用户名: 密码: 验证码:
营养型抗旱保水剂与氮肥配施对土壤与作物的效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保水剂是一种具有保水、抗旱,提高水肥利用效率的农业节水制剂,已逐步应用于农业生产,并具良好应用前景。本研究通过盆栽和田间小区试验相结合的方法,采用河南省农业科学院研制的营养型抗旱保水剂,较为系统地研究了该保水剂与氮肥配合施用对土壤结构特征、持水、供水能力、小麦生理生化特征及作物水肥利用状况的影响。初步得出如下研究结果:
     1、对小麦增产效应进行分析表明:田间试验条件下,土壤施用保水剂促进了小麦的生长,增加了小麦叶面积和穗长、提高了小穗数、降低了小麦耗水量、促进了小麦产量和水分利用效率的提高。保水剂与氮配施效果更佳,较对照增产最高达54.8%,水分利用效率提高71.5%。同时,保水剂与氮肥配施后显著提高了氮素生产力。各处理中均以保水剂60kg/hm2与氮肥225kg/hm2配施的处理效果为佳。
     盆栽实验表明,不同水分条件下,单施保水剂提高小麦产量不显著,但其与氮肥配施时小麦产量显著提高,以中氮(225kg/hm2)处理最佳,且充分灌水显著高于轻度胁迫的处理。轻度胁迫条件下,较对照最高增产为78.9%,水分利用效率提高77.6%;充分灌水条件下最高增产98.2%,水分利用效率提高97.6%。此外,轻度胁迫条件下的水分利用效率均高于充分灌水的处理。对N肥农学效率、表观回收率及N素生产力而言,轻度胁迫时以氮肥432mg/kg与保水剂配施的处理较高,保水剂处理间差异不显著,而充分灌水时以保水剂54mg/kg与氮肥432mg/kg配施的处理较佳。
     2、对土壤结构与孔隙特征进行研究表明:施用保水剂显著提高了土壤的结构的稳定性,降低了土壤容重,而氮肥的施用对土壤结构稳定性的提高有促进作用。田间试验条件下,以保水剂60kg/hm2处理和保水剂60kg/hm2与氮肥225 kg/hm2配施的处理>0.25mm土壤水稳性团聚体含量较高,土壤结构较其它处理稳定。而在盆栽实验条件下,随小麦生育期的推进,土壤结构稳定性有所降低。轻度胁迫条件下的土壤结构较充分灌水的处理稳定。各处理中均以保水剂54mg/kg与氮肥配施的处理>0.25mm水稳性团聚体含量较高。
     利用CT扫描技术对盆栽条件下的土壤孔隙特征进行定量研究表明:施用保水剂与N肥后,土壤大孔隙数、孔隙度及土壤孔隙成圆率均显著提高。与充分灌水相比,轻度胁迫处理的大孔隙数和大孔隙度均较高,且轻度胁迫条件下以保水剂54mg/kg与氮肥432mg/kg配施的处理的总孔隙度和大孔隙度均较高,分别比对照增加57.3%和60.7%,而充分灌水条件下以保水剂54mg/kg与氮肥864mg/kg配施的处理较高,分别比对照增加55.4%和116.7%,表明在不同水分条件下,保水剂与氮肥配施,其用量适宜时对于土壤孔隙的改善效果更佳,有利于土壤中水分与养分被作物吸收利用,促进作物生长。
     3、在盆栽实验条件下,土壤水分特征研究表明:保水剂与氮肥配施,其土壤含水量与土壤水吸力均符合方程:θ=a·S-b,且土壤持水能力提高更加显著。轻度胁迫条件下,土壤持水能力随保水剂用量的增加而提高;充分灌水时,对照持水能力最低,而其它处理间差异较小。同时,保水剂的施用提高了土壤的供水能力、导水能力及增加土壤水分的有效性。轻度胁迫条件下的土壤供水能力均小于充分灌水条件下的土壤。轻度胁迫和充分灌水条件下,保水剂所吸持的水分能被作物吸收利用的部分分别较对照增加36.8%(保水剂81mg/kg与氮肥864mg/kg配施)和13.41%(27mg/kg与氮肥864mg/kg配施)。
     4、保水剂与N肥配施对小麦生理生化特征的影响反映了其对小麦生长及增产的机理,研究发现:
     在田间天然降水条件下,保水剂和N肥配施均提高了小麦叶片相对含水量、叶片叶绿素含量,降低了小麦叶片和根系的可溶性糖含量、脯氨酸含量及细胞质膜透性,增强了小麦的抗旱能力。各处理综合表现为:保水剂用量为60kg/hm2及保水剂60kg/hm2与氮肥225kg/hm2配施的处理效果较为显著;在拔节期,以单施氮肥450kg/hm2和保水剂60kg/hm2与氮肥450kg/hm2配施的处理叶片水分利用效率较高,分别比对照提高60.7%和52.1%。在灌浆期,以保水剂用量为30kg/hm2处理及保水剂60kg/hm2与氮肥225kg/hm2配施的处理较高,较对照提高123.5%和120.4%。说明土壤施用保水剂提高了小麦不同生育阶段的抗旱性能,降低或减缓了因干旱胁迫带来的伤害,促进了干物质的积累。
     在盆栽实验条件下,不同水分条件小麦光合生理特征对复水前后的响应表现为:复水前,在拔节期,轻度胁迫条件下以单施高氮处理(864mg/kg)的光合速率、蒸腾速率和气孔导度等较高。而充分灌水条件下,高氮虽降低了光合速率和蒸腾速率,但蒸腾速率降低的幅度更大,因此其叶片WUE却较高,而保水剂与N肥配施的处理光合速率等较低,但均高于对照;在孕穗-扬花期和灌浆期,复水前单施保水剂有利于提高小麦的光合速率、蒸腾速率及气孔导度,且轻度胁迫条件下,均以保水剂的用54mg/kg时效果最佳。而充分灌水条件下,以保水剂27mg/kg处理光合速率等最高。复水后,各处理的光合参数均显著提高,但在不同生育期土壤水分降低到一定程度后,其光合速率、蒸腾速率、气孔导度及叶片WUE又继续增加。综合以上分析:在小麦生长发育的中后期,N肥施用增加了复水前对小麦的胁迫,导致气孔导度等光合参数降低,但复水后其对小麦光合生理的激发效应更为显著,而适度干旱胁迫有利于小麦叶片WUE的提高。
     5、对小麦产量与土壤物理、小麦生理及小麦生长各指标等进行通径分析发现:土壤持水能力、供水能力、导水能力及田间持水量成为小麦籽粒产量的影响因子之一,且以轻度胁迫条件下效果较佳。对保水剂经济效益分析表明:60kg/hm2保水剂用量增产效果最显著,最大产投比为7.05,每hm2最大增收1317.6元。
The supperabsorbent polymer for water saving in agriculture is gradually applied to agricultural production, which has bright prospects of water conservation, drought resistance and improvement in water and fertilizer use efficiency.The nutritional and drought-resistant supperabsorbent polymer developed by Henan Academy of Agricultural Sciences was applied in the potted trial and field tests. In this paper, the influence of coupled utilization of supperabsorbent polymer and nitrogen fertilizer on the structural characteristics, water retention and delivery of soil, the physiological and biochemical characteristics of wheat and the water and fertilizer use efficiency is primarily analyzed.
     The preliminary results obtained from the tests are as follows:
     1. The stimulation effects of wheat in field tests indicate that the supperabsorbent polymer promotes the growth of wheat, manifested in the increase in the leaf area, wheatear and the decrease in the water consumption, which ultimately leads to bigger production and water use efficiency. The compound effects of supperabsorbent polymer and nitrogen fertilizer are better than the control group, with the increase in agricultural production by 54.8% and water use efficiency by 71.5%. And the productivity of nitrogen is also obviously increased. Among the treatments, the supperabsorbent polymer of 60kg/hm2 coupled by the nitrogen fertilizer of 225kg/hm2 can obtain the best results. The potted trial results show that the increase in wheat yield is not obvious with supperabsorbent polymer only added to soil under various moisture conditions. But the yield can increase significantly with nitrogen fertilizer and supperabsorbent polymer added to the trial. The treatment with medium nitrogen fertilizer and sufficient irrigation is higher than that under mild water stress. Under mild water stress condition, it results in the increase in yield by 78.9% and water use efficiency by 77.6% while the increase in yield by 98.2% and water use efficiency by 97.6% under sufficient irrigation. Moreover, the water use efficiency under mild water stress is higher than that under sufficient irrigation.
     As to the agricultural efficiency, apparent recovery and productivity of nitrogen fertilizer, the treatment with supperabsorbent polymer of 27mg/kg and nitrogen fertilizer of 432mg/kg under mild water stress condition can achieve best results but the treatment with supperabsorbent polymer of 54mg/kg and nitrogen fertilizer of 432mg/kg under sufficient irrigation can also obtain good results.
     2. The structural characteristics and porosity of soil in the tests proves that the supperabsorbent polymer obviously improves the stability of soil structure and reduces the bulk density. The utilization of nitrogen fertilizer can also promote the structural stability of soil. In field tests, it results in higher content of the water-stable aggregates (d>0.25mm) and more stable soil structure under the treatment of supperabsorbent polymer of 60kg/hm2 and coupled utilization of supperabsorbent polymer of 60kg/hm2 and nitrogen fertilizer of 225 kg/hm2. But in potted trial, the stability of soil structure decreases with growth of wheat. The structural stability of soil under mild water stress condition is more stable than that under sufficient irrigation. It shows significant increase in water-stable aggregates under the treatment of coupled utilization of supperabsorbent polymer of 54mg/kg and nitrogen fertilizer among the treatments.
     In potted trial, the quantitative examination in soil porosity by CT scanning technique indicates that the coupled utilization of supperabsorbent polymer and nitrogen fertilizer leads to remarkable increase in the number of macro void, macro porosity and circle forming ratio of soil. The number of macro void and macro porosity under mild water stress condition is much higher than that under sufficient irrigation. And the total porosity and macro porosity tend to grow under the treatment of coupled utilization of supperabsorbent polymer of 54mg/kg and nitrogen fertilizer of 432mg/kg under mild water stress, which results in the increase in the total porosity by 57.3% and macro porosity by 60.7% as to the control group. But under sufficient irrigation, it can achieve better results with supperabsorbent polymer of 54mg/kg and nitrogen fertilizer of 864mg/kg, manifested in increase in the total porosity by 55.4% and macro porosity by 116.7%. It shows that under various moisture contents, the appropriate utilization of supperabsorbent polymer and nitrogen fertilizer can effectively improve the soil porosity and promote the moisture and nutrient assimilation and growth of crop.
     3 The moisture characteristics of soil in potted trial show that the relationship between moisture content and soil water suction under the coupled utilization of supperabsorbent polymer and nitrogen fertilizer can be described by the functionθ=a·S-b and the water retention tends to be more obvious. Under mild water stress condition, the water retention is enhanced with quantity of supperabsorbent polymer while the water retention in control group is lowest under sufficient irrigation but the difference among the other treatments tends to diminish. While the utilization of supperabsorbent polymer improves the water retention, water conductivity and the water use efficiency. The water delivery under mild water stress is inferior to that under sufficient irrigation. The moisture absorbed and used by crop from the supperabsorbent polymer under mild water stress can be increased by 36.8% with the coupled utilization of supperabsorbent polymer of 81mg/kg and nitrogen fertilizer of 864mg/kg while 13.41% increase under sufficient irrigation with the supperabsorbent polymer of 27mg/kg and nitrogen fertilizer of 864mg/kg.
     4. The influence of supperabsorbent polymer and nitrogen fertilizer on the physiological and biochemical characteristics reveals the compound effects in the mechanisms of growth of wheat and the increase in yield.
     With natural precipitation in field tests, the utilization of supperabsorbent polymer and nitrogen fertilizer increases the relative moisture content of wheat leaf and chlorophyll content while the soluble sugar content, proline content and permeability of membrane of wheat leaf and root system are decreased and ultimately enhance the drought resistance of wheat. The comprehensive reflection of all treatments shows that the coupled utilization of supperabsorbent polymer of 60kg/hm2 and nitrogen fertilizer of 225kg/hm2 can attain good results. In jointing stage, the water use efficiency of wheat leaf is higher with the simple treatment of nitrogen fertilizer of 450kg/hm2 with the increase by 60.7% as to the control group and 52.1% with the utilization of supperabsorbent polymer of 60kg/hm2 and nitrogen fertilizer of 450kg/hm2. In the watery stage, the water use efficiency with the simple treatment of supperabsorbent polymer of 30kg/hm2 with the increase by 123.5% as to the control group and 120.4% with the utilization of supperabsorbent polymer of 60kg/hm2 and nitrogen fertilizer of 225kg/hm2. It shows that the supperabsorbent polymer can improve drought resistance of wheat in the different growth stage, retard the damage caused by water stress, and promote the accumulation of dry matter.
     In potted trial, the photosynthetic and physiological responses of wheat before and after rehydration under various moisture contents are as follows:
     Before the rehydration, the photosynthetic rate, evapotranspiration rate and stomata conductance in jointing stage with the nitrogen fertilizer of 864mg/kg only added to soil under mild water stress are higher. But under sufficient irrigation, the nitrogen fertilizer with high content slows the photosynthetic rate and evapotranspiration rate but the greater decrease amplitude results in higher water use efficiency of leaf. The photosynthetic rate of wheat with supperabsorbent polymer and nitrogen fertilizer is relatively low but higher than the control group. In booting-flowering stage and watery stage, it can promote the photosynthetic rate, evapotranspiration rate and stomata conductance of wheat with supperabsorbent polymer applied to potted trial before rehydration while it attains good results with supperabsorbent polymer of 54mg/kg under mild water stress. But under sufficient irrigation, the photosynthetic rate with supperabsorbent polymer of 27mg/kg is maximizing. After rehydration, the photosynthetic parameters of all treatments obviously improves but the photosynthetic rate, evapotranspiration rate, stomata conductance and water use efficiency of leaf increase with the soil water decreased to a certain degree in different growth stages.
     The comprehensive analysis indicates that the utilization of nitrogen fertilizer intensifies the moisture stress for the growth of wheat in mid-later stage, which leads to decrease in the photosynthetic parameters, e.g. stomata conductance, but the photosynthetic and physiological stimulation effects after rehydration tends to grow and the proper moisture stress can promote the water use efficiency of wheat leaf.
     5. Path analyze on the relationship between grain yeild and indexes such as soil physical, wheat physiological and wheat growth indicates: soil hold water ability, water supply capacity, hydraulic conductivity and field capacity become the influencing factors on wheat grain yield, and the effect of mild stress condition is better. Economic benefit analysis shows that there is the most significant effect of the 60kg/hm2 dosage wih supperabsorbent polymer for yield, and the maximum VCR and income are 7.05 and 1317.6 yuan respectively.
引文
曹丽花,赵世伟,梁向锋,刘合满,杨永辉,赵勇钢. 2008. PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究.农业工程学报,24(1):45~49
    陈志雄,汪仁真. 1979.中国几种主要土壤的持水性质.土壤学报,16(3):277~281
    迟永刚,黄占斌,李茂松. 2005.保水剂与不同化学材料配合对玉米生理特性的影响.干旱地区农业研究,23(6):132~136
    川岛和夫. 1986.农用土壤改良剂一新型保水剂.土壤学进展,(3):49~52
    崔玉亭. 2000.化肥与生态环境保护.北京:化学工业出版社:5~10
    程丽娟,来航线,李素俭,周马康. 1994.微生物对土壤团聚体形成的影响.西北农业大学学报,22(4):93~97
    董英,郭绍辉,詹亚力. 2004.聚丙烯酰胺的土壤改良效应.高分子通报,(5):83~87
    杜建军,苟春林,崔英德,曲东. 2007.保水剂对氮肥氨挥发和氮磷钾养分淋溶损失的影响.农业环境科学学报,26(4):1296~1301
    杜晓东,王丽娟,刘作新. 2000.保水剂及其在节水农业上的应用.河南农业大学学报,34(3):255~259
    冯杰,郝振纯. 2002. CT扫描确定土壤大孔隙分布.水科学进展,13(5):611~617
    高超,李晓霞,蔡崇法,丁树文,邓超. 2005.聚丙烯酸钾盐型保水剂在红壤上的施用效果.华中农业大学学报,24(8):355~358
    高凤文,罗盛国,姜佰文. 2005.保水剂对土壤蒸发及玉米幼苗抗旱性的影响.东北农业大学学报,36(1):11~14
    高俊凤. 2006.植物生理学实验指导.北京:高等教育出版社:144~148
    葛体达,隋方功,张金政. 2005.玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应.西北植物学报,25(3):50~51
    苟春林,杜建军,曲东,崔英德,毋永龙. 2006.氮肥对保水剂吸水保肥性能的影响.干旱地区农业研究,(6):78~84
    郭景南,刘崇怀,冯义彬,潘兴,樊秀彩. 2005. HB系列专用保水剂对盆栽红地球葡萄水势和丙二醛含量的影响.果树学报,22(1):72~74
    郭忠玲,马元丹,郑金萍,刘万德,金哲峰. 2004.长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究.应用生态学报,15(11):2013~2018
    何传龙,李布青,殷雄,闫晓明,陈西伟,焦平林. 2002.新型抗旱保水剂对土壤改良和作物抗旱节水作用的初步研究.安徽农业科学,30(5):771~773
    何绪生,何养生,邹绍文. 2008.保水剂作为肥料养分缓释载体的应用.中国土壤与肥料,(4):5~9
    胡芬,姜雁北. 1994.高吸水剂KH-841在旱地农业中的应用.干旱地区农业研究,12(4):83~86
    胡廷积,杨永光,马元喜. 1986.小麦生态与生产技术.郑州:河南科技出版社:19~23
    黄风球,杨立光,黄承武,沈华山,黄敏珍. 1996.化学节水技术在农业上的应用效果研究.水土保持研究, 3(3):118~124
    黄占斌,万惠娥,邓西平,张国桢. 1999.保水剂在改良土壤和作物抗旱节水中的效应.土壤侵蚀与水土保持学报,5(4):52~55
    黄占斌,张国桢,李秧秧,郝明德, Meni BEN-HUR,Deli CHEN. 2002.保水剂特性测定及其在农业中的应用.农业工程学报,18(1):22~26
    黄占斌,朱书全,张铃春,李茂松. 2004.保水剂在农业改土节水中的效应研究.水土保持研究,11(3):57~60
    黄占斌. 2005.农用保水剂应用原理与技术.北京:中国农业科学技术出版社:115~117
    介晓磊,李有田,韩燕来,谭金芳,刘世亮,康玲玲. 2000.保水剂对土壤持水特性的影响.河南农业大学学报,34(1):22~24
    巨晓棠,刘学军,张福锁. 2002.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究.中国农业科学,35(11):1361~1368
    雷志栋,杨诗秀,谢森传. 1988.土壤水动力学.北京:清华大学出版社:19~24.
    李常亮,张富仓. 2010.保水剂与氮肥混施对土壤持水特性的影响.干旱地区农业研究,28(2):172~176
    李潮海,李胜利. 2005.下层土壤容重对玉米根系生长及吸收活力的影响.中国农业科学,38(8):1706~1711
    李景生,黄韵株. 1996.土壤保水剂的吸水保水性能的研究动态.中国沙漠,16(1):86~91
    李开元,韩仕峰,李玉山. 1991.黄土丘陵区农田水分循环特征及土壤水分生态环境.中国科学院水利部西北水土保持研究所集刊,13:83~93
    李秧秧,黄占斌. 2001.节水农业中化控技术的应用研究.节水灌溉,(3):4~6
    李阳兵,谢德体.2001.不同土地利用方式对岩溶山地土壤团粒结构的影响.水土保持学报,15(4):122~125
    李永胜,杜建军,刘士哲,谢勇,王明祖. 2006.保水剂对番茄生长及水分利用效率的影响.生态环境, 15(1):140~144
    梁新华,许兴,徐兆桢. 2002.渗透胁迫对苗期不同品种春小麦叶片叶绿素荧光动力学的影响.宁夏大学学报,23(4):356~358
    林文杰,马焕成,周蛟. 2004.干旱胁迫下不同保水剂处理的水分动态研究.水土保持研究,11(2):121~124
    林心雄文启孝徐宁.广州地区土壤中植物残体的分解速率.土壤学报,1985,22(1):47~55
    刘甫清,陆国盈,韩世健,裴铁雄,周主贵. 2006.保水剂不同用量对甘蔗幼苗抗旱性的影响.广西蔗糖,(1):14~18
    刘海龙,郑桂珍,关军锋. 2002.干旱胁迫下玉米根系活力和膜透性的变化.华北农学报,17(2):20~22
    刘来华,李韵珠. 1996.冬小麦水氮有效利用的研究.中国农业大学学报,13(5):67~73
    刘萍萍,程积民. 2000.植物种间联结关系的研究.水土保持研究,7(2):179~184
    刘世亮,寇太记,介晓磊,李有田,谭金芳. 2005.保水剂对玉米生长和土壤养分转化供应的影响研究.河南农业大学学报,39(2):146~150
    刘文兆. 1998.作物生产、水分消耗与水分利用效率间的动态联系.自然资源学报,13(1):23~27
    刘晓楠,张和平. 1991.土壤肥料.黑龙港地区冬小麦生产中水肥关系的研究,(4):1~4
    刘学军,赵紫娟,巨晓棠,张福锁. 2002.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响.生态学报,22(7):1122~1128
    刘煜宇,马焕成,黄金义. 2005.保水剂与肥料交互作用对石楠抗旱效应的影响.西南林学院学报,25(3):10~13
    刘子凡,梁计南,罗明珠,赵轩裕. 2004.土壤保水剂对秋植蔗形态生理效应的研究.热带农业科学,24(2):18~22
    刘子凡,梁计南,谭中文,罗明珠,陈培寿. 2004.土壤保水剂对甘蔗抗旱性的影响.甘蔗,11(2):11~15
    陆国盈,韩世健,裴铁雄,罗炳顺,刘甫清. 2005.不同时期施保水剂对甘蔗抗旱性和产量及品质的影响.广西蔗糖,(1):3~16
    罗维康. 2005.保水剂对甘蔗生长与产量的影响.亚热带农业研究,1(1):27~29
    马焕成,罗质斌,陈义群,林文杰. 2004.保水剂对土壤养分的保蓄作用.浙江林学院学报,21(4):404~407
    马兰,李坤雄. 1997.食品质量检验.中国计量出版社:7
    马强,宇万太,周桦,张璐,刘中良. 2009.不同水肥条件对大豆产量的影响.土壤通报,40(6):1311~1315
    马天新,庞中存,陆秀珍. 1997.土壤保水剂在我省旱作农业上的应用展望.甘肃林业科技,(12):31~32
    潘瑞炽. 2001.植物生理学(第四版).高等教育出版社:101
    彭少麟,周厚诚,郭少聪,黄忠良. 1999.鼎湖山地带性植被种间联结性变化研究.植物学报,41(11):1239~1244
    祁桂林,张爱芬. 2005.保水剂对狼尾革幼苗耐旱效应.农业与技术,25(6):45~47
    任建宏,艾海舰. 2003.土壤保水剂对荷兰菊幼苗在干旱胁迫下生长的影响.陕西农业科学,(1):6~7
    森林土壤渗透性测定. 2003.林业管理常用标准及政策法规汇编.吉林:吉林电子出版社:1218~1999
    山仑,陈培元. 1998.旱地农业生理生态基础.北京:科学出版社:25~58
    上官周平,李世清. 2004.旱地作物氮素营养生理生态.北京:科学出版社:123
    沈思渊,席承藩. 1990.淮北主要土壤持水性能及其与颗粒组成的关系.土壤学报,27(1):34~42
    石玉,于振文,李艳奇,王雪. 2007.施氮量和底追肥比例对冬小麦产量及肥料氮去向的影响.中国农业科学,40(1):54~62
    史竹叶,赵世伟. 1999.黄土高原土壤持水曲线的计算方法.西北农业学报,8(6):44~47
    宋晴晴,何群,付在秋,朱东顺. 2002.保水剂对夏播甜菜苗期生长的影响.中国甜菜糖业,(4):42~43
    孙艳,王益权. 2005.土壤紧实胁迫对黄瓜根系活力和叶片片光合作用的影响.植物生理与分子生物学学报,31(5):545~550
    潭国波,边少峰,马虹,李伟堂,方向前,赵宏祥,张丽华,孟祥盟. 2005.保水剂对玉米出苗率及土壤水分的影响.吉林农业科学,30(5):26~27
    田娜,张蕾,江海东. 2009.保水剂对垂盆草建植和生理代谢的影响.草业科学,26(2):120~123
    土壤物理性质测定方法. 1978.中国科学院土壤研究所.北京:科学出版社:328~331
    万惠娥,黄占斌. 2000.保水剂对旱区农作物保水效应的研究.宁夏农林科技,(5):38~39
    汪德水. 1995.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社:91~100
    王爱国,邵从本,罗广华. 1986. MDA作为植物过氧化指标的探讨.植物生理学通讯,(2):55~57
    王砚田,华孟,赵小雯,厉卫宏. 1990.高吸水性树脂对土壤物理性状的影响.北京农业大学学报,16(2):181~187
    吴德瑜. 1991.保水剂与农业.北京:中国农业科技出版社:1~3
    吴华山,陈效民,陈璨. 2007.利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究.水土保持学报,21(2):175~178
    武继承,王志和,何方,杨稚娟,薛毅芳. 2005.不同技术措施对降水利用和土壤养分的影响.华北农学报,20(6):73~76
    武继承,杨稚娟,何方,薛毅芳,潘晓东. 2006.试论河南省旱地节水农业发展的有效途径.河南农业科学,(1):5~8
    萧浪涛,王三根. 2005.植物生理学实验技术.北京:中国农业出版社:42,152.
    杨连利,李仲谨,邓娟利. 2005.保水剂的研究进展及发展新动向.材料导报,19(6):42~44
    杨培岭,罗远培,石元春. 1993.用粒径的重量分布表征的土壤分形特征.科学通报,38(20):1896~1899
    杨新泉,冯锋,宋长青,冷疏影. 2003.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报,9(3):373~376
    杨永辉,吴普特,武继承,赵世伟,赵西宁,黄占斌,何方. 2010.保水剂对冬小麦不同生育阶段土壤水分及利用的影响.农业工程学报,26(12):19~26
    杨永辉,吴普特,武继承,赵世伟,黄占斌,何方. 2011.冬小麦光合特征及叶绿素含量对保水剂与氮肥的响应.应用生态学报,22(1):79~85
    杨永辉,武继承,何方,管秀娟. 2009.保水剂用量对小麦光合特性及水分利用的影响.干旱地区农业研究,27(4):131~135
    杨永辉,武继承,吴普特,赵世伟,何方,史福刚. 2009.秸秆覆盖与保水剂对土壤结构、蒸发及入渗过程的作用机制.中国水土保持科学,7(5):70~75
    杨永辉,武继承,赵世伟,曹丽花,黄占斌. 2007. PAM的土壤保水性能研究.西北农林科技大学学报(自然科学版),35(12):120~124
    杨永辉,赵世伟,黄占斌,白岗栓,刘娜娜. 2006.沃特多功能保水剂保水性能研究.干旱地区农业研究,24(5):35~37
    杨永辉,赵世伟,吴普特,武继承,冯浩,黄占斌,史婉丽. 2009. PAA对不同土壤保水和蒸发性能的影响.灌溉排水学报,28(5):119~122
    杨永辉,武继承,吴普特,黄占斌,赵西宁,管秀娟,何方. 2011.保水剂用量对冬小麦不同生育时期根系生理特性的影响.应用生态学报,22(1):72~78
    杨玉萍. 2008.小麦苗期生理生化指标抗旱性的初步研究.新乡学院学报(自然科学版),25(1):52~55
    杨玉盛,林先富,邹双全,俞新妥,庄孟能. 1991.杉木套种山苍子模式土壤物理性质和短期收益的研究.福建林学院学报,11(3):241~248
    余红英,邓世媛,尹艳,赵宏霞. 2006.保水剂对水分胁迫下超甜玉米生理生化性状的影响.玉米科学,14(3):87~89
    俞满源,黄占斌,方锋,山仑. 2003.保水剂、氮肥及其交互作用对马铃薯生长和产量的效应.干旱地区农业研究,21(3):15~19
    员学锋,汪有科,吴普特,冯浩. 2005.聚丙烯酰胺减少土壤养分的淋溶损失研究.农业环境科学学报,24 (5):929~934
    邹琦. 1995.植物生理生化实验指导.北京:中国农业出版社:42~43
    张扬,赵世伟,梁向锋,华娟. 2009.保水剂对宁南山区马铃薯产量及土壤水分利用的影响.干旱地区农业研究,27(3):27~32
    张春华,李昆,崔永忠,谢正伦,杨文生,施永泽. 2006.川楝苗木失水处理对其活力及造林效果的影响.林业科学研究,19(1):70~74
    张德奇,廖允成,贾志宽,季书勤,马庆华. 2006.旱地谷子集水保水技术的生理生态效应.作物学报,32(5):738~742
    张福锁,李春俭,米国华. 2003.植物营养生理进展.见:21世纪的生命科学展望.济南:山东教育出版社:206~235
    张富仓,李继成,雷艳,罗朋. 2010.保水剂对土壤保水持肥特性的影响研究.应用基础与工程科学学报,18(1):120~128
    张雷明,杨君林,上官周平.旱地小麦群体生理变量对氮素供应量的响应.中国生态农业学报,2003,11(3):63~65
    张丽,祝利海. 2002.保水剂对玉米、小麦种子萌发的影响.安徽农业科学,30(6):921~922
    张岁歧,山仑. 1997.磷素营养和水分胁迫对春小麦产量及水分利用效率的影响.西北农业学报,6(1):22~25
    张渝洁. 2009.不同胁迫条件对青菜生理生化指标的影响.北方园艺,(6):30~33
    赵敏,高会东. 2002.保水剂对花生生理特性及产量构成因素的影响.吉林农业科学,27(6):15~18
    赵世伟,赵勇钢,吴金水. 2010.黄土高原植被演替下土壤孔隙的定量分析.中国科学(地球科学)40(2):223~231
    赵正雄,赵明,张福琐. 2002.育苗时使用保水剂对移栽玉米生长发育和产量的影响.耕作与栽培,(2):13~14
    浙江农业大学.农业化学分析. 1987.上海:上海科技出版社:174~182
    郑惠玲,薛毅芳,管秀娟,何方. 2006.施用不同保水剂对土壤水分变化的影响.河南农业科学,(7):73~76
    周金池,马履一,王学勇. 2008.河北省平山县刺槐造林保水剂施用效果研究.水土保持通报,28(4):70~74
    朱林,於忠祥,韩文节,冯贵良,李道林,孙秀伦,朱奎峰. 2006.缓释型保水剂对油菜生长和土壤性状的影响.安徽农业大学学报,33(1):40~43
    朱元骏,黄占斌,辛小桂,迟永刚. 2004.分根区施保水剂对玉米气孔导度和单叶WUE的影响.西北植物学报,24(4):627~631
    邹新禧. 2001.超强吸水剂.北京:化学工业出版社:164~373
    Abramoff M D, Magelhaes P J, Ram S J. 2004. Image processing with Image J. Biophotonics Int, 11: 36~42 Akhter J, Mahmood K, Malik K A. 2004. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant, Soil and Environment,50(10): 463~469
    Anderson S H, Peyton R L, Gantzer C J. 1990. Evaluation of constructed and natural soil macropores using X-ray computed tomography, Geoderma, 46: 13~29
    Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1~15
    Asseng S, Ritchie J T, Smucker A J M, Robertson M J. 1998. Root growth and water uptake during water deficit and recovering in wheat. Plant and Soil, 201: 265~273
    Baveye P, Parlange J Y, Stewart B A. 1998. Fractals in Soil Science. Advance in Soil Sci. CRC Press, Boca Raton, FL, 377~389
    Ben Hur M, Faris J, Malik M, Letey J. 1989. Polymers as soil conditions under consecutive irrigation and rainfall. Soil Sci Soc Am J, 53: 73~77
    Berkowitz GA, Gibbs M. 1982. Effect of osmotic stress on photosynthesis studied with the isolated spinach chloroplast. Plant Physiology, 70: 1143~1148
    Beven K, Germane P. 1981. Water flow in soil macropores. II A combined flow model. J Soil Sci, 32: 15~29
    Bowman D C and Evans R Y. 1991. Calcium inhibition of polyacrylamide gel hydration is partly reversible by potassium. Hortscience, 26(8): 1063~1065
    Bowman D C, Evans R Y, Paul J L. 1990. Fertilizer salts reduce hydration of polyacrylamide gels and affect physical properties of gel amendedcontainermedia. Journal of the American Society of Horticultural Science, 115 (3): 382~6
    Brown P L. 1971. Watcr use and soil water depletion by dry land winter wheat as affected by nitrogen fertilization. Agronomy Journal, 6: 43~46
    Busscher W J, Bjorneberg D L, Sojka R E. 2009. Field application of PAM as an amendment in deep-tilled US southeastern coastal plain soils. Soil & Tillage Research, 215~220
    Chatzoudis G K, Rigas F. 1998. Macroreticular hydrogel effects on dissolution rate of controlled - release fertilizers. Journal of Agricultural and Food Chemistry, 46: 2830~2833
    Chaves M M, Maroco J P, Pereira J S. 2003. Understanding plant responses to drought-from genes to the whole plant. Func Plant Bio, 30: 239~274
    Ciompi S E, Gentill L G, Soldatini G F. 1996. The effect of nitrogen on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci, 118: 177~184
    Dana L D, Douglas LK, Dan BJ, Thomas C K, Jerry L H, Thomas S C, Cynthia A C. 2002. Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agronomy Journa, 94: 153~171
    Daniel P. 2002. Hydrophilic Polymers-Effects and Uses in the Landscape [Intenet]. http://horticulture.coafes.umn.edu/vd /h5015 /01papers/hydrogel.Htm [2005-08-02] Evans J R & Tcrashima I. 1987. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Australian Journal of Plant Physiology, 14: 59~68
    Farquhar G D, Sharkey T D. 1982. Stomatal conductance and photosynthesis . Ann. Res. Plant Physiol, 33:317~342
    Field C, Mooney H A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givinish, T.J. (Ed.), On the Economy of Plant Form and Function. Cambridge University Press, Cambridge: 25~55
    Fischer R A, Turner N C. 1978. Plant production in the arid and semiarid zones. Annual Review of Plant Physiology, 29: 277~317
    Flexas J, Bota J, Cornic G, Loreto F, Cornic G, Sharkey T D. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol, 6: 269~279
    Foster W J, Gary J K. 1990. Water Absorp tion of HydrophilicPolymers (Hydrogels) Reduced by Media Amendments. J. Environ. Horta, 8(3): 113~114
    Gantzer C J, Anderson S H. 2002. Computed tomographic measurement of macroporosity in chisel-disk and no-tillage seedbeds. Soil Till Res, 64: 101~111
    Gardner W R. 1956. Representation of Soil Aggregate Size Distribution by a Logarithmic-NormalDistribution. Soil Sci Soc Am Proc, 20: 151~153
    Gehring J M,Lewis A J. 1980. Effect of hydrogel on wilting and moisture stress of bedding plants [J]. J. Amer. Soc. Hort Sci, 105(4): 511~513
    Gimenez D, Perfect E, Rawls WJ, Pachepsky Y A. 1997. Fractal models for predicting soil hydraulic properties: a review. Engineering Geology, 48: 161~183
    Guan Y L. 1996. A study on correlation between water state and swelling kinetics of chitosan based hydrogels. J Appl Polym Sci, 61: 23~25
    Haas H P, Rober R. 1993. Substrate additives,watering and growth of Euphorbia pulcherrima. Gartenbau magazine, 12(2): 68~70
    Handly L L, Lbvo E, Raven J A. 1994. Chrmosome 4 controls potential of water use efficiency in barley. J Exp Bot, 45(280): 1661~1663
    Hebert Y, Guingo E, Loudet O. 2001. The response of root/shoot partitioning and root morphology to light reduction in maize genotypes. Crop Sci, 41: 363~371
    Henderson J C and Hensley D L. 1985. Ammonium and nitrate retention by hydrophilic gel. Hort Sci, 20: 667~668
    Herrick J D, Thomas R B. 1999. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweet-gum trees (L iquidam bar sty racif lua) in a forest ecosystem. Tree Physiology, 19: 779~786
    Huttermann A, Zommorodi M, Reise K. 1999. Addition of hydrogels to soil for prolonging the survival of pinus halepensis seedling subjected to drought. Soil and Tillage Research, 50(4): 295~304
    Jackson R D, Idso S B, Reginato R J, Pinter P J. 1981. Canopy temperature as a crop water stress indicater. Water Resource Research, 17: 1133~1138
    James A E, Sojka R E, Mariveth W. 2002. Craig R. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Environmental Pollution, (120): 191~200
    Jary W A. 1991. Soil Physics. Published by John Wiley & Sons. Inc., Hoboken. New Jersey. Printed in the United States of America: 61~64
    Joly R J, Hahn D T. 1989. Net CO2 assimilation of cacao seedlings during periods of plant water deficit. Photosynth Res, 21: 151~159
    Kang S Z, Shi P, Pany H. 2000. Soil water distribution, uniformity and water use efficiency and alternate fullow irrigation in arid areas. Irrig Sci, 19:181~190
    Kramer P J. 1985. Water Relation of Plants. New York : Academic Press. Lawlor D W. 2001. Photosynthesis: Molecular, Physiological and Environment Processes, 3rd edn. Bios Scientific Publishers, Oxford, UK.
    Li Z Z, Li W D, Li W L. 2004. Dry-period irrigation and fertilizer application affect water use and yield of spring wheat in scmi-arid regions. Agricultural Water Management, 65: 133~143
    Luxmoore R J. 1981. Micro-, meso-, and macroporosity of soil. Soil Sci. Soc Am. J, 45: 671~672 Magalhaes G E, Wilcox F C, Rodrigues F L, Silva I M, Ferreira Rocha A N. 1987. Plant growth and nutrient uptake in hydrophilic Gel treated soil. Comm Soil Sci Plant Anal, 18 (12): 1469~1478
    Mazurak A P. 1950. Effect of gaseous phase on water-stable synthetic aggregates. Soil Sci, 69: 135~148 McDonald A J S, Davies W J. 1996. Keeping in touch: response of the whole plant to deficit s in water andnit rogen supply. Adv Bot Res, 22: 229~300
    Melissa E H, Michael D M, Phillip M F. 2005. Polyacrylamide added as a nitrogen source stimulates methanogenesis in consortia from various wastewaters. Water Research Oxford, 39: 3333~3341
    Mikkelsen L R. 1994. Using hydrophilic polymers to control nutrient release. Fert Res, 38: 53~59
    Mitchell R A C, Keys A J, Madgwick PJ, Parry M A J, Lawlor D W. 2005. Lawlor Adaptation of photosynthesis in marama bean Tylosema esculentum (Burchell A. Schreiber) to a high temperature, high radiation, drought-prone environment. Plant Physiology and Biochemistry, 43: 969~976
    Molloy P J, Smith M J, Cowling M J. 2000. The effects of salinity and temperature on the behaviour of polyacrylamide gels. Materials and Design, 21: 169~174
    Mooney S J. 2002. Three-dimensional visualization and quantification of soil macroporosity and water flow patterns using computed tomography. Soil Use Manag, 18: 142~151
    Morgan J.A. 1986. The effect of N nutrition on the water relation and gas exchange characteristics of wheat. Plant Physiology, 80: 52~58
    Morgan W C, Letey J, Richards S J, Valoras N. 1966. Physical Soil Amendments., Soil Compaction., Irrigation and Wetting Agents in Turfgrass Management I. Effects on Compatibility, Water Infiltration Rates, Evapotranspiration, and Number of Irrigations. Agron J, 58: 525~528
    Motzo R, Attene G, Deidda M. 1993. Genotypic variation in durum wheat root systems at different stages of development in a Mediterranean environment. Euphytica, 66: 197~206
    Musila C F, Arnoldsa J L, van Heerdenb P D R, Kgope B S. 2009. Mechanisms of photosynthetic and growth inhibition of a southern African geophyte Tritonia crocata (L.) Ker. Gawl. by an invasive European annual grass Lolium multiflorum Lam. Environmental and Experimental Botany, 66(1): 38~45
    Myers R J K. 1978. Nitrogen and phosphorus nutrition of dry land grain sorghum at Katherine, Northern Territory. 3. Effcct of nitrogen carrier time and method of application Australian Journal of Experimental Agriculture, 8: 834~843
    Pagter M, Claudia B, Malagoli M, Brix H. 2009. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragm ites australia. Aquatic B otany, 90(1): 43~51
    Paul W, Tim K. 2003. Solids, organic load and nutrient concentration reductions in swine waste slurry using a polyacrylamide (PAM) aided solids flocculation treatment. Bioresource Technology, (90): 151~158
    Perret J, Prasher S O, Kantzas A, Langford, C A. 1999. Three-dimensional quantification of macropore networks in undisturbed soil cores. Soi Sci Soc Am J, 63: 1530~1543
    Peyton R L, Anderson S H, Gantzer C J. 1992. Applying X-ray CT to measure macropore diameters in undisturbed soil cores. Geoderma, 53: 329~340
    Peyton R L, Gantzer C J, Anderson S H, Haeffner B A, Pfeifer P. 1994. Fractal dimension to describe soil macropore structure using X-ray computed-tomography. Water Resour Res, 30: 691~700
    Phogat V K , Aylmore L A G. 1989. Evaluation of soil structure by using computer assisted tomography. Aust J Soil Res, 27(2):313~323
    Pirmoradian N, Sepaskhah A R, Hajabbasi M A. 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystems Engineering, 90: 227~234
    Powel S B. 1984. Photo inhibition of photosynthesis induced by visible light. Annual Review of PlantPhysiology, 35: 15-44
    Rachman A, Anderson S H, Gantzer C J. 2005. Computed-tomographic measurement of soil macroporosity parameters as affected by stiff-stemmed grass hedges. Soi Sci Soc Am J, 69: 1609~1616
    Rasiah V, Alymore L A G. 1998. The topology of pore structure in cracking clay soil: I. The estimation of numerical density. Soil Sci, 39: 303~314
    Rasiah V, Aylmore L A G. 1998. Characterizing the changes in soil porosity by computed tomography and fractal dimension. Soil Sci, 163: 203~211
    Rivelli R, Lovelli S, Perniola M. 2002. Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus). Functional Plant Biology, 29: 1405~1415
    Sander T, Gerke H H, Rogasik H. 2008. Assessment of Chinese paddy-soil structure using X-ray computed tomography. Geoderma, 145: 303~314
    Shangguan Z-P, Shao M-A, Ren S-J, Zhang L M, Xue Q. 2004. Effect of nitrogen on root and shoot relations and gas exchange in winter wheat. Bot Bull Acad Sin, 45: 49~54
    Shanna B D, Kar S, Chccma S S. 1990. Yield, water use and nitrogen uptake for different water and N levels in winter wheat. Fertilizer Research, 22: 119~127
    Sharp RE, Poroyko V, Hejlek L, Spollen W G, Springer G K, Bohnert H J, Nguyen H T. 2004. Root growth maintenance during water deficits: Hysiology to functional genomics. Journal of Experimental Botany, 55: 2343~2351
    Shaviv S W and Mikklelsen R L. 1993. Controlled release fertilizers to increase efficiency of nutrient use and minimize environmental degradation. Fert Res, 35: 1~12
    Shimshi D. 1970. The effects of nitrogen supply on the transpiration and stomatal behaviour of beans. New Phytologist, 69: 405~412
    Shipley B, Vile D, Garnier E, Wright ij & Poorter H. 2005. Functional linkages between leaf traits and net photosynthetic rate: Reconciling empirical and mechanistic models. Functional Ecology, 19: 602~615 Silberbush M, Adar E, De M Y. 1993. Use of an hydrophilic polymer to improve water storage and availability to crops grown in sand dunes. I Com irrigated by trickling. Agricultural Water Management, 23: 303~313
    Silberbush M, Adar E, De M Y. 1993. Use of an hydrophilic polymer to improve water storage and availability to crops grown in sand dunes.ⅡCabbage irrigated by sprinkling with different water salinities. Agricultural water Management, 23: 313~327
    Smith J D, Harrison H C. 1991. Evaluation of polymers for controlled release properties when incorporated with nitrogen fertilizer solutions. Comm. Soil Sci. Plant Anal, 22 (5-6) : 559~73
    Sojka R E, Entry J A. 2000. In-uence of polyacrylamide application to soil on movement of microorganisms in runoff water. Environmental Pollution, 108: 405~412
    Sojka R E, James A E, Jeffry J F. 2006. The influence of high application rates of polyacrylamide on microbial metabolic potential in an agricultural soil. Applied Soil Ecology, 32: 243~252
    Udawatta R P, Anderson S H, Gantzer C J, Garrett H E. 2006. Agroforestry and grass buffer influence on macropore characteristics: A computed tomography analysis. Soi Sci Soc Am J, 70: 1763~1773
    Udawatta R P, Anderson S H. 2008. CT-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers. Geoderma, 145: 381~389
    Udawatta R R, Anderson S H, Gantzer C J, Garrett H E. 2008. Influence of prairie restoration onCT-measured soil pore characteristics. J Environ Qual, 37: 219~228
    Van Bavel C H M. 1949. Mean weight diameter of soil aggregates as a statistical index of aggregation. Soil Sci Soc Am Proc, 14, 20-23
    Viero P W M, Little K M, Oscroft D G. 2000. Establishment of Eucalyptus grandis X camaldulensis clones in Zululand; the efect of a soil amended hydrogel. ICFR-Bullentin-Series, (7): 1~12
    Wamer G S, Nieber J L, Moore I D, Geise R A. 1989. Characterizing macropores in soil by computed tomography. Soil Sci Am J, 53: 653~660
    Watson K M, Luxmoore R J. 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci Soc Am J, 50(3): 578~582
    Woodhouse J M, Johnson M S. 1991. The effect of gel-forming polymer son seed germination and establishment. J. Arid Environ, 20: 375~380
    Woodhouse J, Johnson M S. 1991. Effect of super absorbent polymers on survival and growth of crop seedling. Agricultural Water Management, 20: 63~70
    Xue Q, Zhu Z, Musick J T, Stewart, B A, Dusek D A. 2003. Root growth and water uptake in winter wheat under dificit irrigation. Plant Soil, 257: 151-161
    Yang S M, Li F M, Sukhdev S M, Wang P, Suo D R, and Wang J G. 2004. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in northwestern China. Agronomy Journal, 96: 1039~1049
    Zeng Y, Gantzer C J, Payton R L, Anderson S H. 1996. Fractal dimension and lacunarity of bulk density determined with X-ray computed tomography. Soi Sci Soc Am J, 60: 1718~1724

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700