用户名: 密码: 验证码:
污染土壤中铜、镉的植物有效性及其调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染严重影响了土壤环境质量,并引发了诸多食品安全问题。植物是与土壤相互作用最为密切的生物,因此关于土壤重金属的植物有效性评价、重金属污染土壤的修复和安全利用等问题一直是生态环境研究领域的热点。本文在建立与检验土壤Cu、Cd的植物有效性评估模型的基础上,系统研究了土壤Cu、Cd复合污染对植物生长、生理指标的影响和污染土壤中重金属有效性的调控措施,旨在为污染土壤的科学管理与安全利用提供依据。
     (1)污染土壤中Cu、Cd的植物有效性评估模型的建立与检验
     本文首先以某污染企业周边的黄棕壤-水稻籽粒系统(n=7)为研究对象,采用一元线性回归的统计方法,分析0.lmol·L-1 HCl、0.5mol·L-1 HCl、2.5% HOAc、5%HOAc. DTPA (pH7.3)、0.05 mol·L-1 EDTA、0.01 mol·L-1 CaCl2、0.05mol·L-1 CaCl2、0.5 mol·L-1NH4OAc、1.0 mol·L-1 NH4OAc、0.1 mol·L-1 NaNO3、1.0 mol·L-1 NH4 NO3、0.5 mol·L-1 NH4 NO3+0.02 mol·L-1 EDTA、0.1 mol·L-1 C6H8O7(柠檬酸)和0.1 mol·L-1C2H2O4(草酸)等11种(共15个处理)化学提取剂提取的土壤Cu、Cd化学有效态含量与作物体内Cu、Cd含量的相关性,确定适宜的提取方法。结果表明,0.05mol·L-1 EDTA、DTPA(pH7.3)、0.1 mol·L-1 HCl、0.1mol·L-1 C6H8O7(柠檬酸)和2.5% HoAc等5种提取剂能有效地反映黄棕壤Cu、Cd的植物有效性。在此基础上,利用不同污染企业周边的红壤-白菜系统(n=28)检验了上述5种提取剂的适用性。
     由于土壤Cu、Cd的植物有效性受到土壤、重金属和植物三方面因素的综合影响,故已筛选出的5种提取剂均无法同时表征不同土壤-植物系统中Cu、Cd的植物有效性。采用总权重离子冲量(ωI=(?)ω(Ci1/n))校正土壤Cu和Cd的毒性差异,其中Cu和Cd的权重值ω分别为1和6i=1;该指标不考虑中性和酸性土壤性质差异对Cu、Cd植物有效性的影响,碱性土壤中Cu、Cd的植物有效性较低,可对提取量减半校正;利用植物含水率校正植物对重金属的吸收差异。校正后,0.1mol·L-1HCl提取的土壤Cu、Cd含量可同时表征上述两个系统中土壤Cu、Cd的植物有效性。其中,土壤Cu、Cd的总权重离子冲量(ωI)与植物体内的总权重离子冲量极显著相关,相关系数达0.901(n=35,P<0.01)。
     为了建立土壤Cu、Cd的植物有效性评估模型,选择代表性土壤中的黑土、暗棕壤、棕壤、黄棕壤、砖红壤、赤红壤、红壤、黄壤、紫色土、灰钙土、潮土和水稻土等12个土类共57个不同土样为供试对象,分析测定了土壤的基本理化性质(pH、有机质、速效磷、阳离子代换量、粘粒含量和土壤全Cu、全Cd),以0.lmol·L-1 HCl提取的Cu、Cd含量表征土壤重金属的植物有效性,利用多元线性回归的方法建立土壤Cu、Cd的植物有效性与土壤基本理化性质关系的评估模型。本试验结果表明,土壤中Cd的植物有效性与土壤中全Cd、有机质和速效磷含量呈显著的正相关关系,而与土壤pH呈显著的负相关关系。土壤Cu的植物有效性与土壤全Cu、全Cd和速效磷含量显著正相关,与土壤pH显著负相关。由此可见,在考虑Cu的植物有效性时,必须考虑Cd的影响。采用总权重离子冲量的形式可同时表征复合污染土壤中Cu、Cd的植物有效性:lgωI植物=0.995 lgωI土+0.1531gP速效+0.0841gSOM-0.058pH-0.365 (r=0.875, F=42.570, n=57, P<0.001).
     在南昌地区化工、钢铁、电镀和塑料4种类型6个企业周边采集土壤-蔬菜样品(n=75)以检验评估模型的适用性。一元线性回归的分析结果表明,土壤Cu、Cd的植物有效性预测值与实测值之间呈极显著正相关关系(r=0.88,n=75,P<0.001),说明复合污染土壤中Cu、Cd的植物有效性主要受到土壤Cu和Cd的全量、pH、有机质和速效磷含量的影响,且采用总权重离子冲量建立的评估方程能较好地预测土壤Cu、Cd的植物有效性。
     (2)土壤Cu、Cd复合污染对植物生长、生理指标的影响
     评估和预测土壤中Cu、Cd的植物有效性是为了针对不同污染水平的土壤如何选择不同的利用方式,以实现科学合理的管理目标。因此,本文进一步探讨了土壤Cu、Cd复合污染对黑麦草和海州香薷两种植物种子萌发、幼苗生长和生理指标的影响。
     Cu、Cd胁迫对黑麦草和海州香薷种子的萌发实验结果表明,种子萌发过程主要依靠自养,因北Cu、Cd胁迫对种子萌发带来的影响不大。水培实验结果表明,当溶液中Cu和Cd的浓度分别为10 mg·L-1和30 mg·L-1时,黑麦草的苗长受到极显著的胁迫作用(P<0.01);当Cu和Cd的浓度分别为30 mg·L-1和5 mg·L-1时,海州香薷的苗长受到极显著的胁迫作用(P<0.01)。在本实验条件下,溶液中低浓度的Cu和Cd分别使海州香薷和黑麦草的苗长表现出毒性兴奋现象,说明海州香薷是Cu的耐性植物而黑麦草为Cd的耐性植物。
     生物盆栽实验结果表明,两种植物地下部对Cu、Cd的吸收系数>地上部的吸收系数。红壤pH对黑麦草影响较大,土壤pH<5.0时黑麦草就无法正常生长。对于弱酸性红壤(pH6.0左右),全Cu<80 mg·kg-1时,黑麦草的生物量、叶绿素含量、抗氧化酶活性、根系活力和MDA含量与对照相比差异不大。当土壤中Cu含量达到230 mg·kg-1时,尽管黑麦草地上部分减产不明显,但黑麦草的生化指标已受到了明显的抑制,且重金属的吸收系数较大。由于黑麦草是Cd的耐性植物,Cd含量的增加未对黑麦草的生长和生理指标表现出显著差异。因此,为保证牧草的品质安全,黑麦草不适宜种在Cu、Cd重污染土壤上。海州香薷对土壤Cu含量和土壤酸性均有较高的耐性,在酸性红壤上(pH5.0左右),与对照相比,土壤中Cu含量为80 mg·kg-1时还能促进海州香薷的生长;当Cu含量达230 mg·kg-1时,海州香薷的生长则受到显著抑制。与黑麦草不同,当土壤Cd含量由0.05 mg·kg-1增加到15.97 mg·kg-1时,海州香薷的生长和生理指标受到显著的抑制作用。
     叶绿素含量、POD酶活性、SOD酶活性,根系活力和MDA含量等生理指标均能反映Cu、Cd对海州香薷和黑麦草生长的胁迫作用。土壤蛋白酶、脲酶、过氧化物酶和酸性磷酸酶可以指示土壤Cu、Cd复合污染的程度。Cu和Cd之间表现为协同作用,并且这种协同作用在高Cu含量时更大。
     (3)复合污染土壤中Cu、Cd植物有效性的调控措施
     最后,本研究进一步探索了调控复合污染土壤中Cu、Cd有效性的具体措施。由于壳聚糖可提高土壤中Cu、Cd的活性,而二氧化钛可通过羟基基团的吸附作用钝化土壤中的Cu、Cd活性,所以采用“海州香薷联合壳聚糖活化诱导”和“海州香薷联合二氧化钛钝化”两种“植物+改良剂”联合的方法,比较两者对复合污染土壤中Cu、Cd有效性的调控效果的差异。结果表明,施用两种改良剂后仍可用植物的叶绿素含量、抗氧化酶系统、MDA含量和根活力等指标反映Cu、Cd对植物生长的胁迫作用。两种调控措施均可提高海州香薷地上部对Cu、Cd的积累量,因此优于单一植物修复的效果。“海州香薷联合壳聚糖活化诱导”的调控措施适用于含Cu量较低的复合污染红壤;而“海州香薷联合二氧化钛钝化”的调控措施更适用于含Cu量较高的复合污染红壤。
Heavy metals (HMs) pollution in soils has seriously affected soil quality and led to lots of food safety problems. Since plants have great interrelationship with soil, in the ecological environment research field there are hot discussion about the assessment of the phytoavailability of HMs in soil, remediation of soil contaminated with HMs and its safety utilization. With the purpose of improving the polluted soil management and its safety utilization, this study built and tested the statistical model of Cu, Cd phytoavailablity in contaminated soils, and focused on the effect of contaminated soil on plant growth and the control measures.
     To built and test the model of Cu, Cd phytoavailability in contaminated soils
     The first part of this study was to set up the appropriate extracting methods about phytoavailability of Cu, Cd in soils. Yellow brown earth-rice(oryza sativa) grain system near one polluted enterprises was studied. Chemical extractants, including 0.1mol·L-1 HC1, 0.5mol·L-1 HC1,2.5% HOAc,5% HOAc, DTPA(pH7.3),0.05 mol·L-1 EDTA,0.01 mol·L CaCl2,0.05ml·L-1 CaCl2,0.5 mol·L-1NH4OAc,1.0 mol·L-1 NH4OAc,0.1 mol·L-1 NaNO3, 1.0 mol·L-1NH4 NO3,0.5 mol·L-1 NH4NO3+0.02 mol·L-1 EDTA,0.1mol·L-1 C6H8O7(citric acid) and 0.1mol·L-1 C2H2O4(oxalic acid), were used to extract Cu and Cd from the soil samples. The correlation of the amount of Cu, Cd extracted from soil and the amount of Cu, Cd in plant was analyzed using the single linear regression models. The results showed that, among the eleven extractants, 0.05mol·L-1 EDTA, DTPA (pH7.3), 0.1mol·L-1 HC1, 0.1mol·L-1 C6H8O7 (citric acid) and 2.5% HoAc could reflect the phytoavailability of Cu, Cd in the test soils. And the 5 extractants were proved valid in the red soil-pakcoi (Brassica chinensis) system adjacent to different polluted enterprises.
     It was difficult for any extractant to characterize the phytoavailablity of Cu and Cd in different soil-plant system simultaneously, since the phytoavailability was determined by interaction of soil, HMs and plant. Weight ion impulse (ωI=(?)ω(Ci1/n)) was used to correct toxic difference of Cu and Cd, and the weight index of Cu and Cd was 1 and 6 respectively. The extracted content of alkaline soil should be cut half for soil correction. In addition, the water content was used to correct the absorption difference among different plants. After the correction from these three factors, total WI of Cu-Cd extracted by 0.1mol·L-1 HCl could well reflect the phytoavailablity of the test soils. The total WI in the soil has significant correlationship with the total WI in the plant(r=0.901, n=35, P<0.01).
     Then, the study was to build a statistical model of Cu,Cd phytoavailablity in different kinds of soils. The parameters included a series of physicochemical properties (including pH, soil organic matter(SOM), available phosphorous content(Pavailable), CEC and clay content, total-Cu and total-Cd) of 57 soil samples that covered 12 soil classes, i.e., black soil, dark brown soil, brown soil, yellow brown soil, latosol, latosolic red soil, red soil, zheltozem, purple soil, light sierozem, alluvial soil and paddy soil. The Cu, Cd phytoavailable contents were extracted by 0.lmol·L-1 HC1. The statistical model of Cd phytoavailablity and Cu phytoavailability against soil physicochemical properties were analyzed with SPSS 13.0. Under the experimental condition, there was significant positive correlation between Cd phytoavailabilty and total-Cd, SOM and Pavailable and negative correlation with pH. And there was positive correlation between Cu phytoavailability and total-Cu, total-Cd and Pavailable, and negative correlation with pH. However, the phytoavailability of Cu was affected by total-Cd significantly. The statistical model expressed in terms of total WI could characterize the relationship between the phytoavailability of Cu, Cd and physicochemical properties in different soils. The model could be mathematically described by lgWIpian=0.995 lgWIsoil+0.1531gPavailable+0.841gSOM-0.058pH-0.365(r=0.875, F=42.570, n=57, P<0.001).
     The statistical model was tested and applied by the red soil-vegetable system in the adjacent area of Nanchang. Soil and vegetable samples were taken from the sites around six enterprises including iron and steel, chemical industry, electroplating and plastic manufactory in this area. Predicted phytoavailability was significant correlation with the actual content, while the main related factors were total Cu-Cd, SOM, pH and Pavailable (r=0.88,n=75, P<0.001).
     Effects of Cu, Cd contamination on plant growth and physiological index
     The purpose of predicting phytoavailability of Cu and Cd in soils is to provide the basis for utilization and management of HMs contaminated soil and to ensure the sustainable development. The second part of the study discussed the germination, seedling growth and physiological quality of ryegrass(Lolium perenne L.) and Elsholtzia Splendens under Cu-Cd combined contamination.
     The germination test results showed the influence of Cu and Cd on plant germination was little, because plant germination mainly depended on self-nutrition. The height of the seedling could reflect the stress of Cu and Cd. The seedling height of ryegrass treated with Cu or Cd at 10mg·L-1 or 30 mg·L-1 respectively was significantly restrained. The seedling height of Elsholtzia Splendens was significantly restrained when Cu or Cd at 30mg·L-1 or 5mg·L-1 respectively. The height of ryegrass was significant enlonged when the concentration of Cd was low. Therefore it could be concluded that ryegrass was tolerant species of Cd and the same for Elsholtzia Splendens to Cu.
     Ryegrass and Elsholtzia's pot experiment results showed that absorption coefficient of Cu and Cd in root was greater than that in shoot. Ryegrass stopped growing when soil pH was lower than 5.0. When total Cu in soil was less than 80 mg·kg-1 with soil pH about 6.0, the biomass, chlorophyll content, antioxidant enzymes, root vigor and MDA content of ryegrass had little difference with the CK treatment. When total Cu was more than 230mg·kg-1, physiological index of the plant had been stressed significantly, and the absorption coefficient of Cu and Cd increased significantly. The physiological index of ryegrass, being a Cd tolerant plant, had little difference with the other treatment under the same copper concentration. In order to ensure the forage safety, ryegrass could not be planted in heavy polluted soil. When total Cu in soil was less than 80 mg·kg-1, Elsholtzia biomass was higher than CK treatment. The biomass was stressed significantly while total Cu was more than 230 mg·kg-1.
     All of the physiological index in this study, including chlorophyll content, antioxidant enzymes, root vigor and MDA content of the plant, had been stressed significantly by Cu and Cd. Soil proteinase, urease, peroxidase and phosphatase could indicate Cu, Cd contamination. Interaction between Cu and Cd was synergic under Cu, Cd combined contamination, and the higher Cu concentration, synergy stronger. The results were also demonstrated in the solution culture experiments.
     Control on phytoavailability of Cu-Cd in contaminated soil
     Finally, the control on phytoavailability of Cu-Cd in contaminated soil were studied. Chitosan could improve phytoavailability of Cu-Cd in red soil whereas TiO2 had the counter-productive reduction ability of heavy metal in that TiO2 can absorb Cu and Cd by hydroxyl group. So the combination control measures, such as "Elsholtzia and chitosan" and "Elsholtzia and TiO2" were adapted to comparing control effects with sole phytoremediation. The results showed that physiological index, such as chlorophyll content, antioxidant enzyme activities, root vigor and MDA content, could reflect the stress of Cu-Cd combined contamination on the growth of plant, no matter what chemical amendment was used. The total content of Cu-Cd in the plant with the combination measure was greater than that with sole phytoremediation, so the effect of former was better than that of the latter. Furthermore, "Elsholtzia and chitosan" measure was suited for lighter contaminated soil, while the other combination measure was suited for heavy contaminated soil.
引文
[1]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605
    [2]王艮梅,周立祥,古新华.水田土壤中水溶性有机物的产生动态及对土壤中重金属活性的影响:田间微区试验[J]_环境科学学报,2004,24(5):858-864
    [3]Wang H Y, Sun X Y.Studies on heavy metal pollution in soil-plant system:A review[J]. Forestry Studies in China,2003,5(1):55-62
    [4]周启星.健康土壤学——土壤健康质理与农产品安全[M].北京:科学山版社,2005
    [5]Arias M, Perez C N, Osorio F et al. Adsorption and desorption of copper and zinc in the surface layer of acid soils[J]. Journal of Colloid and Interface Science,2005,288(1):21-29
    [6]Hejcman M, Szakova J, Schellberg J et al.The Rengen grassland experiment:soil contamination by trace elements after 65 years of Ca, N, P and K fertilizer application [J]. Nutrient Cycle Agro-ecosystem,2009,83 (1):39-50
    [7]Gadepalle V P, Sabeha K. O, Hutchings T. Remediation of copper and cadmium in contaminated soils using compost with inorganic amendments[J]. Water Air Soil Pollution,2009,196 (1):355-368
    [8]Huang S S, Liao Q L, Hua M et al. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China[J]. Chemosphere,2007,67 (11):2148-2155
    [9]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002:45-47
    [10]夏家淇,骆永明.我国土壤环境质量研究几个值得探讨的问题[J].生态与农村环境学报,2007,23(1):1-6
    [11]Whitaker H J, Ainsworth G, Meharg A A. Copper- and Arsenate-induced oxidative stress in Holcus lanatus L., clones with differential sensitivity[J]. Plant, Cell and Environment,2001,24 (7):713-722
    [12]Bakirdere S, Mehmet Y. Determination of lead, cadmium and copper in roadside soil and plants in Elazig Turkey[J]. Environmental Monitoring and Assessment,2008,136 (1):401-410
    [13]Vassilev A, Yordanov I, Tsonev T. Effects of Cd2+ on the physiological state and photosynthetic activity of young barley plants[J]. Photosynthetica,1997,34(2):293-302
    [14]Farid S, Baloch M K, Akhtar K S. Status of cadmium concentration in soil and vegetable irrigated with city effluent[J]. Chinese Journal of Applied and Environmental Biology,2006,12(3):414-419
    [15]Yang Y G, Jin Z S, Bi X Y et al. Atmospheric deposition-carried Pb, Zn and Cd from a zinc smelter and their effect on soil microorganisms [J]. Pedosphere,2009,19(4):422-433
    [16]Misra V, Tiwari A, Shukla B et al. Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings[J]. Environmental Monitoring Assessment, DOI 10.1007/s10661-008-0449-5
    [17]Uprety D, Hejcman M, Szakova J et al. Concentration of trace elements in arable soil after long-term application of organic and inorganic fertilizers[J]. Nutrient Cycling in Agroecosysytems, DOI 10.1007/sl0705-009-9263-x
    [18]Perez D M A, Burgos P, Madejon E et al. Microbial community structure and function in a soil contaminated by heavy metals:effects of plant growth and different amendments [J]. Soil biology and biochemistry,2006,38:327-341
    [19]Sun L N, Yang X B, Wang W Q et al. Spatial distribution of Cd and Cu in soils in Shenyang Zhangshi Irrigation Area (SZIA), China[J]. Journal of Zhejiang University Science B,2008,9(3): 271-278
    [20]黄璜,南忠仁,胡小娜等.金昌市城区土壤重金属空间分布及潜在生态危害评价[J].环境监测管理与技术,2009,21(5):30-34
    [21]Song B, Lei M, Chen T B et al. Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China[J]. Journal of Environmental Sciences,2009,21(12): 1702-1709
    [22]Chen T B, Zheng Y M, Lei M et al. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China[J]. Chemosphere,2005, (60):542-551
    [23]徐应明,梁学峰,孙国红等.海泡石表面化学特性及其对重金属Pb2+Cd2+Cu2+吸附机理研究[J].农业环境科学学报,2009,28(10):2057-2063
    [24]Zhang M K, Ke Z X. Heavy metals, phosphorus and some other elements in urban soils of Hangzhou City, China[J]. Pedosphere,2004,14(2):177-185
    [25]Zhao Y F, Shi X Zh, Huang B et al. Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China[J]. Pedosphere,2007,17(1):44-51
    [26]孟飞,刘敏,史同广.上海农田土壤重金属的环境质量评价[J].环境科学,2008,29(2):428-433
    [27]Zhang X Y, Lin F F,Mike T F et al. Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China[J]. Environment Monitoring and Assessment,10.1007/s 10661-008-0410-7
    [28]Liu X M, Wu J J, Xu J M. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS[J]. Environmental Pollution,2006,141 (6):257-264
    [29]Cheng J L, Shi Z, Zhu Y W. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China[J]. Journal of Environmental Sciences,2007,19 (1):50-54
    [30]师荣光,周启星,刘凤枝等.天津郊区土壤-蔬菜系统中Cd的积累特征及污染风险[J].中国环境科学,2008,28(7):634-639
    [31]徐勇贤,王洪杰,黄标等.长三角工业型城乡交错区蔬菜生产系统重金属平衡及健康风险[J].土壤,2009,41(4):548-555
    [32]]丁园,钟桂芳,宗良纲等.南昌地区不同企业周边重金属分布及影响规律[J].生态环境学报,2009,18(5):1783-1787
    [33]曾凡萍,肖化云,周文斌.乐安江河滩表层土中重金属的分布和残留分析[J].环境科学与技术,2009,32(2):96-101
    [34]傅杨武,祁俊生,陈书鸿等.三峡库区苎溪河流域消落带土壤重金属污染调查及评价[J].土壤通报,2009,40(1):162-165
    [35]Pruvot C, Douay F, Hervee F et al. Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas[J]. Journal of Soils and Sediments,2006,6 (4):215-220
    [36]Fernandez C J C, Barba B C, Gonzalez E I G. Heavy metal pollution in soils around the abandoned mine sites of the iberian pyrite belt (Southwest Spain) [J]. Water Air Soil Pollution,2009,200(1): 211-226
    [37]Mellor A, Bevan J R. Lead in the soils and stream sediments of an urban catchment in Tyneside, UK[J]. Water, Air, and Soil Pollution,1999,112(3):327-348
    [38]Kim J Y, Kim K W, Ahn J S et al. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea[J]. Environmental Geochemistry and Health,2005,27(2):193-203
    [39]Susana O R, Daniel R, Lazaro L et al. Assessment of heavy metal levels in Almendares River sediments-Havana City, Cuba[J].Water Research,2005,39(16):3945-3953
    [40]Chary N S, Kamala C T, Raj D S S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer[J]. Ecotoxicology and Environmental Safety,2008,69 (11):513-524
    [41]Nabulo G, Hannington O O, Miriam D. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda[J]. Environmental Research, 2006,101(1):42-52
    [42]Sharma R K, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J]. Ecotoxicology and Environmental Safety,2007,66 (2):258-266
    [43]Mapanda F, Mangwayana E N, Nyamangara J et al. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe[J]. Agriculture, Ecosystems and Environment,2005,107 (2):151-165
    [44]Obi E, Akunyili D N, Ekpo B et al. Heavy metal hazards of Nigerian herbal remedies[J]. Science of the Total Environment,2006,369 (1):35-41
    [45]窦磊,周永章,高全洲等.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,2007,38(3):576-583
    [46]王明聪,成杰民,纪发文等.土壤重金属环境质量评价基准体系进展与研究[J].资源环境与发展,2008(1):14-17
    [47]袁建新,王云.我国《土壤环境质量标准》现存问题与建议[J].中国环境监测,2000,16(5):41-44
    [48]于瑞莲,胡恭任.采矿区土壤重金属污染生态修复研究进展[J].中国矿业,2008,17(2):40-43
    [49]Margui E, Queralt I, Carvalho M L, et al. Assessment of metal availability to vegetation(Betula pendula) in Pb-Zn ore concentrate residues with different features[J]. Environmental Pollution,2007, 145(1):179-184
    [50]钟晓兰,周生路,黄明丽等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273
    [51]刘玉荣,党志,尚爱安等.几种萃取剂对土壤中重金属生物有效部分的萃取效果[J].土壤与 环境,2002,1(3):245-247
    [52]Schultx E, Joutti A, Raisanen M L, et al. Extractability of metals and ecotoxicity of soils from two old wood impregnation sites in Finland[J]. Science of the Total Environment,2004,236(29):71-84
    [53]Wu S C, Luo Y M, Cheung K C et al. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil:A laboratory study[J]. Environmental Pollution,2006,144 (3):765-773
    [54]孙叶芳,谢正苗,徐建明.TCLP法评价矿区土壤重金属的生态环境风险[J].环境科学,2005,26(3):152-156
    [55]杨忠平,卢文喜,李俊等.城市生态地球化学研究进展[J]_环境科学与技术,2009,32(2):65-71
    [56]Saeedi M, Hosseinzadeh M, Jamshidi A, et al. Assessment of heavy metals contamination and leaching characteristics in highway side soils, Iran[J]. Environmental Monitoring and Assessment, 2009,151 (1):231-241
    [57]Rao C R M, Sahuquillo A, Sanchez J F L. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials[J]. Water Air and Soil Pollution,2008,189(1):291-333
    [58]Wang W Sh, Shan X Q, Wen B, et al. Relationship between the extractable metals from soils and metals taken up by maize roots and shoots[J]. Chemosphere,2003,53 (5):523-530
    [59]Gupta A K, Sinha S. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil[J]. Journal of Hazardous Materials,2007,149(1):144-150
    [60]Qiao X L, Luo Y M, Christie P et al. Chemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolids-amended clay soils[J]. Chemosphere,2003,50 (6):823-829
    [61]Njofang C, Matschullat J, Amougou A et al. Soil and plant composition in the Noun river catchment basin, Western Cameroon:a contribution to the development of a biogeochemical baseline[J]. Environmental Geology,2009,56 (7):1427-1436
    [62]孟昭福,张增强,薛澄泽等.替代黑麦幼苗测定土壤中重金属生物有效性的研究[J].农业环境保护,2001,20(5):337-340
    [63]滕应,骆永明,李振高.土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响[J].中国环境科学,2008,28(2):147-152
    [64]王涵,王果,林清强等.Cu Cd Pb Zn对酸性耕作土壤3种酶活性的影响[J].农业环境科学学报,2009,28(7):1427-1433
    [65]Dudka S, Piotrowska M, Terelak H. Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plants:A field study[J]. Environmental Pollution,1996,94 (2):181-188
    [66]车飞,于去江,胡成等.沈抚灌区土壤重金属污染健康风险初步评价[J].农业环境科学学报,2009,28(7):1439-1443
    [67]钟晓兰,周生路,李江涛等.长江三角洲地区土壤重金属生物有效性的研究——以江苏昆山市为例[J].土壤学报,2008,45(2):240-248
    [68]胡文.土壤-植物系统中重金属的生物有效性及其影响因素的研究[D].北京林业大学,2009: 12-14
    [69]孟昭福,薛澄泽.土壤中重金属复合污染的表征[J].农业环境保护,1999,18(、2):87-91
    [70]陈怀满,郑春荣,周东美等.土壤环境质量研究回顾与讨论[J].农业环境科学学报,2006,25(4):821-827
    [71]梁彦秋,刘婷婷,铁梅等.镉污染土壤中镉的形态分析及植物修复技术研究[J].环境科学与技术,2007,30(2):57-58,106
    [72]Conesa H M, Robinson B H, Schulin R et al. Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions[J]. Environmental Pollution,2007,145(3):700-707
    [73]Wong J W C, Li K L, Zhou L X. The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge[J]. Geoderma,2007,137(3):310-317
    [74]Kuo S, Lai M S, Lin C W. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils[J]. Environmental Pollution,2006,144(3): 918-925
    [75]廖敏.pH对Cd在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    [76]Luo X S, Zhou D M, Liu X H et al. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China[J]. Journal of Hazardous Materials,2006,131(1):19-27
    [77]Ohya T, Tanoi K, Iikura H et al. Effect of rhizosphere pH condition on cadmium movement in a soybean plant[J]. Journal of Radioanalytical and Nuclear Chemistry,2008,275(2):247-251
    [78]余贵芬,蒋新,赵振华.腐殖酸存在下镉和铅对土壤脱氢酶活性的影响[J].环境化学,2006,25(2):168-170
    [79]Martin J A R, Arias M L, Corbi J M G. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations[J]. Environmental Pollution,2006,144(3):1001-1012
    [80]Jin Ch W, Zheng Sh J, He Y F et al. Lead contamination in tea garden soils and factors affecting its bioavailability[J]. Chemosphere,2005,59(8):1151-1159
    [81]Burgos P, Madejon E, Perez D M A et al. Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation[J]. Geoderma,2006,130 (1):157-175
    [82]Clemente R, Escolar A, Bernal M P. Heavy metals fractionation and organic matter mineralization in contaminated calcareous soil amended with organic materials[J]. Bioresource Technology,2006, 97(15):1894-1901
    [83]章明奎,方利平,张履勤.酸化和有机质积累对茶园土壤铅生物有效性的影响[J].茶叶科学,2005,25(3):159-164
    [84]章明奎,方利平,周翠.污染土壤重金属的生物有效性和移动性评价:四种方法比较[J].应用生态学报,2006,17(8):1501-1504
    [85]Zhou L X, Wong J W C. Effect of dissolved organic matters derived from sludge and composted sludge on soil Cu sorption [J]. Environment Quality,2001,30(3):878-883
    [86]Tu C, Zheng CH R, Chen H M. Effect of heavy metals on phosphorus retention by typic udic ferrisols:Equilibrium and Kinetics[J]. Pedosphere,2002,12(1):15-24
    [87]王碧玲,谢正苗.磷对铅、锌和镉在土壤固相-液相-植物系统中迁移转化的影响[J].环境科学,2008(11):3225-3229
    [88]Chen W P, Krage N, Wu L Sh et al. Fertilizer applications and trace elements in vegetable production soils of California[J]. Water Air Soil Pollution,2008,190(1):209-219
    [89]陈世宝,朱永官,杨俊诚等.土壤-植物系统中磷对重金属生物有效性的影响机制[J].环境污染治理技术与设备,2003,8(4):1-5
    [90]Butt D, Dowling K, Vinden P. Assessment of cadmium distribution in some Australian Krasnozems by sequential extraction[J]. Water, Air and Soil Pollution,2008,190(1):157-169
    [91]Carlon C, Valle M D, Marcomini A. Regression models to predict water-soil heavy metals partition coefficients in risk assessment studies[J]. Environment Pollution,2004,127(1):109-115
    [92]Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite[J]. Journal of Colloid and Interface Science,2005,290(1):28-38
    [93]Serranoa S, Garridoa F, Campbell C G, et al. Competitive sorption of cadmium and lead in acid soils of central Spain[J]. Geodema,2005,124(1):91-104
    [94]Mlynch J, Moffat A J. Bioremediation-prospects for the future application of innovative applied biological research[J]. Annals of Applied Biology,2005,146(2):217-221
    [95]Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance) [J]. Plant and Soil,2004,259(1):181-189
    [96]宗良纲,丁园.土壤重金属(CuZnCd)复合污染的研究现状[J].农业环境保护,2001,20(4):126-128
    [97]An Y J, Kim Y M, Kwon T I, et al. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation[J]. Science of the Total Environment,2004,326(29):85-93
    [98]黄德乾,王玉军,汪鹏等.三种不同类型土壤上水稻对Cu、Pb和Cd单一及复合污染的响应[J].农业环境科学学报,2008,27(1):46-49
    [99]Louekari K, Kurtto M R, Jousilahti P. Health risks associated with predicted increase of cadmium in cultivated soils and in the diet[J]. Environmental Modeling and Assessment,2008,13(4):517-525
    [100]Remona E, Bouchardonb J L, Cornier B et al. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill:implications in risk assessment and site restoration[J]. Environmental Pollution,2005,137(2):316-323
    [101]李华,骆永明,宋静.不同铜水平下海州香薷的生理特性和铜积累研究[J].土壤,2002,34(4):225-228
    [102]Tang S R, Wilke B M, Brooks R R. Heavy metal uptake by metal-tolerant Elsholtzia splendens and Commelia communis from China[J]. Communications in Soil Science and Plant Analysis,2001, 32(5):895-905
    [103]Torresdey G J L, Videa P J R, Montes M, et al. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.:impact on plant growth and uptake of nutritional elements[J]. Bioresource Technology,2004,92(3):229-235
    [104]谢建治,刘树庆,刘玉柱等.保定市郊土壤重金属污染对蔬菜营养品质的影响[J].农业环境保护,2002,21(4):325-327
    [105]胡斌,段吕群,刘醒华.云南寻定几种农作物籽粒中重金属的比较研究[J].重庆环境科学,1999,21(6):45-47
    [106]McBride M B. Cadmium uptake by crops estimated from soil total Cd and pH[J]. European Journal of Soil Science,2002,167(1):62-67
    [107]Chen H M, Zheng Ch R, et al. Combined pollution and pollution index of heavy metal in red soil[J]. Pedosphere,2000,10(2):117-12
    [108]Lee H, Ha H S, Lee Ch H et al. Fly ash effect on improving soil properties and rice productivity in Korean paddy soils[J]. Bioresource Technology,2006,97(13):1490-1497
    [109]Clemente R, Almela C, M Bernal P. A remediation strategy based on active phyto- remediation followed by natural attenuation in a soil contaminated by pyrite waste[J]. Environmental Pollution, 2006,143(3):397-406
    [110]Deng H, Yea Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China[J]. Environmental Pollution,2004, 132(1):29-40
    [111]Gao Y Z, Xiong W, Ling W T. Sorption of phenanthrene by soils contaminated with heavy metals[J]. Chemosphere,2006,65(8):1355-1361
    [112]Ju X T, Kou C L, Christie P et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China plain[J]. Environmental Pollution,2007,145(2):497-506
    [113]Khan M J, Jones D L. Effect of composts, lime and diammonium phosphate on the phyto-availability of heavy metals in a copper mine tailing soil[J]. Pedosphere,2009,19(5):631-641
    [114]Brus D J, Gruijter D J J, Pfam R. Probabilistic quality standards for heavy metals in soil derived from quality standards in crops[J]. Geoderma,2005,128(3):301-311
    [115]Tippinga E, Rieuwerts J, Panb G et al. The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales[J]. Environmental Pollution,2003,125(2):213-225
    [116]Francois M, Grant C, Lambert R et al. Prediction of cadmium and zinc concentration in wheat grain from soils affected by the application of phosphate fertilizers varying in Cd concentration[J]. Nutrient Cycle Agroecosystem,2009,83:125-133
    [117]Azpiazu M N, Romero F. Metal distribution and interaction in plant cultures on artificial soil[J]. Water Air and Pollution,1986,28(1):1-26
    [118]Hakanson L. An Ecology Risk Index for Aquatic Pollution Control:a Sedimentological Approach [J]. Water Resources,1980,14(8):975-1001
    [119]丁园.重金属污染土壤的治理方法[J].环境与开发,2000,15(6):25-28
    [120]Moutsatsou A, Gregou M, Matsas D, et al. Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities[J]. Chemosphere,2006,63(10):1632-1640
    [121]丁园,宗良纲.重金属复合污染红土壤增施石灰石对黑麦草生长的影响[J].南昌航空工业学院学报,2003,14(3):22-251
    [122]Bertocchi A F, Ghiani M, Peretti R et al. Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn[J].Journal of Hazardous Materials,2006,134(1):112-119
    [123]Gray C W, Dunham S J, Dennis P G et al. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud[J]. Environmental Pollution,2006,142(3):530-539
    [124]Sancheza A G, Alastuey A, Querolb X. Heavy metal adsorption by different minerals:application to the remediation of polluted soils[J].The Science of the Total Environment,1999,242 (1):179-188
    [125]Ciccu R, Ghiani M, Serci A, et al. Heavy metal immobilization in the mining contaminated soils using various industrial wastes[J]. Minerals Engineering,2003,16(3):187-192
    [126]孙彬彬,周国华,刘占元.黄河下游山东段沿岸土壤中重金属元素异常的成因[J].地质通报,2008,27(2):265-270
    [127]Ulmanu M, Anger I, Fernandez Y et al. Batch chromium(Ⅵ), cadmium(Ⅱ) and lead(Ⅱ) removal from aqueous solutions by horticultural peat[J]. Water Air Soil Pollution,2008,194(1):209-216
    [128]Ayuso A E, Sanchez G A. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J]. Environmental Pollution,2003,125(3):337-344
    [129]王立群,罗磊,马义兵等.不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响[J].农业环境科学学报,2009,28(6):1098-1105
    [130]Baker A J M, Brooks R R, Pease A J et al. Studies on copper and cobalt tolerance in three closey related taxa with in the genus silene L. (Caryophyllaceae) from Zaire[J]. Plant and Soil,1983,73(3): 377-385
    [131]何兰兰,角媛梅,王李鸿等.Pb、Zn、Cu、Cd的超富集植物研究进展[J].环境科学与技术,2009,32(11):120-123
    [132]Evangelou M W H, Daghan H, Schaeffer A. The influence of humic acids on the phytoextraction of cadmium from soil[J]. Chemosphere,2004,57(3):207-213
    [133]Clemente R, Walker D J, Bernal M P. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain):The effect of soil amendments[J]. Environmental Pollution,2005,138(1):46-58
    [134]Meers E, Ruttens A, Hopgood M. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere,2005,61(4):561-572
    [135]Baker A J M, McGrath S P, Sidoli C M D et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J]. Resources, Conservation and Recycling,1994,11(1):41-49
    [136]Meagher R B. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology,2000,3(2):153-162
    [137]Hammer D, Keller C, Michael M J et al.Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants:Results from an isotopic dilution study[J].2006,143(3):407-415
    [138]Zhang P, Shu W Sh, Li Zh et al. Removal of metals by sorghum plants from contaminated land[J]. Journal of Environment Sciences,2009,21(1):1432-1437
    [139]Arienzo M, Adamo P, Cozzolino V. The potential of Lolium perenne form revegetation of contaminated soil from a metallurgical site[J]. The Science of the Total Environment,2004,319 (1): 13-25
    [140]温丽,傅大放.没食子酸辅助溧阳苦菜对复合重金属污染土壤的修复[J].中国环境科学,2008,28(7):651-655
    [141]Meers E, Ruttens A, Hopgood M J et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J].Chemosphere,2005,58(1):1011-1022
    [142]Lim T T, Chui P Ch, Gong K H. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil[J].Chemosphere,2005,58 (8):1031-1040
    [143]Sarathchandra S U, Watson R N, Cox N R et al. Effects of chitin amendment of soil on microorganisms, nematodes, and growth of white clover(Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) [J]. Biology and Fertility of Soils,2004,12(1):221-226
    [144]Khodadoust A P, Reddy K R, Maturi K. Effect of different extraction agents on metal and organic contaminant removal from a field soil[J]. Journal of Hazardous Materials,2005,117(1):15-24
    [145]张中文,李光德,周楠楠等.茶皂素对污染土壤中重金属的修复作用[J].水土保持学报,2008,22(6):67-70
    [146]Huang B, Shi X Zh, Yu D Sh. Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China[J]. Agriculture, Ecosystems and Environment,2006,112(4):391-402
    [147]孙晋伟,黄益宗,石孟春等.土壤重金属生物毒性研究进展[J].生态学报,2008,28(6):2861-2869
    [148]罗雪梅,陈新之,王侃等.沈阳市蔬菜生产基地重金属污染及评价[J].环境保护科学,2003,29(118):43-45
    [149]顾国平,章明奎.蔬菜地土壤有效态重金属提取方法的比较[J].生态与农村环境学报,2006,22(4):67-70
    [150]陈飞霞,魏世强.土壤中有效态重金属的化学试剂提取法研究进展[J].干旱环境监测,2006,20(3):153-157
    [151]尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法研究进展[J].农业环境保护,2001,20(4):266-269
    [152]徐明岗,纳明亮,张建新等.红壤中Cu、Zn、Pb污染对蔬菜根伸氏的抑制效应[J].中国环境科学,2008,28(2):153-157
    [153]Yu S, He Z L, Huang C Y, Chen G C et al. Copper fractionation and extractability in two contaminated variable charge soils[J]. Geoderma,2004,123(1):163-175
    [154]王显海,刘云国,曾光明等.EDTA溶液修复重金属污染土壤的效果及金属的形态变化特征 [J].环境科学,2006,27(5):1008-1012
    [155]Elliott H A, Herzig L M. Oxalate extraction of Pb and Zn from polluted soils:solubility limitations[J]. Journal of Soil Contamination,1999,8(1):105-116
    [156]Wu Q T, Deng J C, Long X X, et al. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators[J]. Journal of Environmental Sciences,2006,18(6): 1113-1118
    [157]Cheng T B. Application of NaHCO3/DTPA extractant-ICP spectrometry technique in soils test for availability of nutrients and heavy metals[J]. Pedosphere,1993,3(3):38-42
    [158]张华,朱志良,张丽华等.天冬氨酸和柠檬酸对污泥中重金属萃取的比较研究[J].环境科学,2008,29(1):733-737
    [159]Polettini A, Pomi R, Rolle E etal. A kinetic study of chelant-assisted remediation of contaminated dredged sediment[J]. Journal of Hazardous Materials,2006,137(3):1458-1465
    [160]曾敏,廖柏寒,曾清如等.3种萃取剂对土壤重金属的去除及其对重金属有效性的影响[J].农业环境科学学报,2006,25(4):979-982
    [161]林君锋,高树芳,王果等.蔬菜对土壤镉铜锌富集能力的研究[J].土壤与环境,2002,11(3):248-251
    [162]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,2000
    [163]Lopez M, Gonzalez I, Romero A. Trace elements contamination of agricultural soils affected by sulphide exploitation [J]. Environmental Geology,2008,54(4):805-818
    [164]尹君,张毅功,肖崇彬等.土壤中有效态镉测定方法探讨[J].河北农业大学学报,1993,16(4):37-40
    [165]Meers E, Samson R, Tack F M G et al. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris[J]. Environmental and Experimental Botany,2007,60 (3):385-396
    [166]潘逸,周立祥.施用有机物料对土壤中Cu、Cd形态及小麦吸收的影响:田间微区试验[J].南京农业大学学报,2007,30(2):142-146
    [167]韩春梅,王林山,巩宗强等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502
    [168]Kashem M A, Singh B R. Metal availability in contamination soils:I. effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn[J]. Nutrient Cycling in Agroecosystems,2001,61(3):241-255
    [169]Brus D J, Gruijter J J. Walvoort D J, et al. Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands[J]. Journal of Environmental Quality,2002, 31(6):1875-1884
    [170]Wang C X, Mo Z, Wang H et al. The transportation, time-dependent distribution of heavy metals in paddy crops[J]. Chemosphere,2003,50(6):717-723
    [171]Song J, Zhao F J, Steve P et al. Influence of soil properties and aging on arsenic phytotoxicity[J]. Environmental Toxicology and Chemistry,2006,25(6):1663-1670
    [172]Gu Z L, Wu L S, Xie S Q et al. Toxicity of Cu and Cd in soils and detoxication by additives[J]. Pedosphere,1991,1(3):265-275
    [173]朱亮,邵孝候.耕作层中重金属Cd形态分布规律及植物有效性研究[J].河海大学学报,1997,25(3):50-56
    [174]Seregin I V, Ivanov V B. Physiological aspects of cadmium and lead toxic effects on higher plants[J]. Russian Journal of Plant Physiology,2001,48(4):523-544
    [175]莫争,王春霞,陈琴等.重金属Cu, Pb, Cr, Cd在水稻植株中的富集和分布[J].环境化学,2002,21(2):110-116
    [176]Qian Y, Zheng M H, Gao L et al. Heavy metal contamination and its environmental risk assessment in surface sediments from Lake Dongting, People's Republic of China[J]. Bulletin Environment Contamination Toxicology,2005,75(1):204-210
    [177]刘衍君,汤庆新,白振华等.基于地质累积与内梅罗指数的耕地重金属污染研究[J].中国农学通报,2009,25(20):174-178
    [178]钱翌,赵世刚.青岛市不同生态功能区表层土壤重金属污染初步评价[J].中国农学通报,2010,26(9):352-356
    [179]Korre A, Durucan S, Koutroumani A. Quantitative-spatial assessment of the risks associated with high Pb loads in soils around Lavrio, Greece[J]. Applied Geochemistry,2002,17(8):1029-1045
    [180]刘影,黄耀.水稻籽粒镉积累模型[J].安全与环境学报,2007,7(1):4-7
    [181]Martin S M J, Camazano S M. Adsorption and mobility of cadmium in natural, uncultivated soils [J]. Journal of Environmental Quality,1993,22(4):737-742
    [182]Chip A, Ma L. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils[J]. Journal of Environmental Quality,2002,31(3):581-589
    [183]张晓萍,宗良纲,郑建伟等.不同施肥措施对镉污染土壤上菊花生长及其品质的影响[J].农业环境科学学报,2008,27(4):1617-1622
    [184]谢小进,康建成,李卫江等.上海宝山区农用土壤重金属分布与来源分析[J].环境科学,2010,31(3):768-774
    [185]赵秀峰,王强盛,石宁宁等.石化园区周边农田土壤重金属污染分析与评价[J].环境科学学报,2010,30(1):133-141
    [186]王美娥,周启星.重金属Cd、Cu对小麦幼苗生理生化过程的影响及其毒性机理研究[J].环境科学学报,2006,26(12):2033-2038
    [187]宋玉芳,许华夏,任丽萍等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应[J].环境科学,2002,23(3):103-107
    [188]Liu X L, Zhang S Z, Shan XQ, et al.Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat[J]. Chemosphere,2005,61(2):293-301
    [189]Kepova D K D, Stoilova S L, Stoyanova Z, et al. Biochemical changes in barley plants after excessive supply of copper and manganese[J]. Environmental and Experimental Botany,2004,52(2): 253-266
    [190]温丽,傅大放.两种强化措施辅助黑麦草修复重金属污染土壤[J].中国环境科学,2008,28(9):786-790
    [191]Chen Y X, Wang Y P, Wu W X, et al. Impacts of chelator—assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non- accumulator[J]. Science of the Total Environment,2006,356(1):247-55
    [192]Zhao Y Ch. Effects of Cu2+ and Cd2+ stress on growth and POD activity of tomato seedling[J]. Agricultural Science and Technology,2008,9(2):106-108,125
    [193]甘露,朱玉梅,何麒等.不同甘蓝型油菜幼苗期对Ag+和Pb2+的耐性研究[J].农业环境科学学报,2008,27(2):477-481
    [194]郑爱珍.重金属Cr污染对辣椒幼苗生理生化特性的影响[J].农业环境科学学报,2007,26(4):1343-1346
    [195]殷恒霞,李霞,米琴等.镉、锌、铜胁迫对向日葵早期幼苗生长的影响[J].植物遗传资源学报,2009,10(2):290-294
    [196]李伟强,毛任钊,刘小京等.胁迫时间与非毒性离子对重金属抑制拟南芥种子发芽及幼苗生长的影响[J].应用生态学报,2005,16(10):1943-1947
    [197]张凤琴,王友绍,李小龙.复合重金属胁迫对秋茄幼苗某些生理特性的影响[J].生态环境,2008,17(6):2234-2239
    [198]朱红霞,陈效民,葛才林.重金属复合污染对小麦幼苗生长的影响[J].生态环境,2006,15(3):543-546
    [199]郑世英.不同浓度的Cd2+处理对白菜种子萌发及幼苗生长的影响[J].种子,2008,27(1):11-13
    [200]丁园,刘继东,史蓉蓉等.石灰石对酸性红壤pH值的影响[J].南昌航空工业学院学报,2003,17(4):51-53
    [201]曲贵伟,Amarilis de Varennes,依艳丽.聚丙烯酸盐对长期重金属污染的矿区土壤的修复研究(Ⅱ)[J].农业环境科学学报,2009,28(4):653-657
    [202]Temminghoff E J M, Vanderzee S E A T M, Dehaan F A M. Copper moblility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter[J]. Environmental Science and Technology,1997,31(4):1109-1111
    [203]Moreno J L, Garcia C, Hernandez T, et al. Transference of heavy metals from a calcareous soil amended with sewage-sludge compost to barley plants[J]. Bioresource Technology,1996,55(3): 251-258
    [204]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [205]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [206]Wierzbicka M, Obidzinska J. The effect of lead on seed inhibition and germination in different plant species[J]. Plant Science,1998,137(2):155-171
    [207]刘毓谷.卫生毒理学基础[M].北京:人民卫生出版社,1996:78-80
    [208]周启星.复合污染生态学[M].北京:中国环境科学出版社,1995:5-6
    [209]孟庆俊,袁训珂,冯启言等.重金属复合污染对小麦幼苗生长的毒性效应[J].安徽农业科学,2008,36(1):122-124
    [210]Stobart A K, Griffiths W T, Ameen-Bukhari I et al. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley[J]. Physiologia Plantarum,1985,63(3):293-298
    [211]Khan A G, Kuek C, Chaudhry T M, et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation[J]. Chemosphere,2000,41(2):197-207
    [212]杨红飞,严密,姚婧等.铜、锌污染对油菜生长和土壤酶活性的影响[J].应用生态学报,2007,18(7):1484-1490
    [213]李正强,熊俊芬,马玉芳等.4种改良剂对铅锌尾矿污染土壤中光叶紫花苕生长及重金属吸收特性的影响[J].中国生态农业学报,2010,18(1):158-163
    [214]周振民.污水灌溉区土壤重金属污染对玉米生长影响研究[J].中国农村水利水电,2010,4:62-65,69
    [215]雷冬梅,段昌群,张红叶.矿区废弃地先锋植物齿果酸模在Pb、Zn污染下抗氧化酶系统的变化[J].生态学报,2009,29(10):5417-5423
    [216]Lou L Q, Shen Z G, Li X D. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper enriched soils[J]. Environmental and Experimental Botany,2004,51(1):111-120.
    [217]孙小峰,吴龙华,骆永明.EDDS对海州香薷修复重金属复合污染土壤的田间效应[J].土壤,2006,38(5):609-613
    [218]李玉红,宗良纲,黄耀.螯合剂在污染土壤植物修复中的应用[J].土壤与环境,2002,11(3):303-306
    [219]杨智宽,舒俊林,刘良栋.壳聚糖螯合剂对Pb污染土壤植物修复的促进作用[J].农业环境科学学报,2006,25(1):86-89
    [220]李增新,王国明,孟韵等.壳聚糖对污染土壤中吸附态镉的提取效果研究[J].安全与环境学报,2008,8(5):51-54
    [221]王云,蔡汉,陆任云等.壳聚糖对镉胁迫条件下小麦生长及生理的影响[J].生态学杂志,2007,26(10):1671-1673
    [222]杨兰浩,胡斌,江祖成等.不同晶型和粒径的二氧化钛微粉对金属离子的吸附行为[J].中国稀土学报,2004,22(5):704-707
    [223]Adel A. I., Ayman A. E., Ibrahim A. I., et al. Heavy metal removal using SiO2-TiO2 binary oxide: experimental design approach[J]. Adsorption,2008,14(1):21-29
    [224]张晓萍.不同调控措施对镉污染土壤上菊科植物生长及品质安全的影响[D].南京农业大学,2008
    [225]Hu G. S. Adsorption Kinetics of Pb2+ and Cu2+ on variable charge soils and minerals:Ⅱ. equations for describing experimental data[J]. Pedospere,1993,3(2):161-172
    [226]Xue W B, Yi A H, Zhang Z Q et al. A new competitive adsorption isothermal model of heavy metals in soils[J]. Pedosphere,2009,19(2):251-257
    [227]于颖,周启星.重金属铜在黑土和棕壤中解吸行为的比较[J].环境科学,2004,25(1):128-132
    [228]刘艳,梁沛,郭丽等.负载型纳米二氧化钛对重金属离子吸附性能的研究[J].化学学报,2005,63(4):312-316
    [229]刘良栋,张伟安,舒俊林等.壳聚糖辅助下玉米修复铅污染土壤能力的研究[J].生态毒理学报,2006,1(3):271-277
    [230]Jorge C, Trevinol M, Coles C A. Kaolinite properties, structure and influence of metal retention on pH[J]. Applied Clay Science,2003,23:133-139
    [231]肖美秀,林文雄,陈冬梅.镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响[J].中国生态农业学报,2006,14(4):256-258
    [232]Assche F V, Clusters H. Effects of metals on enzyme activity in plants[J]. Plant, Cell and Environment,1990,13(2):195-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700