机电,2003,5:61-63.
    [17]宋伟刚,战欣,王元元.大型带式输送机驱动装置的比较研究[J].工程设计学报,2004,11(6):301-311.
    [18]牛旭原.综采刮板输送机大功率变频驱动系统及与CST、TTT系统的性能比较[J].内蒙古煤炭经济,2009(2):75-77,74.
    [19]方家雨,孟国营,姚伟.调速型液力偶合器及CST的传动特性[J].起重运输机械,2006,2:44-47.
    [20]邢蕾.限矩型液力偶合器的节能效果[J].起重运输机械,2008,12:116-117.
    [21] K.Düngelhoff & W.Kosney, Deutsche Steinkohle AG, GER. Operating experience with armoured face conveyors with hydrodynamic drive systems at Prosper-Haniel Mine[C]. 3th International Symposium High-Performance Long-wall Extraction, Aachen, 2003.
    [22]韩纪志.用于放顶煤后部刮板机的阀控充液型液力偶合器[J].煤炭工程,2006,6:89-91.
    [23]宋伟刚.基于不同需求的阀控充液式液力偶合器[J].煤炭工程,2007,9:107-110.
    [24] H.Lauhoff. Speed control on belt conveyor-Does it really save energy[J]. Bulk Solids Handling, 2005, 25(6):368-377.
    [25] Ralph H?fert. Variable speed turbo couplings used as pump drive in desalination plants[C]. European Conference on Desalination and the Environment , Las palmas, 1999: 181-189.
    [26]杨乃乔,严纯伟.新型调速型液力偶合器[J].液压气动与密封,2010,3:58-61.
    [27]杨乃乔.液力偶合器的新发展[J].液压气动与密封,2010,9:55-58.
    [28] Heinz Hoeller. Hydrodynamic couplings with constant filling. Cr 584 e 02.00 500 MSW/SV
    [29]童祖楹.液力偶合器[M].上海:上海交通大学出版社,1988.
    [30]杨乃桥,姜丽英.液力调速与节能[M].北京:国防工业出版社,2005.
    [31] http://www.dayeli.com/gsjj.htm.
    [32] http://www.gdzxpt.com/newEbiz1/EbizPortalFG/portal/html/GeneralContentShow.html?
    [33] http://www.shec.gov.cn/jdny/jjc.htm.
    [34] http://www.csic-711.com/index.asp.
    [35] http://www.zmm.cn/aboutgs/file/yyjfc.asp.
    [36]刘应诚.液力偶合器实用手册[M].北京:化学工业出版社,2008.
    [37]王清元,薛尚红,陈怀道等.无滑差液力偶合器及其性能测试结果分析[J].太原理工大学学报,2000,31(2):212-214.
    [38] Voith Turbo. 100 years of fascination and innovation hydrodynamic solutions from voith turbo. G 1905en, 2006.
    [39]唐民.福伊特阀控恒充式偶合器在刮板输送机上的应用[J].煤炭工程,2005,2:63-64.
    [40] Voith Turbo. Constant-filled fluid coupling with valve control-Types TV…F…[EB/OL].[2010-3-23] http://www. Voithturbo. com/ publications- media.php3.
    [41] Voith Turbo. Fill-controlled fluid coupling[EB/OL]. [2010-8-24]. http://www.voithturbo.com/ publications-media.php3.
    [42] BAI L, MITRA N K,FIEBIG M.Computation of unsteady 3D turbulent flow and torque transmission in fluid couplings[C]. Fourteenth International Conference on Numerical Methods in Fluid Dynamics. Heidelberg: Springer Berlin, 1995: 435-440.
    [43]马文星.流动可视化技术在液力传动中的应用[J].建筑机械,1993,4:22-26.
    [44] M.Christen, R.Kernchen. Fluid velocity in constant fill turbo couplings: measurements using laser Doppler velocimetry[J]. Antriebstechnik, 2001,40: 71-74.
    [45] U.Hampela, D.Hoppea, K.-H.Dieleb ect. Application of gamma tomography to the measurement of fluid distributions in a hydrodynamic coupling[J]. Flow Measurement and Instrumentation, 2005(16): 177-182.
    [46] D. Hoppe, J. Fietz, U. Hampel et al. Gamma tomographic visualization of the fluid distribution in a hydrodynamic coupling, in F. P. Weiss, U. Rindelhardt: Institute of Safety Research, Annual Report 2002, FZR-380.
    [47] M.J.Da Silvaa, Y.Lu, T.Sühnel, et al. Autonomous planar conductivity array sensor for fast liquiddistribution imaging in a fluid coupling[J]. Sensors and Actuators A, 2008,147: 508-515.
    [48] Yasunori Kunisaki,Toshio Kobayashi,Tetsuo Saga,ect al.PIV Measurement on the Flow Field Around a Stator Cascade of Automotive Torque Converter.SAE 2001-01-0868.
    [49] Tetsuya Kubota ,Toshio Kobayashi ,Tetsuo Saga. Application study of PIV measurement of flow flied around lock-up clutch of automotive torque converter. JSAE, 2003,4.
    [50]赵斌娟.双流道泵内非定常三维数值模拟及PIV测试[D].镇江:江苏大学,2007.
    [51]王清松.液力传动元件流场实验及流动图像判读系统研究[D].长春:吉林大学,2004.
    [52] F.J. Wallace, A. Whitfield and R. Sivalingam. A theoretical model for the performance prediction of fully filled fluid couplings[J]. International Journal of Mechanical Sciences, 1978, 20(6): 335-347.
    [53]童祖楹,邵海滨.用流速抛物线分布流动模型预测偶合器的负荷特性[J].上海交通大学学报,1989,23(4):41-51.
    [54] A.Whitfield, R.Sivalingam and F.J.Wallace. The performance prediction of fluid coupling with the introduction of a baffle plate[J]. International Journal of Mechanical Sciences, 1978, 20(10): 729-736.
    [55] Charles N. McKinnon, Danamichele Brennen1 Christopher E. Brennen. Hydraulic Analysis of a Reversible Fluid Coupling[EB/OL].[2010-08-20] .http://authors.library.caltech.edu/221/1/ MCK196.pdf.
    [56] J.D.Anderson, Computational Fluid Dynamic: the basic with applications[M]. McGrawhill.1995,清华大学出版社,2002.
    [57]赖喜德.大型水轮机转轮数字化设计与制造的关键理论及技术研究[D].武汉:华中科技大学,2003.
    [58]郭鹏程.水力机械内部复杂流动的数值研究与性能预测[D].西安:西安理工大学,2006.
    [59] Mansour, Mahmoud L., Gunaraj, John, Goswarni, Shrarnan. Validation of steadyaverage-passage and mixing plane CFD approaches for the performance prediction of a modern gas turbine multistage axial compressor[C]. Proceedings of the ASME Turbo Expo, 2008, 6, PART A: 393-402.
    [60] M.Silk, Peter Drtina, M.V.Casey. Use of state capability in CFD for turbomachinery, with application in a Francis turbine[J]. International Journal of Computer Applications in Technology,1998, 11.
    [61] Drtina, P., G?de, E. and Schachenmann, A. Three-dimensional turbulent flow simulation for two different hydraulic turbine draft tubes[C]. In Proceedings of 1st European Conference on Computational Fluid Dynamics, Brussels, Belgium, 7-11 September 1992.
    [62] Goede, E., Sebestyen, A. and Schachenmann, A. Navier-Stokes flow analysis for a pump impeller[C]. In Proceedings of 16th IAHR Symposium, Sao Paulo, Brazil, 14-19 September 1992.
    [63] Jean Schweitzer, Jeya Gandham. Computational Fluid Dynamics in Torque Converters: Validation and Application. International Journal of Rotating Machinery, 20039: 411–418.
    [64] Kost,A., Mitra,N.K., Fiebig,M. Numerical simulation of 3D periodic flow in fluid couplin[J]. Acta Mechanica Mechanica,1994.
    [65] Kost,A., Bai,L., Mitra,N.K., Fiebig,M.Calculation procedure for unsteady incompressible 3D flows in arbitrarily shaped domain[C]. 9th GAMM Conference on Numerical Methods in Fluid Dynamics, Notes on Numerical Fluid Mechanics 35, Braunschweig: Vieweg, 1992. 269-278.
    [66] H.Huitenga, N.K.Mitra. Improving startup behavior of fluid couplings through modification of runner geometry: Part I-fluid flow analysis and proposed improvement[J]. Journal of fluid engineering, 2000(122): 686-688.
    [67] H.Huitenga, N.K.Mitra. Improving startup behavior of fluid couplings through modification of runner geometry: Part II-fluid flow analysis and proposed improvement[J]. Journal of fluid engineering, 2000(122): 689-693.
    [68]刘春宝,马文星,褚亚旭.多流动区域耦合算法在液力元件中的应用[J].吉林大学学报(工学版),2008,38(6):1342-1347.
    [69]李雪松,马文星,吴允柱.液力偶合器制动工况三维流场数值模拟及制动转矩计算[C].第四届全国流体传动及控制学术会议,2006:659-664.
    [70]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2006.
    [71]姚子生.液力偶合器部分充液两相流动数值模拟与分析[D].长春:吉林大学,2008.
    [72]何延东,马文星,刘春宝.液力偶合器部分充液流场数值模拟与特性计算[J].农业机械学报,2009,40(5):24-28.
    [73]何延东.基于CFD的大功率调速型液力偶合器设计[D].长春:吉林大学,2009.
    [74]何延东,马文星,邓洪超等.基于CFD的调速型偶合器设计方法[J].农业机械学报,2010,41(6):31-36.
    [75] Bin SONG, Jiangang LV, Guangjun ZHAO , ect al. Numerical simulation on gas-liquid two-phase flow in Fluid Coupling during Braking[C]. Proceedings of the 2010 3rd IEEE International Conference on Computer Science and Information Technology, 2010:709-713.
    [76]王峰,闫清东,马越等.基于CFD技术的液力减速器性能预测研究[J].系统仿真学报,2007,19(6):1390-1392,1396.
    [77]郭刘洋,杜明刚.CFD为基的液力减速器结构优化仿真[J].现代制造工程,2009,1:104-106,115.
    [78]庄礼贤,尹协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社,1991.
    [79]何仁,严军,鲁明.不同流道轴面形状的液力缓速器内流场的模拟[J].系统仿真学报,2009,21(24):7743-7746.
    [80]严军,何仁.液力缓速器叶片变角度的缓速性能分析[J].农业机械学报,2009,40(4):207-209,226.
    [81]严军.车用液力缓速器设计理论和控制方法的研究[D].镇江:江苏大学,2009.
    [82]李雪松.基于非稳态流场分析的车用液力缓速器参数优化方法研究[D].长春:吉林大学,2010.
    [83]褚亚绪.基于CFD的液力变矩器设计方法的理论与实验研究[D].长春:吉林大学,2006.
    [84]崔明.液力偶合器泵轮短叶片断裂原因及处理[J].电力科学与工程,2009,25(1):54-56.
    [85]杨乃乔.液力偶合器[M].北京:机械工业出版社,1989.
    [86]于新颖,王铭忠.给水泵液力耦合器工作轮强度计算与分析[J].汽轮机技术,1990,32(5):13-21.
    [87]夏焕文,张景香.液力偶合器强度及轴向力分析[J].测试技术学报,1996,10(2,3):411-417.
    [88]韩东劲.调速型液力偶合器叶轮强度的有限元分析[J].煤矿机电,2001(6):20-23.
    [89]宋光辉.液力偶合器叶轮三维整体有限元强度分析方法[J].传动技术,2004,6:15-17.
    [90]李娅娜,邵万珍,兆文忠.YOTCHP465调速型液力偶合器叶轮强度的有限元分析[J].大连交通大学学报,2007,28(2):30-33.
    [91]黄家良,邵万珍.YOCQ550调速型液力偶合器叶轮强度的有限元分析[J].机械工程师,2008,11:65-66.
    [92]庞洁.YO750液力偶合器叶轮强度有限元分析[J].内燃机车,2009,23-25,34.
    [93]徐敏,安效民,陈士橹.一种CFD/CSD耦合计算方法[J].航空学报,2006,27(1):33-37.
    [94]杨立国.北京地铁轴流风机内流场及叶片气动弹性的数值模拟研究[D].北京:北京交通大学,2007.
    [95]王峰,闫清东,王书灵.基于CFD和FEA的液力减速器叶片强度分析[J].北京理工大学学报,2006,26(12):1052-1054,1060.
    [96]过学讯,梁荣亮,陈见.基于ANSYS的车辆缓速器叶片强度分析及模态分析[J].武汉理工大学学报,2010,34(1):68-71.
    [97]王永权.液力偶合器叶轮与流体的流固耦合模拟与分析[D].长春:吉林大学,2009.
    [98]巍巍,闫清东,朱颜.液力变矩器叶片流固耦合强度分析[J].兵工学报,2008,29(10):1158-1162.
    [99]陆忠东,吴光强,殷学仙等.液力变矩器流固耦合研究[J].汽车技术,2009,2:37-41,57.
    [100] Worsch, H.: Drehschwingungsverhalten von hydrodynamischen Kupplungen, Sonderdruck aus Voith Forschungund Konstruktion, Heft 33 (1989), Aufsatz 2 Special print by Voith Research and Design, Issue 33(1989), essay 2.
    [101] DIN 740, Teil 2. Nachgiebige Wellenkupplungen (Flexible shaft couplings), Beuth-Verlag, Berlin, August 1986.
    [102] Dr. Ing. A. Menne VDI, Crailsheim. Calculating torsional vibrations in drives with hydrodynamic couplings. Special print from VDI-Berichte Nr. 1786, 2003.
    [103]王佳.调速型液力偶合器叶轮强度与振动特性研究[D].长春:吉林大学,2009.
    [104]刘立宝,赵继云,张德生等.水介质阀控充液式液力偶合器电液阀常见问题分析及应对措施[J].矿山机械,2010,38(4):18-21.
    [105]张德生,赵继云,刘立宝等.阀控充液式液力偶合器电液阀阻塞问题分析[J].煤炭工程,2010,8:81-82.
    [106] Scheffcls. Developments in water hydraulics[J]. Hydraulics &Pneumatics,1996(12): 33-34.
    [107] Koskinen K.T.,Vilenius M.J.Water hydraulics-a versatile technology[J]. Journal of the Japan Hydraulics and Pneumatics Society, 1998, 29(7): 13-19.
    [108] Urata E. Technological Aspects of the New water Hydraulic[A]. The Sixth Scandinavian International Conference on Fluid Power, Tampere Finland, May 26-28,1999.21-34.
    [109] BACKE W. Water-or-Oil hydraulics in the future [C].Proceedings of 6th Scandinavian International Conference on Fluid Power, Tampere,Finland: Tampere University of Technology, 1999:51- 64.
    [110]杜长龙.水压传动技术在煤矿中的应用[J].煤炭科学技术,2003,31(11):27-28.
    [111]李壮云.液压元件与系统(第2版)[M].机械工业出版社,2006.
    [112]弓永军.纯水液压控制阀关键技术研究[D].杭州:浙江大学,2005.
    [113] S.Stricker. Advances make tap water hydraulics more practical[J]. Hydraulics & Pneumatics , 1996(10):29-32.
    [114]贺小峰,张铁华,李壮云.海、淡水液压阀的研究[J].机床与液压,2000,3:44:45.
    [115]杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势[J].中国机械工程,2000,11(12):1430-1433.
    [116]谢伟,周华,弓永军等.先导式纯水溢流阀的研究[J].液压气动与密封,2004,4:14-16.
    [117]唐向阳.纯水液压试验系统的设计及动态特性研究[D].昆明:昆明理工大学,2001.
    [118]张宏.高压高水基液压阀的理论及设计方法研究[D].太原:太原理工大学,2008.
    [119]温燕杰,王新华,刘春波.水压控制阀的发展现状与展望.机床与液压,2006,11:230-233.
    [120]韩新苗,聂松林,葛卫等.先导式水压溢流阀静动态特性的仿真研究[J].机床与液压,2008,36(10):106-109,147.
    [121]廖义德,王清,李壮云.水压电磁阀阀口密封性能试验研究[J].郑州大学学报(工学版),2003,24(2):70-72.
    [122] Eizo Urata, ShimpeiMiyakawa, Chishiro Yamashina, etc al. Development of a Water Hydraulic Servovalve [J]. JSME International Journa,l Series B, 1998, 41 (2): 286-294.
    [123] Karl-Erik Rydberg. Energy Efficient Water Hydraulic Systems [C]. The 5th International Conference on Fluid Power Transmission and Control ( ICFP 2001), 2001: 440-446.
    [124]曾培.防锈电磁阀的结构设计与材料选择[J].排灌机械,2000,18(5):42-44.
    [125] Voith Turbo. Valvex valves for mining applications[EB/OL]. cr376en 07/2008.
    [126]杨华勇,弓永军,周华.无泄漏平面型纯水换向阀研究[J].浙江大学学报(工学版),2006,40(3): 408-412.
    [127]弓永军,周华,谢伟等.电液纯水换向阀实验研究[J].液压与气动,2004,12:71-73.
    [128]唐群国,陶军,王径等[J].一种先导式纯水液压电磁开关阀的研制[J].液压与气动,2008(7):68-70.
    [129]黄刘琦.大流量电液控制阀:中国,200720067301[P].2008-01-16.
    [130]毛君.刮板输送机动力学行为分析与控制理论研究[D].辽宁工程技术大学,2006.
    [131] LLOYD A.MORLEY, JEFFREY L.KOHLER, HAROLD M.SMOLNIKAR. A model for predicting motor load for an armored face-Conveyor drive. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1988, 24(4):649-659.
    [132] Dr. Rainald Finzel, Wolfgang Weber, Heinz H?ller.Water operated fill controlled turbo couplings in AFC drive systems, design and operating Modes.Voith. Lecture,6,2000.
    [133]刮板输送机用液力偶合器检验规.MT/T100-1995
    [134] Heinz Hl?ler. Hydrodynamics in Drive Technology-A Short Introduction[EB/OL]. Cr 604 en, 04/2008.
    [135]童祖楹.船用限矩液力偶合器的流道设计和实验研究[J] .中国造船,1972,2:82-95.
    [136] Transfluid. KPT Variable fill fluid couplings[EB/OL]. [2010-11-20]. http://www.transfluid.eu /public/pdf/ 175_GB_1009.pdf
    [137] ANSYS.ANSYS FLUENT 12.0 Documentation.
    [138]江帆,黄鹏.Fluent高级应用与实力分析[M].北京:清华大学出版社,2008.
    [139]王福军.CFD在水力机械湍流分析与性能预测中的应用[J].中国农业大学学报,2005,10(4):75-80.
    [140] B.E.Launder, D.B.Spalding. Lectures in mathermatical models of turbulence. Academic Press, London,1972.
    [141]赖喜德.叶片式流体机械的数字化设计与制造[M].成都:四川大学出版社,2008.
    [142]王乐勤,杜红霞,吴大转等.多层浆式搅拌罐内混合过程的数值模拟[J].工程热物理学报,2007,28(3):418-420.
    [143]王春林,司艳雷,郑海霞等.旋流自吸泵内部流场的数值模拟[J].排灌机械,2008,26(2):31-35.
    [144]周云龙,洪文鹏,孙斌.多相流体力学理论及其应用[M].北京:科学出版社,2008.
    [145]变幻流动的科学:多相流体力学[M].北京:清华大学出版社,2000.
    [146]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [147]洪文鹏,轴云龙,邓东.空气-水两相流横掠圆柱表面压力特性的试验研究[C].中国工程热物理学会多相流学术会议论文,大庆,2007:52-58.
    [148]王成军,陈海耿,马金凤.基于VOF方法数值模拟离心式喷嘴内两相流流动[J].东北大学学报,2009,30(7):1005-1008.
    [149]岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟[J].工程热物理学报,2003,24(5):888-890.
    [150]张锡杰,林义,何芳.基于三位流场数值分析的液力变矩器轴向力研究[J].液压气动与密封,2010,4:47-50.
    [151]许晓平,周洲.多面体网格在CFD中的应用[J].飞行力学,2009,27(6):87-89,93.
    [152] M. Peric.Flow simulation using control volumes of arbitrary polyhedral shape[Z].ERCOFTAC Bulletin, 2004,62.
    [153] PericMilovan, Stephen Ferguson.The advantage of polyhedral meshes [EB/OL]. [2010-9-20]. http: //www. cd-adapco. com /.
    [154]张雪雯.搅拌器结构对搅拌槽内气液分散特征影响的数值模拟[D].北京:北京化工大学2010.
    [155]刘德民,杨萍.基于流固耦合的水轮机振动分析[J].水科学与工程技术,2007,6:29-32.
    [156]汪学锋,李锋,周炜等.流固耦合网格插值方法研究[J].船舶力学,2009,13(4):571-578.
    [157]王成木,黎成行,尹晓等.旋喷泵水力性能的试验研究[J].水泵技术,2000,5:3-7,26.
    [158]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1982.
    [159]许福玲.液压与气压传动(3版)[M].北京:机械工业出版社,2007.
    [160]付永领,祁晓野.AMESim系统建模和仿真[M].北京:北京航空航天大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700